
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993 1813

An Efficient Algorithm for Constrained Encoding and
its Applications

Chuan-Jin Shi, Student Member, IEEE, and Janusz A. Brzozowski, Member, IEEE

Abstracr-In this paper, an efficient algorithm and its imple-
mentation ENCORE are presented for finding approximate so-
lutions to dichotomy-based constrained encoding, a problem
fundamental to the synthesis of combinational logic circuits,
and synchronous and asynchronous sequential circuits. EN-
CORE adopts a greedy strategy to find an encoding bit by bit,
and then uses an iterative method to improve the solution qual-
ity. The novelty of our algorithm lies mainly in a linear-time
heuristic to select each individual bit; this problem was previ-
ously solved in quadratic time. ENCORE has been applied to a
variety of practical problem instances. For a number of ex-
amples found in the literature on the synthesis of asynchronous
sequential machines, ENCORE consistently obtains optimal or
near-optimal results. For the optimum state assignment of the
MCNC FSM benchmarks, ENCORE generates the same or even
shorter encoding lengths than the programs KISS, NOVA and
DIET, but takes much less CPU time. It is demonstrated for
the first time that PLA implementations of synchronous FSMs
using dichotomy constraints compare very favorably with re-
spect to area with those based on traditional group constraints.

Index Terms-constrained encoding, state assignment, logic
synthesis asynchronous circuits, PLA decomposition, local
search heuristics.

I. INTRODUCTION
ONSTRAINED encoding is an important problem C arising in many aspects of the synthesis of combina-

tional and sequential logic circuits. Given a set S = {s,,
. . . , s,} of m states, the (complete) constrained encod-
ing problem is to find an encoding a of S into a set {a (sl),
. . . , a(s,)} of m binary k-tuples (k-bit vectors), in such
a way that all the dichotomy constraints (defined below)
are satisfied and k is minimized. A (partial) dichotomy
constraint requires that a subset P of S be distinguished
from a disjoint subset Q of S by at least one bit, i.e., that
bit must have the value 0 for all the states in P and 1 for
all the states in Q, or vice versa. If Q is empty, we have
the special case of unary constraint requiring that a subset
P of S must be identified by at least one bit b of the
k-tuples, in the sense that the value of b should be the
same for all the states in P. A variation, called the partial

Manuscript received March 29, 1993. This work was supported by the
Natural Sciences and Engineering Research Council of Canada under Grant
OGPOOOO871, and by a grant from the Information Technology Research
Centre of Ontario. A preliminary version of this paper appeared in Proc.
Euro-DAC’92, Hamburg, Germany, September 7-10, 1992, pp. 266-271.
This paper was recommended by Associate Editor L. Trevillyan.

The authors are with the Department of Computer Science, University
of Waterloo, Waterloo, ON, Canada N2L 3G1.

IEEE Log Number 92 12345.

TABLE I
EXAMPLES OF ENCODINGS

S1 1 0 0
32 1 0 1
s3 0 1 0
s4 1 1 1

S l 1 0
s2 1 1
$3 0 0
s4 0 1

constmined encoding problem, aims at maximizing the
number of constraints ,that are satisfied using a fixed num-
ber of bits. For example, consider a unary constraint ({ sl,
s2, s4}), and four dichotomy constraints ({sl, s3}, (s2)),

the set S = (sl, - * - , s4). Table I(a) shows a minimum-
length encoding satisfying all the constraints. Table I(b)
gives a two-bit encoding satisfying the largest number (4)
of constraints.

The constrained encoding problem was first formulated
by Tracey [18] for critical-race-free state assignments of
asynchronous finite state machines (FSM’s). Unger [191
pointed out that, for certain kinds of FSM’s, the problem
of obtaining an asynchronous implementation, where cor-
rectness is independent of the presence of arbitrary gate
and wire delays can be reduced to the problem of con-
strained encoding. Recent studies indicate that the prob-
lem of encoding states of FSM’s to have a minimum PLA
implementation is related to the partial constrained encod-
ing problem [21], [23].

The search for efficient solutions for the constrained en-
coding problem was pioneered by Tracey [lg]. He pro-
posed a procedure, similar to Boolean logic minimization,
which consists of two basic steps: First, construct all
maximal compatible sets of dichotomy constraints; each
such set can be satisfied by one bit assignment, called a
prime bit assignment. Second, find a minimal number of
prime bit assignments to cover all the given dichotomy
constraints: this problem is known as the covering prob-
lem. This prime-covering method gives an exact solution
to the complete constrained encoding problem. However,
the number of prime bit assignments may be exponential
in the number of states, and the covering problem is NP-
complete [SI. In practice, the process described above has
been approximated using various heuristics [20], [23]. In
addition, it is not clear how to apply the prime-covering

((s1, 4 (sd), (i s39 s41, (S l I) , and ((s 3 , s41, { s 2 }) , on

0278-0070/93$03.00 0 1993 IEEE

1814 IEEE “JSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

approach to partial constrained encoding. As a conse-
quence, for the optimum state assignment for synchro-
nous sequential machines, the dichotomy-based ap-
proaches (such as DIET [23]) have not been as successful
as classical approaches (such as KISS [9], CREAM [lo],
NOVA [2 11, and [131), which are based on group con-
straints. A group constraint specifies that a set of states
must be encoded in a neighbourhood or a face in the
Boolean space.

This paper uses a variant of the prime-covering ap-
proach to find good approximate solutions for complete
and partial constrained encoding in a unified manner. It
replaces the generation of prime bit assignments and the
solution of the covering problem by a single step. A single
bit of an encoding is generated so as to satisfy as many
constraints as possible; this is defined as the optimal bit
generation problem. To find a complete encoding, we re-
peat this bit generation process until all the constraints are
satisfied. To find a bounded-length encoding, we repeat
the bit generation process until the number of bits gener-
ated reaches the bound. To derive an efficient algorithm
for optimal bit generation, we make a new observation
which is made possible by extending constrained encod-
ing to include unary constraints, i.e., allowing one block
of a dichotomy constraint to be empty. Noticing that the
well-known two-way network partitioning problem is a
special case of the partial constrained encoding problem,
we are able to generalize the successful heuristic of
Fiduccia and Mattheyses [7] for network partitioning to
optimal bit generation. By doing this, we achieve a fast
approximation algorithm with computational cost linearly
proportional to the problem size.

This paper is structured as follows: Section I1 intro-
duces some basic definitions and the problem formula-
tion. The basic idea of the encoding algorithm is illus-
trated in Section 111. Section IV presents the encoding
algorithm, along with its time complexity analysis. Sec-
tion V describes some extensions and improvements. A
description of various applications to logic synthesis is
provided in Section VI. Section VI1 reports some experi-
mental results. Section VI11 concludes the paper.

11. PROBLEM FORMULATION
In this section we give a mathematical formulation of

constrained encoding. A constraint c on a set S = { s ~ ,
* * * , s,} is a pair c = (c+, c-) of disjoint subsets (called
blocks) of S. We may distinguish two types of constraints:
A (partial) dichotomy constraint consists of two non-
empty blocks. A unary constraint is a constraint with one
empty block.

Let B = { - 1, 1 } represent the two logic values. Con-
ventionally, (0, l} is used, but the use of { -1, l } will
considerably simplify our notation. Given a set S = {sl, - , s,} of m > 0 states and an integer k > 0, a binary
encoding (or simply an encoding) a of S is a mapping a:
S -+ Bk. Note that a need not be one to one. We may
think of the encoding as a matrix A: The ith row of the
matrix represents the word assigned by a to state si, and

thejth column represents bi t j of the encoding. We use a
to refer to a particular column of A; such a column is
called a bit assignment, and can be interpreted as a map-
ping a: S + B. We denote by al , * * - , am the compo-
nents of bit assignment a.

With a slight abuse of notation, we say that state si is
contained in constraint c and write si E c iff si E c+ U c - .
We use (c l to denote the number of states contained in
constraint c. A set C = {cI, , c,,} of n constraints
can be described by the constraint matrix C = (cij>, ,,,
where

1 if si E c:,

c- = - 1 if si E cJr,

lJ I 0 if si $ cj.

