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Abstracr-In this paper, an efficient algorithm and its imple- 
mentation ENCORE are presented for finding approximate so- 
lutions to dichotomy-based constrained encoding, a problem 
fundamental to the synthesis of combinational logic circuits, 
and synchronous and asynchronous sequential circuits. EN- 
CORE adopts a greedy strategy to find an encoding bit by bit, 
and then uses an iterative method to improve the solution qual- 
ity. The novelty of our algorithm lies mainly in a linear-time 
heuristic to select each individual bit; this problem was previ- 
ously solved in quadratic time. ENCORE has been applied to a 
variety of practical problem instances. For a number of ex- 
amples found in the literature on the synthesis of asynchronous 
sequential machines, ENCORE consistently obtains optimal or 
near-optimal results. For the optimum state assignment of the 
MCNC FSM benchmarks, ENCORE generates the same or even 
shorter encoding lengths than the programs KISS, NOVA and 
DIET, but takes much less CPU time. It is demonstrated for 
the first time that PLA implementations of synchronous FSMs 
using dichotomy constraints compare very favorably with re- 
spect to area with those based on traditional group constraints. 

Index Terms-constrained encoding, state assignment, logic 
synthesis asynchronous circuits, PLA decomposition, local 
search heuristics. 

I. INTRODUCTION 
ONSTRAINED encoding is an important problem C arising in many aspects of the synthesis of combina- 

tional and sequential logic circuits. Given a set S = {s,, 
. . .  , s,} of m states, the (complete) constrained encod- 
ing problem is to find an encoding a of S into a set {a  (sl), 
. . .  , a(s,)} of m binary k-tuples (k-bit vectors), in such 
a way that all the dichotomy constraints (defined below) 
are satisfied and k is minimized. A (partial) dichotomy 
constraint requires that a subset P of S be distinguished 
from a disjoint subset Q of S by at least one bit, i.e., that 
bit must have the value 0 for all the states in P and 1 for 
all the states in Q, or vice versa. If Q is empty, we have 
the special case of unary constraint requiring that a subset 
P of S must be identified by at least one bit b of the 
k-tuples, in the sense that the value of b should be the 
same for all the states in P. A variation, called the partial 
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TABLE I 
EXAMPLES OF ENCODINGS 

S1 1 0 0 
32 1 0 1 
s3 0 1 0 
s4 1 1 1 

S l  1 0 
s2 1 1 
$3 0 0 
s4 0 1 

constmined encoding problem, aims at maximizing the 
number of constraints ,that are satisfied using a fixed num- 
ber of bits. For example, consider a unary constraint ({ sl, 
s2, s4}), and four dichotomy constraints ({sl, s3}, (s2)), 

the set S = (sl, - * - , s4). Table I(a) shows a minimum- 
length encoding satisfying all the constraints. Table I(b) 
gives a two-bit encoding satisfying the largest number (4) 
of constraints. 

The constrained encoding problem was first formulated 
by Tracey [18] for critical-race-free state assignments of 
asynchronous finite state machines (FSM’s). Unger [ 191 
pointed out that, for certain kinds of FSM’s, the problem 
of obtaining an asynchronous implementation, where cor- 
rectness is independent of the presence of arbitrary gate 
and wire delays can be reduced to the problem of con- 
strained encoding. Recent studies indicate that the prob- 
lem of encoding states of FSM’s to have a minimum PLA 
implementation is related to the partial constrained encod- 
ing problem [21], [23]. 

The search for efficient solutions for the constrained en- 
coding problem was pioneered by Tracey [lg]. He pro- 
posed a procedure, similar to Boolean logic minimization, 
which consists of two basic steps: First, construct all 
maximal compatible sets of dichotomy constraints; each 
such set can be satisfied by one bit assignment, called a 
prime bit assignment. Second, find a minimal number of 
prime bit assignments to cover all the given dichotomy 
constraints: this problem is known as the covering prob- 
lem. This prime-covering method gives an exact solution 
to the complete constrained encoding problem. However, 
the number of prime bit assignments may be exponential 
in the number of states, and the covering problem is NP- 
complete [SI. In practice, the process described above has 
been approximated using various heuristics [20], [23]. In 
addition, it is not clear how to apply the prime-covering 

((s1, 4 (sd), ( i s39  s41, ( S l I ) ,  and ( ( s 3 ,  s41, { s 2 } ) ,  on 
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approach to partial constrained encoding. As a conse- 
quence, for the optimum state assignment for synchro- 
nous sequential machines, the dichotomy-based ap- 
proaches (such as DIET [23] ) have not been as successful 
as classical approaches (such as KISS [9], CREAM [lo], 
NOVA [2 11, and [ 131 ), which are based on group con- 
straints. A group constraint specifies that a set of states 
must be encoded in a neighbourhood or a face in the 
Boolean space. 

This paper uses a variant of the prime-covering ap- 
proach to find good approximate solutions for complete 
and partial constrained encoding in a unified manner. It 
replaces the generation of prime bit assignments and the 
solution of the covering problem by a single step. A single 
bit of an encoding is generated so as to satisfy as many 
constraints as possible; this is defined as the optimal bit 
generation problem. To find a complete encoding, we re- 
peat this bit generation process until all the constraints are 
satisfied. To find a bounded-length encoding, we repeat 
the bit generation process until the number of bits gener- 
ated reaches the bound. To derive an efficient algorithm 
for optimal bit generation, we make a new observation 
which is made possible by extending constrained encod- 
ing to include unary constraints, i.e., allowing one block 
of a dichotomy constraint to be empty. Noticing that the 
well-known two-way network partitioning problem is a 
special case of the partial constrained encoding problem, 
we are able to generalize the successful heuristic of 
Fiduccia and Mattheyses [7] for network partitioning to 
optimal bit generation. By doing this, we achieve a fast 
approximation algorithm with computational cost linearly 
proportional to the problem size. 

This paper is structured as follows: Section I1 intro- 
duces some basic definitions and the problem formula- 
tion. The basic idea of the encoding algorithm is illus- 
trated in Section 111. Section IV presents the encoding 
algorithm, along with its time complexity analysis. Sec- 
tion V describes some extensions and improvements. A 
description of various applications to logic synthesis is 
provided in Section VI. Section VI1 reports some experi- 
mental results. Section VI11 concludes the paper. 

11. PROBLEM FORMULATION 
In this section we give a mathematical formulation of 

constrained encoding. A constraint c on a set S = { s ~ ,  
* * * , s,} is a pair c = (c+, c-) of disjoint subsets (called 
blocks) of S. We may distinguish two types of constraints: 
A (partial) dichotomy constraint consists of two non- 
empty blocks. A unary constraint is a constraint with one 
empty block. 

Let B = { - 1, 1 } represent the two logic values. Con- 
ventionally, (0, l} is used, but the use of { -1, l }  will 
considerably simplify our notation. Given a set S = {sl, - , s,} of m > 0 states and an integer k > 0, a binary 
encoding (or simply an encoding) a of S is a mapping a: 
S -+ Bk. Note that a need not be one to one. We may 
think of the encoding as a matrix A: The ith row of the 
matrix represents the word assigned by a to state si, and 

thejth column represents bi t j  of the encoding. We use a 
to refer to a particular column of A; such a column is 
called a bit assignment, and can be interpreted as a map- 
ping a: S + B. We denote by al ,  * * - , am the compo- 
nents of bit assignment a. 

With a slight abuse of notation, we say that state si is 
contained in constraint c and write si E c iff si E c+ U c - .  
We use ( c l  to denote the number of states contained in 
constraint c. A set C = {cI,  , c,,} of n constraints 
can be described by the constraint matrix C = (cij>, ,,, 
where 

1 if si E c:, 

c- = - 1 if si E cJr, 

lJ I 0 if si $ cj. 

We use Ci to denote the subset of constraints in C con- 
taining s;, and we let 1 Ci I be its cardinality. 

A bit assignment a: S --t B is said to satisfy a constraint 
c = (c’, c - )  iff there exists a value b E B such that for 
all s E c’, a(s) = b ,  and for all s E c-, a(s) = 6, where 
b is the complement of b.  An encoding a: S -+ Bk is said 
to satisfy a constraint c = (c’, c-) iff at least one bit 
assignment of a satisfies c. 