We use Ci to denote the subset of constraints in C con-
taining s;, and we let 1 Ci I be its cardinality.

A bit assignment a: S --t B is said to satisfy a constraint
c = (c’, c -) iff there exists a value b E B such that for
all s E c’, a(s) = b , and for all s E c-, a(s) = 6, where
b is the complement of b. An encoding a: S -+ Bk is said
to satisfy a constraint c = (c’, c-) iff at least one bit
assignment of a satisfies c.

To illustrate these definitions, let S = { 1, - - , 6) and
consider bit assignments a , 0, y, and E shown in Table I1
and constraints c1, c2, c3, and c4 defined below.

c1 = (9, (3) and c2 = ({3}, p l) . Any bit assignment
satisfies c1 and c2. Therefore constraint (pl, pl) and
constraints with one empty block and one one-state
block are trivial constraints, and will be excluded.
c3 = ((2, 3 , 5}, p) . Bit assignments a, y and E sat-
isfy c3, but 0 does not.
c4 = ((1, 2, 5 } , (4, 6)). Bit assignments cy and /3
satisfy c4, but y and E do not.

The encoding composed of bit assignments a , 0, y and E

satisfies all four constraints.
The (complete) constrained encoding problem is de-

fined as follows: Given a set S of m states, and a set C of
n constraints on S , find an encoding a of S with minimum
k, such that a satisfies each constraint c E C. A variation
of this problem, the partial constrained encoding prob-
lem, is as follows: Given a set S of m states, a set C of n
constraints on S , and an integer h , find an encoding a of
S with k = h such that a satisfies as many constraints of
C as possible. If h = 1, this problem is called the optimal
bit generation problem.

In describing the running time of an algorithm on a
given instance of the constrained encoding problem, we
measure the size ofthe input in terms of p = Cy= I cj I .
Clearly, the problem size is the number of nonzero entries
in the constraint matrix.

-

111. AN OVERVIEW OF THE ENCODING ALGORITHM
In this section, we describe our algorithm informally.

- - , s5}
, c4}, where C is described by the

Consider the following example. Let S = IsI,
and C = {c1, * *

7

SHI AND BRZOZOWSKI: CONSTRAINED ENCODING AND APPLICATIONS 1815

TABLE I1
EXAMPLES OF ASSIGNMENTS

1 - 1 1 - 1 1
2 - 1 1 1 1
3 - 1 - 1 1 1
4 1 - 1 - 1 1
5 - 1 1 1 1
6 1 - 1 - 1 1

following constraint matrix:

C = (”” 19
-1 0 0 -1

0 1 -1 -1
We want to find a minimum-length encoding that satisfies
C. We will do this by constructing a sequence al , a2, - *

of bit assignments. The general strategy is to first find an
a that satisfies as many constraints as possible. The pro-
cess is then repeated with the as-yet-unsatisfied con-
straints until all the constraints are satisfied.

To find a bit assignment, we arbitrarily choose the vec-
tor do) = (1, 1, 1, 1, l)T-T denotes the transpose-as
the initial bit assignment or “seed. ” This vector will then
be modified in a series of “moves;” each time only one
component of a is changed so as to satisfy as many of the
constraints as possible.

If we use the value 0 to denote “don’t cares,” then we
may speak of “ternary” ({-1, 0, l}) bit assignments.
Any nontrivial constraint c, is satisfied by two “ternary”
bit assignments: one is equal to thejth column of C, and
the other is the negation of that column. We denote these
assignments by c, and -c,, respectively.

In order to decide which component of the present bit
assignment a should be changed to get closer to a solu-
tion, we define the direction matrix A = (6& n , where
6, = aic,. If ai agrees with c,-the ith component of cj-
then 6, is equal to 1; if ai disagrees with c,, then 6, is
equal to - 1 ; finally, if si is not in cj, then cii = 0 and 6,
is also 0. Therefore the number of - 1 entries in each col-
umn of A reflects how far a is from bit assignment cj; we
denote this number by d; and call it the distance from a
to cj. Similarly, the number dJT of 1 entries in column j
of A is the distance from a to -cj. Each entry in A has
the following meaning:

1,

- 1,

if changing ai takes a away from cj

if changing ai takes a closer to cj
(closer to - c,) by 1,

(away from -cj) by 1,
1, otherwise.

6.. =
rl

The shortest distance, called dj, from a to an assignment
that satisfies constraint cj is dj = min {d;, d;}. If dj #
0, then constraint c, is not satisfied by a. We will denote

by d + the distance vector (d : , - - * , d:), and treat d -
and d similarly. The number U of unsatisfied constraints
is the number of nonzero components of d.

Initialization: The direction matrix for initial bit assi-
gnmnet a(’) is simply A‘’) = C. The calculation of d + ,
d -, and d, and U is illustrated below.

(!) A(’) = (-1 H b 0 -i)
0 1 -1 -1

d + = (1 0 1 2)
(1 3 2 2)

d = (1 0 1 2)
U = 3.

d - =

Since U # 0, we consider which component of a should
be changed to get as close to a solution as possile. For
this purpose we introduce the gain matrix G = (g,) ,,,
where

if the change of ai changes cj from

if the change of ai changes c, from

1,
unsatisfied to satisfied,

satisfied to unsatisfied,
g, = - 1, i 0, otherwise.

Matrix G can be obtained by inspection of d and A. There
are three situations: If dj = 0-as in the case of d2-then
constraint c, is satisfied by a. If we change any compo-
nent of a corresponding to a state in c,, the number U of
unsatisfied constraints will increase by 1. Therefore g12 =
g22 = g52 = -1. If dj = 1- as in the case of d3-there
exists a component of a (here as) which, if changed, will
cause c, to become satisfied. Therefore the corresponding
entry (g53) in G is 1, In the special case where dj = 1 and
I cj I = 2-as in the case of cl-both entries are equal to
1. Thus gZl = g41 = 1. If dJ > 1-as in the case of d4-
constraint c, will remain unsatisfied no matter which com-
ponent of a changes. Thus all the entries in the corre-
sponding column (here column 4) are 0. The above cal-
culations result in the matrix G“) shown below. The sum
of the entries in row i of G is the total gain obtained by
complementing ai, which forms a gain vector y. In our
example, the fourth component has the largest gain;
hence, we select it as the component to be changed.

y‘O’

0 - 1 0 0

do)*(; -: 0 0 0 x
0 - 1 1 0

select a4.

1816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

Move 1: We change the fourth component of a('), and y'2'

the new bit assignment is a(') = (1, 1, 1, - 1, l)T. This

is as the A except first move. that the The 4th new row direction is the negation matrix A(')is of the the original same

f ! 1; ;") f) row. The fourth component of (Y is "locked" after the
move, in the sense that it will not be changed again during G(2) =
the search for the first bit assignment. Hence we do not -1 0 0 -1
need to check the gain entries corresponding to this com-
ponent; such entries will be denoted by X. All of the cal-
culations connected with Move l are compactly summa-

0 1 - 1 -1

rized below. stop

(Y(l) All the entries in the new gain vector y(2) are either X
or negative. This means that the corresponding compo-
nents of (Y are either locked or, if changed, will cause
more constraints to be unsatisfied. Our strategy, there-
fore, is to terminate the search for the first bit assignment.
Thus we obtain (Y = (1, 1 , 1, - 1, - l)T, which satisfies
constraints c1, c3 and c,.

We repeat the search above for the second bit assign-
ment, but with set C = {c2}. We obtain our second bit
assignment (1, 1, 1, 1, l)T. Because all the given con-

df = (0 0 1 2) straints are satisfied by the two bit assignments, we have
found a solution of the encoding problem.

In the description above, the direction and gain ma-
d = (0 0 1 1) trices are introduced for descriptive convenience. What

we really need are the distance and gain vectors. We can
divide the computational cost associated with each move U = 2.
into three parts:

(;) A (I) = (i i ; ;)
0 1

d - = (2 3 2 3)

p)
Task I: The computation of the distance vectors.
Task 2: The calculation of the gain vector.
Task 3: The selection of the component in the gain

G(1) = (j 'd a i) ti) vector that has the maximum value.

0 0 0

0 - 1 1 1

select a5 constraint matrix.

In the next section, we will see how this idea can be im-
plemented so that its worst-case computational cost is
O (p) , where p is the number of nonzero elements in the

Move 2: According to y'l), we change The

are as follows: ALGORITHM
IV. EFFICIENT IMPLEMENTATION OF THE ENCODING

1 1

1 1

0 0

0 0

- 1 1

d + = (0

d - = (2

d = (0

U = 1.

1 0

2 3

1 0

We now describe an efficient implementation of the
basic ideas of the previous section. Efficiency is achieved
by using suitable data structures for Tasks 1 and 3, and
an incremental approach for Task 2, so that all three tasks
are performed in O(p) time.

1 A . Calculation of Distance Vectors
We use sparse matrix techniques to store the constraint

matrix C. We maintain an array of constraints, in which
each entry is a linked list of pointers to states in that con-
straint. We also keep an array of states, in which each
entry is a linked list of pointers to constraints involving
the state. These two arrays permit efficient traversal of
nonzero entries by row or by column. We also keep track
of the values of d; and d,: for each constraint cj. After

") 1

0)

0)

4)

SHI AND BRZOZOWSKI: CONSTRAINED ENCODING AND APPLICATIONS 1817

changing ai, we update the distance values as follows:

dj' = dT(o1d) + 6,,
d17 = d17(Old) - 6,.

The number of operations needed for computing the new
distances is thus 1 Ci I . The total number of operations
needed to maintain distance vectors for generating one bit I
assignment is C ;= 1 Ci I = p . The initialization of d + and
d - takes p operations. Therefore the total cost for Task 1
is 2p, i.e., O(p) .

Proposition I : Using the sparse matrix data structures,
the calculation of distance vectors in the entire process of
bit generation takes O (p) time.

B. Initialization of Gain Vectors

Now we consider how to calculate the gain vector for
a given bit assignment a. All distances can be obtained
in O(p) time. Only constraints with the shortest distances
of 0 or 1 contribute to the gain vector; such constraints
are said to be a-sensitive. The calculation of the gain vec-
tor checks each constfaint to see if it is a-sensitive. If so,
all the states in that constraint may be checked to deter-
mine whether to add 1, remove 1 , or do nothing for that
corresponding entry. In the worst case, all the constraints
are a-sensitive, and all the states in each constraint need
to be checked. Therefore O(p) operations are needed to
build up the gain vector for a given a.

Proposition 2: Computing the gain vector for a given
bit assignment takes O(p) time.

C. Incremental Gain Updating

Knowing the gain vector for a, we calculate the gain
vector for the new a obtained by changing ai. An efficient
approach is to perform incremental updating, i.e., modify
only that part of the gain vector that is affected by the
move.

To illustrate this idea, we refer to Move 1 in the gen-
eration of Bit 1 in our introductory example. Both the dis-
tance and gain vectors for a(') are known. We change a4,
and all the nonzero entries in the fourth row of A") (cor-
responding to s4) are negated. These entries are 641 and
6,. Therefore, only the distances for constraints in C4 are
changed (here C4 = { c 1 , c 4)) . As a consequence, only the
first and the fourth columns of G may be chang-d. Since
yi is equal to the sum of the entries in the ith row of G,
the new y can be obtained from the old y by first subtract-
ing the first and the fourth columns of G'O' and then add-
ing the first and the fourth columns of G('). Thus, the cal-
culation of contributions tothe gain vector is required only
for the constraints in C,.

Gain updating is required only when a constraint in Ci
is sensitive in the present or the previous moves. Due to
the fact that each component is locked after the move, a
constraint cj can be sensitive (dj = 1 or dj = 0) during the

search for one bit assignment only a constant number of
times. The reason is as follows: A moved component
either agrees or disagrees with cj. Consider the first case.
Since the component is locked after the move, it will dis-
agree with ci forever. This means that dj' will be greater
than 0 forever. Similarly, for the second case, we can
conclude that d17 will be greater than 0 forever. Thus the
number of times that dj is 0 is bounded. If there are two
moves involving two components that originally agree
with cj, then, after the move, the two components will
disagree with cj forever, i.e., d r > 1. Similar reasoning
shows that the number of times that dj is 1 is also bounded.
Formally, we have the following result.

Proposition 3: For each constraint, gain updating is re-
quired only a constant number of times during the entire
process of bit generation.

A detailed case analysis reveals that three gain updat-
ings are sufficient [151. Since the number of updatings for
each constraint is bounded, we have the following prop-
osition.

Proposition 4: For each constraint, all gain updating
takes O(p) time during one bit generation.

D. Data Structure for Gain Vectors
Now we describe a data structure, denoted by 63, for

the gain vector. It shall support the following operations:

INSERT(@, i , gi) inserts a component i with gi in

DELETE(@, i) deletes component i from @.
UPDATE(@, i , f) updates g, by f, i.e., lets gi = gi
+ f, and moves it to the appropriate place in 63.
MAX(@) returns the component of a with maximum
gain, or NIL if @ is empty.

We use a bucket list. The range of the bucket list goes
from -e to e, where e = max { I C i [, 1 I i I m > . The
j th entry of the bucket list contains a doubly-linked list
of unlocked components with gain currently equal to j.
An additional array INDEX is used to maintain pointers
for direct access to each component in the bucket list.
Whenever a component is locked, we remove it from the
bucket list and set the corresponding INDEX to N1L.A
MAXGAIN pointer is maintained to keep track of the
bucket having a component of highest gain. This pointer
is updated by decrementing it whenever its bucket is found
to be empty, and resetting it to a higher bucket whenever
a component moves to a bucket above MAXGAIN. With
the bucket-list data structure, all the operations above ex-
cept MAX(@) take O(1) time.

Proposition 5: Operation MAX takes O(P) time in to-
tal in the process of bit generation.

Proof- Operation MAX is performed at most n times
during the generation of one bit assignment. Since this is
done by accessing pointer MAXGAIN, it is sufficient to
examine how much work is needed to maintain
MAXGAIN. Pointer MAXGAIN may be affected by IN-
SERT, DELETE and UPDATE. Whenever a component
moves to a bucket above MAXGAIN, MAXGAIN is sim-

a.

1818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

ply reset to a higher bucket. Operation INSERT is in-
voked m times; therefore O(p) time is needed for main-
taining MAXGAIN due to this operation. Whenever a
bucket of maximum gain is found to be empty, we need
to decrement MAXGAIN until we find the next non-empty
bucket. This may happen when operation DELETE is in-
voked, or when UPDATE is needed to decrease the gain
(f < 0). The number of times DELETE is invoked is at
most n, and each time there are at most 2e empty buckets,
where e = max { I Ci 1 , 1 I i I m } . There O (p) time is
needed for maintaining MAXGAIN due to DELETE op-
erations. When UPDATE is invoked to decrease the gain,
i.e., f is -1, at most one bucket may be found to be
empty. When UPDATE is invoked to increase the gain,
the current maximum gain is compared with the new gain
to determine MAXGAIN. By Proposition 4, the total time
needed for maintaining MAXGAIN due to UPDATE is
O(p) . Therefore, the total time needed for maintaining
MAXGAIN is O(p). cl
E. Time Complexity of the ENCORE Algorithm

A formal description of the ENCORE algorithm is given
in the appendix, where GENERATE-BIT is for generat-
ing one bit assignment, and GREEDY-ENCODING re-
fers to the entire encoding algorithm.

Proposition 6: The running time of algorithm
GENERATEBIT is O(p).

Proof: See the appendix.
Now consider the time complexity of GREEDY-EN-

CODING. Except for the first bit, the set of constraints
used in GENERATE-BIT is a subset of C. Therefore, we
have the following result:

Reorem I: The running time of algorithm
GREEDY-ENCODING is O(kp), where k is the length of
the encoding, and p is the size of the encoding problem.