To illustrate these definitions, let S = { 1, - - , 6 )  and 
consider bit assignments a ,  0, y, and E shown in Table I1 
and constraints c1, c2, c3, and c4 defined below. 

c1 = (9, (3) and c2 = ({3}, p l ) .  Any bit assignment 
satisfies c1 and c2. Therefore constraint (pl, pl)  and 
constraints with one empty block and one one-state 
block are trivial constraints, and will be excluded. 
c3 = ((2, 3 ,  5}, p ) .  Bit assignments a, y and E sat- 
isfy c3, but 0 does not. 
c4 = ((1, 2, 5 } ,  (4, 6)). Bit assignments cy and /3 
satisfy c4, but y and E do not. 

The encoding composed of bit assignments a ,  0, y and E 

satisfies all four constraints. 
The (complete) constrained encoding problem is de- 

fined as follows: Given a set S of m states, and a set C of 
n constraints on S ,  find an encoding a of S with minimum 
k,  such that a satisfies each constraint c E C.  A variation 
of this problem, the partial constrained encoding prob- 
lem, is as follows: Given a set S of m states, a set C of n 
constraints on S ,  and an integer h ,  find an encoding a of 
S with k = h such that a satisfies as many constraints of 
C as possible. If h = 1, this problem is called the optimal 
bit generation problem. 

In describing the running time of an algorithm on a 
given instance of the constrained encoding problem, we 
measure the size ofthe input in terms of p = Cy= I cj I . 
Clearly, the problem size is the number of nonzero entries 
in the constraint matrix. 

- 

111. AN OVERVIEW OF THE ENCODING ALGORITHM 
In this section, we describe our algorithm informally. 

- - , s5} 
, c4}, where C is described by the 

Consider the following example. Let S = IsI, 
and C = {c1, * * 

7 
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TABLE I1 
EXAMPLES OF ASSIGNMENTS 

1 - 1  1 - 1  1 
2 - 1  1 1 1 
3 - 1  - 1  1 1 
4 1 - 1  - 1  1 
5 - 1  1 1 1 
6 1 - 1  - 1  1 

following constraint matrix: 

C =  (”” 19 
-1 0 0 -1 

0 1 -1 -1 
We want to find a minimum-length encoding that satisfies 
C. We will do this by constructing a sequence al ,  a2, - * 

of bit assignments. The general strategy is to first find an 
a that satisfies as many constraints as possible. The pro- 
cess is then repeated with the as-yet-unsatisfied con- 
straints until all the constraints are satisfied. 

To find a bit assignment, we arbitrarily choose the vec- 
tor do) = (1, 1, 1, 1, l)T-T denotes the transpose-as 
the initial bit assignment or “seed. ” This vector will then 
be modified in a series of “moves;” each time only one 
component of a is changed so as to satisfy as many of the 
constraints as possible. 

If we use the value 0 to denote “don’t cares,” then we 
may speak of “ternary” ({-1, 0, l}) bit assignments. 
Any nontrivial constraint c, is satisfied by two “ternary” 
bit assignments: one is equal to thejth column of C, and 
the other is the negation of that column. We denote these 
assignments by c, and -c,, respectively. 

In order to decide which component of the present bit 
assignment a should be changed to get closer to a solu- 
tion, we define the direction matrix A = (6& n ,  where 
6, = aic,. If ai agrees with c,-the ith component of cj- 
then 6, is equal to 1; if ai disagrees with c,, then 6, is 
equal to - 1 ; finally, if si is not in cj, then cii = 0 and 6, 
is also 0. Therefore the number of - 1 entries in each col- 
umn of A reflects how far a is from bit assignment cj; we 
denote this number by d; and call it the distance from a 
to cj. Similarly, the number dJT of 1 entries in column j 
of A is the distance from a to -cj. Each entry in A has 
the following meaning: 

1, 

- 1, 

if changing ai takes a away from cj 

if changing ai takes a closer to cj 
(closer to - c,) by 1, 

(away from -cj) by 1, 
1, otherwise. 

6.. = 
rl 

The shortest distance, called dj, from a to an assignment 
that satisfies constraint cj is dj = min {d;, d;}. If dj # 
0, then constraint c, is not satisfied by a. We will denote 

by d +  the distance vector ( d : ,  - - * , d:), and treat d -  
and d similarly. The number U of unsatisfied constraints 
is the number of nonzero components of d. 

Initialization: The direction matrix for initial bit assi- 
gnmnet a(’) is simply A‘’) = C. The calculation of d + ,  
d -, and d,  and U is illustrated below. 

(!) A(’) = ( -1 H b 0 -i) 
0 1 -1 -1 

d + =  (1 0 1 2) 
(1  3 2 2) 

d =  ( 1 0  1 2) 
U = 3. 

d -  = 

Since U # 0, we consider which component of a should 
be changed to get as close to a solution as possile. For 
this purpose we introduce the gain matrix G = (g,) ,,, 
where 

if the change of ai changes cj from 

if the change of ai changes c, from 

1, 
unsatisfied to satisfied, 

satisfied to unsatisfied, 
g, = - 1, i 0, otherwise. 

Matrix G can be obtained by inspection of d and A. There 
are three situations: If dj = 0-as in the case of d2-then 
constraint c, is satisfied by a. If we change any compo- 
nent of a corresponding to a state in c,, the number U of 
unsatisfied constraints will increase by 1. Therefore g12 = 
g22 = g52 = -1. If dj = 1- as in the case of d3-there 
exists a component of a (here as) which, if changed, will 
cause c, to become satisfied. Therefore the corresponding 
entry (g53) in G is 1, In the special case where dj = 1 and 
I cj I = 2-as in the case of cl-both entries are equal to 
1. Thus gZl = g41 = 1. If dJ > 1-as in the case of d4- 
constraint c, will remain unsatisfied no matter which com- 
ponent of a changes. Thus all the entries in the corre- 
sponding column (here column 4) are 0. The above cal- 
culations result in the matrix G“) shown below. The sum 
of the entries in row i of G is the total gain obtained by 
complementing ai, which forms a gain vector y. In our 
example, the fourth component has the largest gain; 
hence, we select it as the component to be changed. 

y‘O’ 

0 - 1 0 0  

do)*(; -: 0 0 0  x 
0 - 1 1 0  

select a4. 
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Move 1: We change the fourth component of a('), and y'2' 

the new bit assignment is a(') = (1, 1, 1, - 1, l)T. This 

is as the A except first move. that the The 4th new row direction is the negation matrix A(')is of the the original same 

f !  1; ;") f) row. The fourth component of (Y is "locked" after the 
move, in the sense that it will not be changed again during G(2) = 
the search for the first bit assignment. Hence we do not -1 0 0 -1 
need to check the gain entries corresponding to this com- 
ponent; such entries will be denoted by X. All of the cal- 
culations connected with Move l are compactly summa- 

0 1 - 1  -1 

rized below. stop 

(Y(l) All the entries in the new gain vector y(2) are either X 
or negative. This means that the corresponding compo- 
nents of (Y are either locked or, if changed, will cause 
more constraints to be unsatisfied. Our strategy, there- 
fore, is to terminate the search for the first bit assignment. 
Thus we obtain (Y = (1, 1 ,  1, - 1, - l)T, which satisfies 
constraints c1, c3 and c,. 

We repeat the search above for the second bit assign- 
ment, but with set C = {c2}. We obtain our second bit 
assignment (1, 1, 1, 1, l)T. Because all the given con- 

df = (0 0 1 2) straints are satisfied by the two bit assignments, we have 
found a solution of the encoding problem. 

In the description above, the direction and gain ma- 
d =  ( 0 0  1 1) trices are introduced for descriptive convenience. What 

we really need are the distance and gain vectors. We can 
divide the computational cost associated with each move U = 2. 
into three parts: 

(;) A ( I ) = ( i i  ; ;) 
0 1  

d -  = (2 3 2 3) 

p) 
Task I: The computation of the distance vectors. 
Task 2: The calculation of the gain vector. 
Task 3: The selection of the component in the gain 

G(1) = (j 'd a i) ti) vector that has the maximum value. 

0 0 0  

0 - 1 1 1  

select a5 constraint matrix. 

In the next section, we will see how this idea can be im- 
plemented so that its worst-case computational cost is 
O ( p ) ,  where p is the number of nonzero elements in the 

Move 2: According to y'l), we change The 

are as follows: ALGORITHM 
IV. EFFICIENT IMPLEMENTATION OF THE ENCODING 

1 1  

1 1  

0 0  

0 0  

- 1  1 

d + =  (0 

d - =  (2 

d =  (0 

U =  1. 

1 0  

2 3  

1 0  

We now describe an efficient implementation of the 
basic ideas of the previous section. Efficiency is achieved 
by using suitable data structures for Tasks 1 and 3, and 
an incremental approach for Task 2, so that all three tasks 
are performed in O(p)  time. 