V. IMPROVEMENTS AND EXTENSIONS
The greedy strategy used for constructing the entire en-

coding and the local search strategy used for finding each
indivudual bit lead to a good solution of the encoding al-
gorithm; however, they do not guarantee optimality. In
this section, we describe techniques used in ENCORE that
have been demonstrated effective in improving the quality
of constrained encoding. We also describe several exten-
sions to our basic bit generation algorithm in order to han-
dle the output encoding problem.

The first technique is a novel strategy of searching for
a global optimum using available information of local
minima. It is based on the following observation. Suppose
that we have found an encoding with length k. The kth
bit assignment of that encoding was introduced to satisfy
some non-empty set C ’ of constraints, which are not sat-
isfied by the first k - 1 bit assignments. This set C ’ thus
appeared to be “hard to satisfy” in the present run. Con-
sequently, we start a new run by choosing the first bit
assignment so as to satisfy C’. This process is likely to
find another distinct local minimum. Experiments have
shown that only a few runs are needed to improve the

solution. This strategy can be accomplished by assigning
a sufficiently large weight to each constraint in C‘. Sup-
pose that each constraint cj in a given set C is associated
with an integer weight wj. Our algorithm and data struc-
tures can be used directly, except that the range of the
bucket list is now from-e to e , where e = max { CqEc,
wj, 1 I i 5 m } , and the parameterfused in the operation
UPDATE(@, i , f) is equal to wj. This enhancement does
not increase the time complexity.

The second technique is to impose a “balance crite-
rion” on bit generation. A bit assignment used to satisfy
a constraint c = (c’, c-) distinguishes states in c+ from
those in c - . If there are no more constraints, the number
of additional bits needed to distinguish states in c+ (c -)
from each other is [log2 1 C+ I 1 ([log2 I c- I 1 ; thus, the
minimal number of additional bits is max { [log2 I c+ 1 1 ,
[log, 1 c- 1 1 } . Hence, in order to minimize the number

of encoding bits, it is desirable to have the number of
-1’s and 1’s in a bit assignment balanced. The balance
criterion implemented in ENCORE is as follows: Given
an integerp, 0 < p 5 m, as the desirable number of 1’s
in a bit assignment, and a tolerance 0 I r I min {p, m
- p}, a bit assignment is said to be balanced if -2r I
m - 2p + CY=l cyi I 2r. When p = m / 2 , we need to
have -2r I Cy=, ai I 2r; this is the scheme imple-
mented in DIET [23].

In ENCORE, the balance strategy is accomplished by
first generating an initial balanced assignment and then
maintaining the balance during the process of bit genera-
tion. Starting from the initial bit assignment with all com-
ponents being 1, ENCORE selects a component with
maximum gain to change until the balance criterion is sat-
isfied. In the rest of the first pass and also in all the fol-
lowing passes, a component with maximum gain is se-
lected to move only if changing it would not cause
imbalance. Otherwise another component with maximum
gain or even the second largest gain is selected and
checked for the balance criterion. If there are several
components having the same largest gain, we select the
one which gives the minimum absolute value of m - 2p

There is a special case for which optimality is guaran-
teed by GREEDY-ENCODING. The problem is to find
a minimum-length encoding for a set S of m states such
that each state is assigned a distinct code word. It can be
described in our framework of constrained encoding, by
a set of n = (1 /2)m(m - 1) dichotomies with one state
in each block. We need to add this set of distinct-state
constraints when we handle partial constrained encoding
arising from the optimum state assignment problem of
synchronous FSM’s (See Section VI).

Now we show how our framework can handle the out-
put encoding problem. As shown in [121, modeling of the
output encoding problem requires the dominance and dis-
junctive constraints, in additional to dichotomy con-
straints. A row i of A is said to dominate another row if,
for each bit position in the second row that contains a 1,
the corresponding bit position in the first row also con-

+ cy=l ai.

SHI AND BRZOZOWSKI: CONSTRAINED ENCODING AND APPLICATIONS 1819

tains a 1. Row i of A is said to be a disjunction of rows j
and k , if ai = crj V ak, for each bit. A formulation of the
constrained encoding problem resulting from output en-
coding is as follows [121 : Given a set of dichotomy con-
straints, a set of dominance constraints, and a set of dis-
junction constraints, find an encoding with the minimum
number of bits such that it satisfies all the dominance,
disjunction, and dichotomy constraints.

We can use the same algorithm for this problem, but
each bit generated must satisfy all the dominance con-
straints and all the disjunction constraints. the dominance
constraints can be imposed as follows. Initially ai = aj
= 1. When the component of maximum gain is ai, we
check to see the value of aj. If aj = 1, then we do not
change ai, or say it is an infeasible move prohibited by
the dominance requirement. So we select the component
of the second largest gain, etc. The disjunction con-
straints can be handled similarly. Initially ai = aj = crk
= 1. When the component of maximum gain is ai, we
check the values of aj and ak. If either aj or ak is equal
to 1, then we do not change ai; this is an infeasible move
prohibited by the disjunctive constraint. When we have
changed ai and aj, we select ai as a component to change
in the next move, no matter what yi is.

The extension above provides a simple way of handling
the output encoding problem, while maintaining the same
time complexity as the basic bit generation algorithm. The
problem size p must now take into account dominance and
disjunction constraints. We note that, in order to satisfy
these dominance and disjunction constraints, a framework
of ordered dichotomies was introduced, which led to even
more complicated prime generation and prime covering
[la.

VI. SEVERAL APPLICATIONS
Although the formulation of constrained encoding in the

state assignment of asynchronous sequential machines was
discovered in the 1960’s [is], [19], its relation with the
optimal state assignment for synchronous sequential ma-
chines was understood only very recently [lo], [23]. In-
deed, despite the huge volume of literature on sequential
logic optimization, the problem is still not fully under-
stood. In this section we describe how dichotomy-based
constrained encoding relates to correct and economical
sequential logic design.

A. Race-Free State Assignment for Asynchronous
Machines

The design of sequential logic circuits begins with a
behavioral specification, which is often a state table,
where columns corresponds to inputs, rows to present
states, and entries to transitions. Transitions are ordered
pairs representing the next state and the current output,
respectively. An example of a state table is given in Table
111. To find a logic implementation, states are encoded by
binary k-tuples. For example, an encoding of (sl, s2, s3,
s4) is (00, 01, 11, 10). This can be viewed as an assign-

TABLE I11
A FLOW TABLE

XI x2

00 01 11 10

ments of two binary state variables y1 and y2 . With such
encoding, the transition functions can be described by
Boolean logic functions in terms of state variables.

A circuit is said to be asynchronous, if it has no clocks
[19]. Such a circuit can be constructed directly from the
transition functions and uses feedback lines to relate the
current state variables and the next state variables. If more
than one state variable must change in the course of a
transition, the subsequent state of the circuit may depend
on the order in which the state variables change, that is,
on the variable that wins the race. Such a race is criticat
and may lead to a malfunction of the circuit.

Critical races can be avoided by choosing state encod-
ing carefully. It is assumed that only one binary input
variable changes at a time, and that the delays in the feed-
back lines are sufficiently large to let all the circuit changes
take place before any state variable can affect the gate
inputs. Suppose that, under a given input, if the machine
starts in state si it should change to state sj, while if it
starts in state sk it should remain in sk. If the transition si
-P si involves a critical race, the circuit may end in state
sk. To avoid this, it is sufficient that one state variable be
assigned one value in states si and si and the opposite value
in state sk. This constraint is represented by a dichotomy
({si, s j } , {sk)). Two transitions are disjoint if the corre-
sponding sets of states involved in the transitions are dis-
joint. In general, the encoding of states should be such
that all the states “spanned” by a transition occurring
within one column must have one bit differing from the
encoding assigned to the states spanned by any disjoint
transition in this column. These conditions are known as
Tracey ’s conditions [181. For example, Tracey ’s condi-
tions for a race-free implementation of Table I11 are:

column 00: ({sl}, {s2, s3, s4})
column 01: ({sl, s2, s3), {s4})
column 11: ({SI, 4, (82, s4))
C O ~ ~ ~ 10: ({Sl) , {Sd), ({SI), {s2, s4)), ({Sd,
{s2, s4))

B. Delay-Free State Assignment for Asynchronous
Machines

In general, to avoid critical races and other delay-re-
lated timing problems, one has to insert certain delays in
the feedback lines. The question arises whether the states
of a given FSM can be encoded in such a way that its
correctness is independent of the stray delays in the cir-
cuit, without the insertion of any delays. Such an encod-

1820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

ing is called a delay-free assignment. It turns out that a
delay-free assignment exits if an FSM satisfies certain
conditions discovered by Unger, namely if it has no “es-
sential hazards” [20].

Table I11 has no essential hazards. Single input changes
are assumed. In order to produce a delay-free realization,
the encoding of states should be such that all the states
involved in every possible transition occurring between
any two adjacent columns have at least one state variable
differing from all the states involved in any other disjoint
transition beginning or ending in one of the two adjacent
columns. These are called Unger ’s conditions [191. From
Table 111, we have:

column00andcolumnOl: ({sl, s2, s 3 } , {s4}), ({sl},

column 01 and column 11: ({ s 2 , s4}, {sI}), ({s,,

column 11 and column 10: ({ s 2 , s4}, {sI, s3})
column 10 and column 00: ({s3, s4} , {sl})

{s2, s3, s4))

{ s 2 } , (s41)

C. Optimal State Assignment for Synchronous Machines
In synchronous design, clocks are used to control each

transition so as to avoid critical races and hazards. The
major concern for the state assigment of synchronous
FSM’s is to find a state encoding so as to minimize the
cost of implementation. If a PLA is used to implement
combinational logic blocks, then the PLA area, which is
the main portion of the chip area, is the objective to min-
imize. The optimal state assignment problem here is to
find a state encoding that has a minimum-area two-level
logic implementation.

To show how the state assignment problem here can be
solved using dichotomy constraints, we consider the FSM
of Table IV. We can group together those entries in the
state table that have the same next state, and express the
next state function as follows.

s1 = xi(s3 + s4) (1)

$2 = X I S 3 + x2(s2 + s4) (2)

$3 = + s2) (3)

~4 = ~ 2 ~ 1 + X ; X ~ S ~ (4)

There exist many such groupings; we select the one with
the minimal number of “groups”. This is known as sym-
bolic logic minimization. A good tool for this purpose is

Note that the area of a PLA is determined by the num-
ber of binary variables times the number of distinct prod-
uct terms. If we encode the states in such a way that each
group is represented by one Boolean product of the en-
coding variables cy1, - - - , ak, then the number of prod-
ucts in the final logic is no larger than the number of
“groups”. This can be achieved by using dichotomy con-
straints, as explained below.

Each group is either a single state or a sum of states. A
singleton can be expressed directly as a product of the

ESPRESSO-MV [111.

TABLE IV
A SKNCHRONOUS STATE TABLE

XI x2

00 01 11 10

encoding variables al, * , ak. For example, if a(sl) =
(101), then s1 is represented as C Y ~ C Y ~ C Y ~ . If only two states
appear in a sum, and the code words assigned to those
two states are adjacent, it is still straightforward to rep-
resent the sum as one product of al, * , ak. Consider
s1 + s3, for example, with a(sJ = (100) and a(s3) =
(000); then a(s l) + a(s3) = (-00), i.e., s1 + s3 can be
represented as aiai. This is the smallest “subcube” that
contains the code words assigned to every state in {sl,
s3}. Now, suppose a(sl) = (101) and a(s3) = (110), i.e.,
the two code words are not adjacent. If we still take the
smallest subcube containing a(s l) and a&), that is (1 -
-), to represent the sum s1 + s3, it will include not only
code words (101) and (1 10) assigned to s1 and s3, but also
two additional code words (100) and (111). Such an en-
coding would be invalid, if (100) and (1 11) are assigned
to states s2 and s4. This can be avoided by setting up con-
straints ({sl, s 3 } , { s 2 }) and ({sl, s3}, {s4}). In general,
for every sum si, + si2 + - - * + si, we introduce con-
straints ({si,, si2, * * , sij} {q}), for all I E I but I # { i l ,
1 2 , - * ’ , i j} , where I denotes the integer set ranging from
1 to n. In our example, we thus have constraints ({s3, s4},

({SI, ~ 2) ~ (~ 3)) ~ and ({SI, ~ 2) ~ (~ 4 1) .
It should be noted that partial constrained encoding,

i.e., bounded-length encoding, may be more relevant than
complete constrained encoding. Partial constrained en-
coding may result in more product terms, but it uses fewer
encoding variables. Since the PLA area is related to the
product of these two parameters, it is possible that partial
encoding yields less PLA area.

{ S l)) , ({ s 3 9 s41, {sd), (is29 s41, {sll), ({h s4L {sd),

D. PLA Decomposition
Another problem that, surprisingly, resembles opti-

mum state assignment is PLA decomposition [4], [5] . To
illustrate why PLA decomposition can be solved within
the framework of constrained encoding, we consider a
PLA with seven primary inputs and two primary outputs,
described by the following expressions:

y1 = xlx3xAx6 + x2xgxhx7 + xlx4x;

+ x;x;x4x; +x;x;x:x; (5)

y2 = xix ix6 + x3xix6 + xix5xkx7 + x;x$x4x;

+ x;xjx;x:x; + x&x&x;x; (6)

This PLA has 10 distinct product terms and cannot be
further simplified by using logic minimizers such as ES-
PRESSO [2].

SHI AND BRZOZOWSKI: -
Fig. 1. PLA architecture.

We would like to decompose the given PLA into the
configuration of Fig. 1 . We assume that the selected sub-
set of inputs is SI = {x4, x5, x6, x,} . Five product terms
of the selected inputs appear in (5) and (6): xix6, x&x7,
x ~ x ; , x;xix;, and xi xi x;. In order to re-encode SI, we first
need to make all product terms involving selected inputs
disjoint. Products ~ 4 . ~ 4 and x; are not disjoint; neither
arex;x&x; andxixix;. So we expand those terms into min-
terms. By removing some redundant product terms, the
expressions above reduce to

y1 = X I X 3 X i X S + x2xgx;x7 + x1x4x;

+ x;x;x4x; +x;xix;x;x; (7)

+ xixj&x;xkx; + X $ X ~ X ; X ~ X ; (8)

y2 = x$xix6 + x3xix6 + xixgxix7 + xix;x4x;

Now all the product product terms xi x6, x5xix7, x4x;, and
Xix;xbx;, of the selected inputs are disjoint. We may view
them as four values of a multiple-valued symbolic input
variable s, denoted by s l , s2, s3, s4. Then the above logic
expressions with three binary-valued inputs (x l , x2, x 3 } ,
one four-valued input {s} , and two binary-valued outputs
{ y l , y 2 } , can be simplified by multiple-valued symbolic
logic minimization. For this example, by using ES-
PRESSO-MV [1 11, we find

Y1 = x2s2 + xlx3(s1 + s3) + x;(s3 + s4)

y2 = x $ (s ~ + ~2 + 84) + ~ 3 . ~ 1 + x ; x ~ (s ~ + 84)

(9)

(10)
There are six symbolic product terms in these expres-
sions.

We reduce the PLA decomposition to constrained en-
coding. For this example, we have a total of 5 con-

((~ 3 , s4}, (~ 2)) ~ and ({SI, s2, 541, (4). It is easily veri-
fied that the encoding a(s2, s2, s3, s4) = (001, 011, 100,
11 1) is a minimum-length binary encoding satisfying all
the constraints. Therefore, we need three binary vari-
ables, denoted by x& x9, and xlo, to encode the symbolic
input variable s. Substituting into (9) and (lo), we obtain
the re-encoded PLA:

(1 1)

(12)

(13)

(14)

straints:({% 8 3 3 , {s21), (b1, 4, {s43), ((s3, s41, {SI)),

y1 = x ~ x ~ x ~ x I O + ~ 1 x 3 ~ 4 + ~ 4 x 8

y2 = x ~ x ~ O + X ~ X ~ X ~ X I O + x;x;xg

The driving PLA is expressed as

x8 = x4x; + xix!jxix$

x9 = x5x& + xix;x;x;

Note that PLA area is calculated as (2 * (number-
of-inputs + number-of-outputs) * number-ofgrod-
ucts. Thus the area cost of the original PLA is (2 * 7 +
2) * 10 = 160. The cost of the decomposed PLA, which
is the sum of the driving PLA and the driven PLA, is (2
* 4 + 3) * 4 + (2* (3 + 3) + 2) * 6 = 44 + 84 = 128.
Both the original PLA and the decomposed PLA has 10
product terms.