1 A .  Calculation of Distance Vectors 
We use sparse matrix techniques to store the constraint 

matrix C. We maintain an array of constraints, in which 
each entry is a linked list of pointers to states in that con- 
straint. We also keep an array of states, in which each 
entry is a linked list of pointers to constraints involving 
the state. These two arrays permit efficient traversal of 
nonzero entries by row or by column. We also keep track 
of the values of d; and d,: for each constraint cj. After 

") 1 

0) 

0) 

4) 
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changing ai, we update the distance values as follows: 

dj' = dT(o1d) + 6,, 
d17 = d17(Old) - 6,. 

The number of operations needed for computing the new 
distances is thus 1 Ci I . The total number of operations 
needed to maintain distance vectors for generating one bit I 
assignment is C ;= 1 Ci I = p .  The initialization of d + and 
d - takes p operations. Therefore the total cost for Task 1 
is 2p, i.e., O(p) .  

Proposition I :  Using the sparse matrix data structures, 
the calculation of distance vectors in the entire process of 
bit generation takes O ( p )  time. 

B. Initialization of Gain Vectors 

Now we consider how to calculate the gain vector for 
a given bit assignment a. All distances can be obtained 
in O(p)  time. Only constraints with the shortest distances 
of 0 or 1 contribute to the gain vector; such constraints 
are said to be a-sensitive. The calculation of the gain vec- 
tor checks each constfaint to see if it is a-sensitive. If so, 
all the states in that constraint may be checked to deter- 
mine whether to add 1, remove 1 ,  or do nothing for that 
corresponding entry. In the worst case, all the constraints 
are a-sensitive, and all the states in each constraint need 
to be checked. Therefore O(p)  operations are needed to 
build up the gain vector for a given a. 

Proposition 2: Computing the gain vector for a given 
bit assignment takes O(p)  time. 

C. Incremental Gain Updating 

Knowing the gain vector for a, we calculate the gain 
vector for the new a obtained by changing ai. An efficient 
approach is to perform incremental updating, i.e., modify 
only that part of the gain vector that is affected by the 
move. 

To illustrate this idea, we refer to Move 1 in the gen- 
eration of Bit 1 in our introductory example. Both the dis- 
tance and gain vectors for a(') are known. We change a4, 
and all the nonzero entries in the fourth row of A") (cor- 
responding to s4) are negated. These entries are 641 and 
6,. Therefore, only the distances for constraints in C4 are 
changed (here C4 = { c 1 ,  c 4 ) ) .  As a consequence, only the 
first and the fourth columns of G may be chang-d. Since 
yi is equal to the sum of the entries in the ith row of G, 
the new y can be obtained from the old y by first subtract- 
ing the first and the fourth columns of G'O' and then add- 
ing the first and the fourth columns of G('). Thus, the cal- 
culation of contributions tothe gain vector is required only 
for the constraints in C,. 

Gain updating is required only when a constraint in Ci 
is sensitive in the present or the previous moves. Due to 
the fact that each component is locked after the move, a 
constraint cj can be sensitive (dj = 1 or dj = 0) during the 

search for one bit assignment only a constant number of 
times. The reason is as follows: A moved component 
either agrees or disagrees with cj. Consider the first case. 
Since the component is locked after the move, it will dis- 
agree with ci forever. This means that dj' will be greater 
than 0 forever. Similarly, for the second case, we can 
conclude that d17 will be greater than 0 forever. Thus the 
number of times that dj is 0 is bounded. If there are two 
moves involving two components that originally agree 
with cj, then, after the move, the two components will 
disagree with cj forever, i.e., d r  > 1. Similar reasoning 
shows that the number of times that dj is 1 is also bounded. 
Formally, we have the following result. 

Proposition 3: For each constraint, gain updating is re- 
quired only a constant number of times during the entire 
process of bit generation. 

A detailed case analysis reveals that three gain updat- 
ings are sufficient [ 151. Since the number of updatings for 
each constraint is bounded, we have the following prop- 
osition. 

Proposition 4: For each constraint, all gain updating 
takes O(p)  time during one bit generation. 

D. Data Structure for Gain Vectors 
Now we describe a data structure, denoted by 63, for 

the gain vector. It shall support the following operations: 

INSERT(@, i ,  gi) inserts a component i with gi in 

DELETE(@, i )  deletes component i from @. 
UPDATE(@, i , f )  updates g, by f, i.e., lets gi = gi 
+ f, and moves it to the appropriate place in 63. 
MAX(@) returns the component of a with maximum 
gain, or NIL if @ is empty. 