VII. EXPERIMENTAL RESULTS
The proposed encoding algorithm, along with the im-

provement techniques, has been implemented in a pack-
age called ENCORE using the C programming language.
In this section we describe some experimental results ap-
plied to several sets of problem instances.

The first set of small examples comes from the early
literature on the synthesis of asynchronous FSM’s. Here
the aim is either a race-free [18] or a delay-free imple-
mentation [19]. We have written a program to derive the
dichotomy constraints from the original flow table speci-
fication. ENCORE is then used to find the minimum-
length encoding that satisfies all these dichotomy con-
straints. As summarized in Table V, ENCORE generates
encodings with the same lengths as those given by exact
methods in the literature for all these examples.

The second set of tests consists of 40 industrial exam-
ples available from the MCNC benchmarks representing
a wide range of FSM’s. The raw data can be found in
[21]. We have incorporated ENCORE into Berkeley oct-
tools to produce PLA realizations from given FSM spec-
ifications. We have conducted two groups of experiments.
In the first group, we solve the constrained encoding that
satisfies all the constraints. We have written a pre-pro-
cessing program to generate the dichotomy constraints
from the group constraints, where group constraints are
obtained by running ESPRESSO-MV [2]. We compared
ENCORE with several available state assignment pro-
grams: KISS [9], NOVA [21], and DIET [23]. The results
are summarized in Table VI. For each example tested, the
table reports the minimum number #bits of bits by uncon-
strained encoding, the minimum number #cbits of bits by
constrained encoding, the encoding lengths obtained by
KISS, NOVA, DIET, and ENCORE (with and without a
balance criterion), and the CPU time used. The reported
time for all the tools does not include the time used by
ESPRESSO-MV for generating group constraints. The
time reported by ENCORE does not include the time used
by pre-processing program for generating dichotomy con-
straints from group constraints, since it is so small that is
not measurable. For all the test examples (with the excep-
tion of the keyb FSM), ENCORE with the balance crite-
rion obtained the shortest length encodings, with only one
tenth to one thousandth of the CPU-time used by NOVA
and DIET. Note that both ENCORE and DIET work on
dichotomy constraints, but DIET uses the prime-covering
approach. KISS and NOVA work on the group constraints

1822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

TABLE V
SYNTHESIS OF ASYNCHRONOUS FMS'S.

FSM #states #constraints #bits References
~

fsml 5 7 3 ~ 9 1 , P. 84
fsm2 6 16 4 [191, P. 97
fsm3 9 19 4 [19], p. 108
fsm4 7 94 4 [191, p. 144
fsm5 5 10 3 [18], Fig. 3
fsm6 6 10 3 1181, Fig. 4

35.0% 36.0%

65.0%

KISS
64.0%

NOVA

92.0% 92.0%

DIET ENCORE
I non-optimum

Fig. 2 . Comparison of several encoding programs.

and are based on different theoretical foundations. The
time complexities of the encoding algorithms used in these
programs are at best quadratic in the size of the problem.

The second group of experiments gave very interesting
results. Here we solve the partial constrained encoding
problem: Given a bound on the encoding length, maxi-
mize the number of satisfied dichotomy constraints. The
lengths chosen are the minimum ones needed to distin-
guish all the states. ENCORE produces better overall re-
sults than NOVA (cf. Table VII). For most of the FSM's,
especially the large ones, the final PLA implementations
occupy less area than those given by NOVA. Note that
ENCORE aims at maximizing the number of satisfied di-
chotomy constraints, where NOVA aims at maximizing
the number of satisfied group constraints.

VIII. CONCLUSIONS

existing techniques for solving large-size VLSI-CAD
problems. We note that the lack of efficient methods for
finding state assignments in asynchronous sequential syn-
thesis has once been considered a major obstacle to the
use of the asynchronous design methodology [3].

Second, it is demonstrated for the first time that syn-
thesis results obtained using dichotomy constraints are
comparable with the conventional group constraints in
terms of PLA area used. We note that, while the reason
for maximizing the number of satisfied group constraints
is intuitively clear, the reason why maximizing the num-
ber of satisfied dichotomy constraints still yields the same
result is not obvious. A theoretical analysis is needed as
to improve our understanding of this aspect of sequential
logic synthesis.

In addition, our framework of constrained encoding,
which includes unary constraints as a special case of di-
chotomy constraints, allows us to formulate network par-

There are two major results in this paper. First, we have
developed an effective and efficient method for dichot-
omy-based constrained encoding-a problem fundamental

cuits. Our method successfully combines the best features

titioning [71, and via minimization [14l, as two special
cases (See [15]). Applications of the local search heuristic
to via minimization is described in [14]. A further ab-

these to the synthesis of combinational and sequential logic cir- straction of constrained encoding is the signed hypergraph
described in [I6]. It permits us to

of the previous methods, and provides a unified solution problems in a convenient graph-theoretic framework [161.
to bothcomplete and partial constrained encoding. In ad-
dition, our framework of constrained encoding can handle
dominance constraints and disjunctive constraints arising
from the output encoding problem.

Experiments with a number of applications indicate that
our algorithm, as implemented in ENCORE, generates
better results than the existing programs developed spe-
cifically in each application field. Since ENCORE is or-
ders of magnitude faster, it is a promising alternative to

APPENDIX A
FORMAL DESCRIPTION OF THE ENCODING ALGORITHM
The algorithm is presented in a top-down manner. The

pseudo-code for the entire encoding algorithm, called
GREEDY-ENCODING, is given below. The algorithm
starts with an empty matrix A, and then invokes the pro-
cedure GENERATE-BIT to find a bit assignment a that
satisfies as many constraints in C as possible. The process

SHI AND BRZOZOWSKI: CONSTRAINED ENCODING AND APPLICATIONS 1823

TABLE VI
ENCODING WITH ALL THE DICHOTOMY CONSTRAINTS SATISFIED

The Encoding Length CPU-time(s)*

FSM #bits #cbits KISS NOVA DIET ENCOREnb ENCOREb NOVA DIET ENCOREb

dkl5
lion
mc
taV
train4
s8
bbtas
beecount
dk14
dk27
dk17
ex6
shiftreg
ex5
lion9
bbara
ex3
ex7
opus
train1 1
modulo 12
ex4
dk512
mark 1
bbsse
cse
kirkman
sse
ex2
keyb
ex1
s l
sla
donfile
dk16
styr
sand
tbk
planet
scf

2
2
2
2
2
3
3
3
3
3
3
4
3
4
4
5
4
4
4
4
4
4
4
5
6
4
4
4
5
5
5
5
5
5
5
5
5
5
6
7

4
-
-

2
2
3
3
4
4
3
4
4
3
5
4
5
5

4
5
4

5

6
5

-

-

-

-
-

6
7
7
5
5

C l 1
7
6
6

6
1 8

-

4
2

2
2
3

-

-
-
4

4
4
3
5
4

7
6

5

4
5
4
6
5
6
6
6
8
7
5
5
7
8
6
6
f
f
f

-

-

-
-

4
2
2
2
2
3
3
4
5
3
4
5
3
5
4
5
6
6
4
5
4
4
5
4
6
6
6
6
7
9
7
5
5
9
8
8
6

23
7
8

4
2
2
2
2
3
3
4
4
3
4
4
3
5
4
5
6
6
4
5
4
4
5
4
6
5
6
6
6
8
7
5
5
6
8
6
6

23
I
8

3.2
-
-
-
-
-
0.0
0.1
1.9
0.28
0.5
0.9
0.35
3.95 -

120.6
0.53
-
-
3.46
-
-
35
29
0.3
0.2
-
-
2.46

28
35
2.33
-

555
311
52
39.71

1301
37.6
-

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.4
0.3
0.6
0.3
0.2
0.6
0.5
0.5
1.2
0.8
0.5
1.7
1.4
2.5
4.0
2.5
2.1
3.4
6.7
2.1
8.6
7.7

11.2
12.1
8.7

26.6
87.6
26.4
62.1
f
f
f

0.00**
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.05
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.03
0.02
0.00
0.00
0.00
0.02
0.03
0.01
0.04
0.03
0.10
0.02
0.05
0.10
0.12
0.01
0.01
0.01
0.09
0.15
0.03
0.14
1.07
0.53

*VAX-1118650
**less than 0.01
- not applicable
? solution not found within the used CPU time
f failed
b with balance requirement
nb without balance requirement

is repeated until all the constraints are satisfied. A solu-
tion A is the concatenation of all the bit assignments
found.