We use a bucket list. The range of the bucket list goes 
from -e to e, where e = max { I C i [ ,  1 I i I m > .  The 
j th  entry of the bucket list contains a doubly-linked list 
of unlocked components with gain currently equal to j. 
An additional array INDEX is used to maintain pointers 
for direct access to each component in the bucket list. 
Whenever a component is locked, we remove it from the 
bucket list and set the corresponding INDEX to N1L.A 
MAXGAIN pointer is maintained to keep track of the 
bucket having a component of highest gain. This pointer 
is updated by decrementing it whenever its bucket is found 
to be empty, and resetting it to a higher bucket whenever 
a component moves to a bucket above MAXGAIN. With 
the bucket-list data structure, all the operations above ex- 
cept MAX(@) take O( 1) time. 

Proposition 5: Operation MAX takes O( P)  time in to- 
tal in the process of bit generation. 

Proof- Operation MAX is performed at most n times 
during the generation of one bit assignment. Since this is 
done by accessing pointer MAXGAIN, it is sufficient to 
examine how much work is needed to maintain 
MAXGAIN. Pointer MAXGAIN may be affected by IN- 
SERT, DELETE and UPDATE. Whenever a component 
moves to a bucket above MAXGAIN, MAXGAIN is sim- 

a. 
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ply reset to a higher bucket. Operation INSERT is in- 
voked m times; therefore O(p) time is needed for main- 
taining MAXGAIN due to this operation. Whenever a 
bucket of maximum gain is found to be empty, we need 
to decrement MAXGAIN until we find the next non-empty 
bucket. This may happen when operation DELETE is in- 
voked, or when UPDATE is needed to decrease the gain 
( f < 0). The number of times DELETE is invoked is at 
most n, and each time there are at most 2e empty buckets, 
where e = max { I Ci 1 ,  1 I i I m } .  There O ( p )  time is 
needed for maintaining MAXGAIN due to DELETE op- 
erations. When UPDATE is invoked to decrease the gain, 
i.e., f is -1, at most one bucket may be found to be 
empty. When UPDATE is invoked to increase the gain, 
the current maximum gain is compared with the new gain 
to determine MAXGAIN. By Proposition 4, the total time 
needed for maintaining MAXGAIN due to UPDATE is 
O(p) .  Therefore, the total time needed for maintaining 
MAXGAIN is O(p). cl 
E. Time Complexity of the ENCORE Algorithm 

A formal description of the ENCORE algorithm is given 
in the appendix, where GENERATE-BIT is for generat- 
ing one bit assignment, and GREEDY-ENCODING re- 
fers to the entire encoding algorithm. 

Proposition 6: The running time of algorithm 
GENERATEBIT is O(p). 

Proof: See the appendix. 
Now consider the time complexity of GREEDY-EN- 

CODING. Except for the first bit, the set of constraints 
used in GENERATE-BIT is a subset of C. Therefore, we 
have the following result: 

Reorem I: The running time of algorithm 
GREEDY-ENCODING is O(kp), where k is the length of 
the encoding, and p is the size of the encoding problem. 

V. IMPROVEMENTS AND EXTENSIONS 
The greedy strategy used for constructing the entire en- 

coding and the local search strategy used for finding each 
indivudual bit lead to a good solution of the encoding al- 
gorithm; however, they do not guarantee optimality. In 
this section, we describe techniques used in ENCORE that 
have been demonstrated effective in improving the quality 
of constrained encoding. We also describe several exten- 
sions to our basic bit generation algorithm in order to han- 
dle the output encoding problem. 

The first technique is a novel strategy of searching for 
a global optimum using available information of local 
minima. It is based on the following observation. Suppose 
that we have found an encoding with length k. The kth 
bit assignment of that encoding was introduced to satisfy 
some non-empty set C ’  of constraints, which are not sat- 
isfied by the first k - 1 bit assignments. This set C ’  thus 
appeared to be “hard to satisfy” in the present run. Con- 
sequently, we start a new run by choosing the first bit 
assignment so as to satisfy C’. This process is likely to 
find another distinct local minimum. Experiments have 
shown that only a few runs are needed to improve the 

solution. This strategy can be accomplished by assigning 
a sufficiently large weight to each constraint in C‘. Sup- 
pose that each constraint cj in a given set C is associated 
with an integer weight wj. Our algorithm and data struc- 
tures can be used directly, except that the range of the 
bucket list is now from-e to e ,  where e = max { CqEc,  
wj, 1 I i 5 m }  , and the parameterfused in the operation 
UPDATE(@, i ,  f )  is equal to wj. This enhancement does 
not increase the time complexity. 