GREEDY-ENCODING(S, C)
1 A+[]
2 while C # NIL
3
4 A + [A; a]
5
6 return A

do a + GENERATEBIT(S, C)

C + C - {constraints satisfied by a}

GENERATEBIT: Lines 1 and 2 initialize the seed a.
Line 3 invokes the procedure COMPUTE-GAIN to cal-
culate the distances and to construct 63 under a. The re-

turn value of COMPUTE-GAIN is the number of un-
satisfied constraints. In line 4, the component of highest
gain is returned with the aid of the operation MAX on 63.
If the gain value is positive, Lines 5-9 perform one move,
that is, lock component i, remove the gain of component
i from 63, invoke the procedure UPDATE-GAIN to up-
date @and the related distances due to the change of air
change ai, and finally calculate the number U of unsatis-
fied constraints. Lines 5-9 repeat until either there is no
positive-gain component, or all components are locked,
i.e., Cl3 is empty.

COMPUTE-GAIN: Line 1 initializes the number U of
unsatisfied constraints to n. Lines 2 and 3 initialize the
temporary array y to zero. Lines 4 to 23 form the main
body for calculating the distances U and the gain vector

1824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

TABLE VI1
COMPARISONS OF NOVA/ih, NOVA/ig AND ENCORE

1-hot
~~ ~

NOVA/ih NOVA/ig ENCORE random

FSM #cubes #bits #cubes area

dk15 17 2 19 323
lion 8 2 6 66
mc 10 2 9 153
tav 12 2 11 198
train4 7 2 6 66
s8 14 3 10 180
bbtas 16 3 9 135
beecount 12 3 13 247
dk14 25 3 29 580
dk27 10 3 9 117
dk17 20 3 19 304
ex6 23 3 25 675
shiftreg 9 4 4 48
ex5 19 4 14 252
lion9 10 4 8 136
bbara 34 4 25 550
ex3 21 4 18 324
ex7 20 4 17 306
opus 19 4 16 448
train1 1 11 4 9 153
modulo 12 24 4 12 180
ex4 21 4 19 627
dk512 21 4 18 306
mark1 19 4 21 798
bbsse 30 4 30 990
cse 57 4 46 1518
kirkman 61 4 79 3318
sse 30 4 30 990
ex2 38 5 29 609
keyb 77 5 48 1488
ex1 44 5 48 2496
s l 92 5 80 2960
s la 92 5 76 2812
donfile 24 5 35 700
dk16 55 5 59 1298
styr 111 5 94 4042
sand 114 5 101 4646
tbk 173 5 154 4620
planet 92 6 91 464 1
scf 151 7 148 19388
TOTAL 63688
% 90

#cubes area #cubes area #cubes' area'

18
6
9

11
6

10
12
12
27

8
19
25

8
18
9

25
18
17
16
12
12
19
19
19
30
45
77
30
36
55
51
87
80
48
72

103
102
176
89

146

306
66
153

198
66

180
180
228
540
104
304
675
96

324
153
550
324
306
448
204
180
627
323
722
990

1485
3234
990
756

1705
2652
3219
2960

960
1584
4429
4692
5280
4539

19126
65858

93

18
7
8

11
6
9

10
10
27

8
17
25

6
16
8

25
17
18
18
10
14
21
19
18
30
45
61
30
32
51
45
86
73
18
58
93

100
128
90

140

306
77

136
198
66

162
150
190
540
104
272
675

72
288
136
550
306
324
504
170
210
693
323
684
990

1485
2745

990
672

1581
2475
3182
2701

3 60
1276
3999
4600
3840
4590

18340
60979

86

20
7
9

11
7
9

12
14
33
9

19
30
11
18
11
28
19
17
20
12
12
19
22
19
32
51
87
32
38
58
60
96
84
60
87

126
93

183
96

152

340
77

153
198
17

162
180
266
660
117
304
810
132
324
187
616
342
3 06
5 60
204
180
627
374
722

1056
1683
3654
1056
798

1798
3120
3553
3 108
1200
1914
5418
4278
5490
4896

19912
70852

100

'best random solution
'average of random solutions
#bits: code-length
#cubes: number of product-terns after ESPRESSO logic minimization
area: (2*(#inputs + #bits) + #bits + #outputs)*#cubes

y . Lines 24 and 25 build 63 according to the calculated
gain vector.

GENERATE-BIT($, C)
1 fori + 1 t o m

3
4
5 do lock ai
6 DELETE (63, i)
7

2 doai + 1
U + COMPUTE-GAIN($, C , a, 63)
while (gain of MAX (63) > 0 and U > 0)

UPDATE-GAIN(S, C, i , a, 63)
8 ai + -aj
9 U + U - MAXGAIN

10 return (Y

area'

368
96

157
198
80

198
206
299
743
14 1
352
842
132
352
250
662
405
387
581
243
195

683
419
786

1173
2083
464 1
1176
905

3154
3281
3703
3468
1382
1981
569 1
4972
6090
5260

21294
79029

112

-

-

COMPUTE-GAIN(S, C , a, 63)
1 u + n
2 fori + 1 tom
3 doyj + 0
4 for each cj E C
5
6

do dj' + d j 6 0
for each si contained in cj

7 do 6 , + c~icij
8 i f6 . . = -1
9

10
1 1
12 if dj = 0
13

tden dj' 6 dj' + 1
else dJ: + dJ: + 1

dj + min { df , dj:

then U + U - 1

SHI AND BRZOZOWSKI: CONSTRAINED ENCODING AND APPLICATIONS 1825

14
15
16
17
18
19
20
21
22
23
24
25
26

for each si in cj
do yi + yi - 1

if dj = 1
then if lCil = 2

then for each si in cj

else for each si in cj
do yi + yj + 1

do if si is ai-sensitive
then yi + yi + 1

break
for i + 1 to m

return U
do INSERT((%. i. yi)

MODIFY-GAIN: Given a constraint cj, the distance dj,
and a parameter f, the procedure MODIFY-GAIN(f, cj,
dj, &) works as follows. Iff = 1, the constraint’s contri-
bution is added to 63; iff = - 1, the contribution is re-
moved from &.

ACKNOWLEDGMENT
The authors would like to thank Professor Maciej

Ciesielski of the University of Massachusetts for provid-
ing the program DIET. The authors wish to express their
thanks to the three expert reviewers for their comments.

REFERENCES

[l] J . I. Acha and J. Calvo, “On the implementation of sequential cir-
cuits with PLA modules,” Inst. Elect. Eng. Proc., vol. 132, pt. E.,
no. 5, pp. 246-250, Sept. 1985.

[2] R. K. Brayton, G. D. Hatchtel, C. T. McMullen and A. L. Sangio-
vanni-Vincentelli, Logic Minimization Algorithms for V U 1 Synthesis.
NEWS York: Kluwer Academic Publishers, 1984.

[3] T. A. Chu, “Synthesis of Self-Timed VLSI Circuits from Graph-The-
oretic Specifications,” Ph.D. dissemtion, MIT, June 1987.

[4] S. Devadas and A. R. Newton, “Exact algorithms for output encod-
ing, state assignment, and four-level Boolean minimization,” IEEE
Trans. Computer-Aided Design, vol. 10, pp. 13-27, Jan. 1991.

[5] S. Devadas, A. R. Wang, A. R. Newton, and A. Sangiovanni-Vin-
centelli, “Boolean decomposition of programmable logic arrays,” in
Proc. IEEE Custom Integrated Circuirs Conf., 1988, pp. 2.5.1-2.5.5.

_ _
MODIFY-GAIN(f, ~ j , dj, &)

1 if dj = 0
2 then for each si in cj
3
4 else if dj = 1
5 thenif ICil = 2

do UPDATE(&, i, f: - f)

6
7
8 .
9

10
11

then for each unlocked si in cj
do UPDATE(&, i, f)

else for each unlocked si in cj
do if si is ai-sensitive

then UPDATE (63, i, f)
break

UPDATE-GAIN(& C, i, a , 63)
1

3

for each cj in Ci
2 do 6, + ajcij

4
5

if (d = = 0 or 1) MODIFY-GAIN(- 1, cj, dj, 63)
df + df + 6,
dJT + d,: - 6,

6 if (d = = 0 or 1) MODIFY-GAIN(1, cj, dj, 63)

APPENDIX B
PROOF OF PROPOSITION 6

Initialization in Lines 1 and 2 takes m time. By Prop-
osition 2, Line 3 takes O(p) time. By Proposition 5 , Line
4 takes O(p) time. In the worst case, Lines 5-9 are re-
peated m times. Each time the procedure UPDATE is in-
voked, it takes O(lC,J) operations to do Lines 1, 2, 4, 5 .
According to Proposition 3, the number of calls to MOD-
IFY-GAIN for constraint cj during the entire GENER-
ATE-BIT is a constant, say t,: Each call to MODIFY-
GAIN for constraint cj takes I cj 1 operations. Therefore the
number of operations required by Line 7 in GENER-
ATEBIT is C~=”=,O((C,I) + CyEl (tl(cjl) = O(p) + tlp
= O (p) . Hence the time complexity of algorithm
GENERATE-BIT is O(p) .

[6] T. A. Dolotta and E. J . McCluskey, “The coding of internal states
of sequential machines,” IEEE Trans. Elect. Comput., vol. EC-13,

[7] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. of ACM/lEEE Design Au-
tomation Conf., 1982, pp. 175-180.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Franciscso, CA:
Freeman, 1979.

[9] G. D. Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Op-
timal state assignment for finite state machines,” IEEE Trans. Com-
puter-Aided Design, vol. CAD4, pp. 269-285, July 1985.

[lo] G. D. Micheli, “Symbolic design of combinational and sequential
logic circuits implemented by two-level logic macros,” IEEE Trans.
Computer-Aided Design, vol. CAD-5, pp. 597-616, Oct. 1986.

[l 11 R. L. Rude11 and A. Sangiovanni-Vincentelli, “Multiple-valued min-
imization for PLA optimization,” IEEE Trans. Computer-Aided De-
sign, vol. CAD-6, pp. 727-750, Sept. 1987.

pp. 549-562, Oct. 1964.

1826 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF Ih

[12] A. Saldanha, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vin-
centelli, “A framework for satisfying input and output encoding con-
straints,” in Proc. ACM/IEEE Design Automation Conf., 1991, pp.

[13] G. Saucier, C. Duff and F. Poirot, “State assignement using a new
embedding method based on an intersecting cube theory,” in Proc.
of ACMIIEEE Design Automation Conf., Las Vegas, June 1989, pp.

[14] C.-J. Shi, “Constrained via minimization and signed hypergraph par-
titioning,” in Algorithmic Aspects of VLSI Layouts, eds. D. T. Lee
and M. Sarrafzadeh.

[15] C.-J. Shi and J. A. Brzozowski, “An Efficient Algorithm for Con-
strained Encoding and Its Applications,” Tech. Rep., No. CS-92-20,
Dept. Comp. Sci., Univ. of Waterloo, Apr. 1992.

[16] C.-J. Shi and J. A. Brzozowski, “Graph-Theoretic Structures of Logic
Encoding and Layer Assignment in VLSI Design,” Tech. Rep., Dept.
Comp. Sci., Univ. of Waterloo, in preparation.

[17] C.-J. Tan, “State assignment for asynchronous sequential ma-
chines,’’ IEEE Trans. Comp., vol. c-20, pp. 382-391, Apr. 1971.

[18] J. H. Tracey, “Internal state assignment for asynchronous sequential
machines,” IEEE Trans. Electron. Compur., pp. 551-560, Aug.
1966.

[19] S. H. Unger, “A row assignment for delay-free realizations of flow
tables without essential hazards,” IEEE Trans. Electron. Comput.,
vol. C-17, pp. 145-158, Feb. 1968.

[20] S. H. Unger, Asynchronous Sequential Switching Circuits. New
York: Wiley, 1969.

[21] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State assignment
of finite state machines for optimal two-level logic implementation,”
IEEE Trans. Computer-Aided Design, vol. 9 , pp. 905-924, Sept.
1990.

[22] D. Varma and E. A. Trachtenberg, “A fast algorithm for the optimal
state assignment of large finite state machines,” in Proc. of Inter-
national Conf. on CAD, 1988, pp. 152-155.

[23] S . Yang and M. J . Ciesielski, “Optimum and suboptimum algorithms
for input encoding and its relationship to logic minimization,” IEEE
Trans. Computer-Aided Design, vol. 10, pp. 4-12, Jan. 1991.

170- 175.

321-326.

River Edge, NJ: World Scientific, 1992.

C.-J. Richard Shi (S’91) received the B.Sc. and
M.Sc. degrees in electrical engineering from Fu-
dan University, Shanghai, China, in 1985 and
1987, respectively, and the M.A.Sc. degree in
electrical engineering from the University of Wa-
terloo, Waterloo, Canada, in 1991. Presently, he
is completing his Ph.D. degree in Computer Sci-
ence at the University of Waterloo.

Since 1983, he has been working on various as-
pects of VLSI-CAD, including circuit simulation,
timing analysis, schematic capture, via minimi-

ITEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

zation, logic synthesis, and sequential circuit testing. He has authored and
coauthored more than twenty technical papers, and eight public domain or
commerical CAD tools. His M.Sc. thesis research on timing verification
was published in ICCAD’87 and ISCA’S88. From 1988 to 1989, he was a
faculty member at Fudan University, and was Project Leader of the Timing
Analysis Group at the Beijing IC Design Center for PANDA, a key national
project in China. In 1990, he was consulting on CADENCEIEDGE tools
and CMC chip fabrication for the University of Waterloo. In 1991, he was
a research associate with the Department of Computer Science at the Uni-
versity of Waterloo. His research interests are in the area of VLSI-CAD,
with current emphasis on synthesis and testing of sequential circuits.

Mr. Shi received the T.D. Lee Physics Award for excellence in graduate
research from Fudan in 1987, and a best paper award from the Shanghai
Science and Technology Association in 1988.

Janusz A. (John) Brzozowski (M’87) received
the B.A.Sc. and M.A. Sc. degrees in electrical
engineering from the University of Toronto in
1957 and 1959, respectively, and the M.A. and
Ph.D. degrees in electrical engineering from
Princeton University in 1962.

He was Assistant Professor from 1962 to 1965
and Associate Professor from 1965 to 1967 in the
Department of Electrical Engineering, University
of Ottawa. Since 1967 he has been a Professor in
the Department of Computer Science, University

of Waterloo. In the periods 1978-1983 and 1987-1989 he was chair of that
department. He has had visiting appointments at the University of Califor-
nia, Berkeley (1965-1966), University of Paris (1974-1975), University of
S b Paulo (1983), Kyoto University (1984), and Eindhoven University
(1989-1990). He has published many papers in the areas of algebraic the-
ory of regular languages, finite automata, asynchronous circuits, and test-
ing. He is also a co-author of Digital Networks (Englewood Cliffs, NJ:
Prentice-Hall, 1976). His present research interests include asynchronous
circuits, delay-insensitive design, VLSI models, testing, automata and for-
mal languages.

Dr. Brzozowski is a member of ACM, IEEE, EATCS, and the Associ-
ation of Professional Engineers of Ontario.