The second technique is to impose a “balance crite- 
rion” on bit generation. A bit assignment used to satisfy 
a constraint c = (c’, c-) distinguishes states in c+ from 
those in c - .  If there are no more constraints, the number 
of additional bits needed to distinguish states in c+ ( c - )  
from each other is [log2 1 C+ I 1 ( [log2 I c- I 1 ; thus, the 
minimal number of additional bits is max { [log2 I c+ 1 1 , 
[log, 1 c- 1 1 } . Hence, in order to minimize the number 

of encoding bits, it is desirable to have the number of 
-1’s and 1’s in a bit assignment balanced. The balance 
criterion implemented in ENCORE is as follows: Given 
an integerp, 0 < p 5 m, as the desirable number of 1’s 
in a bit assignment, and a tolerance 0 I r I min {p, m 
- p}, a bit assignment is said to be balanced if -2r I 
m - 2p + CY=l cyi I 2r. When p = m / 2 ,  we need to 
have -2r I Cy=,  ai I 2r; this is the scheme imple- 
mented in DIET [23]. 

In ENCORE, the balance strategy is accomplished by 
first generating an initial balanced assignment and then 
maintaining the balance during the process of bit genera- 
tion. Starting from the initial bit assignment with all com- 
ponents being 1, ENCORE selects a component with 
maximum gain to change until the balance criterion is sat- 
isfied. In the rest of the first pass and also in all the fol- 
lowing passes, a component with maximum gain is se- 
lected to move only if changing it would not cause 
imbalance. Otherwise another component with maximum 
gain or even the second largest gain is selected and 
checked for the balance criterion. If there are several 
components having the same largest gain, we select the 
one which gives the minimum absolute value of m - 2p 

There is a special case for which optimality is guaran- 
teed by GREEDY-ENCODING. The problem is to find 
a minimum-length encoding for a set S of m states such 
that each state is assigned a distinct code word. It can be 
described in our framework of constrained encoding, by 
a set of n = (1 /2)m(m - 1) dichotomies with one state 
in each block. We need to add this set of distinct-state 
constraints when we handle partial constrained encoding 
arising from the optimum state assignment problem of 
synchronous FSM’s (See Section VI). 

Now we show how our framework can handle the out- 
put encoding problem. As shown in [ 121, modeling of the 
output encoding problem requires the dominance and dis- 
junctive constraints, in additional to dichotomy con- 
straints. A row i of A is said to dominate another row if, 
for each bit position in the second row that contains a 1, 
the corresponding bit position in the first row also con- 

+ cy=l ai. 
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tains a 1. Row i of A is said to be a disjunction of rows j 
and k ,  if ai = crj V ak, for each bit. A formulation of the 
constrained encoding problem resulting from output en- 
coding is as follows [ 121 : Given a set of dichotomy con- 
straints, a set of dominance constraints, and a set of dis- 
junction constraints, find an encoding with the minimum 
number of bits such that it satisfies all the dominance, 
disjunction, and dichotomy constraints. 

We can use the same algorithm for this problem, but 
each bit generated must satisfy all the dominance con- 
straints and all the disjunction constraints. the dominance 
constraints can be imposed as follows. Initially ai = aj 
= 1. When the component of maximum gain is ai, we 
check to see the value of aj. If aj = 1, then we do not 
change ai, or say it is an infeasible move prohibited by 
the dominance requirement. So we select the component 
of the second largest gain, etc. The disjunction con- 
straints can be handled similarly. Initially ai = aj = crk 
= 1. When the component of maximum gain is ai, we 
check the values of aj and ak. If either aj or ak is equal 
to 1, then we do not change ai; this is an infeasible move 
prohibited by the disjunctive constraint. When we have 
changed ai and aj, we select ai as a component to change 
in the next move, no matter what yi is. 

The extension above provides a simple way of handling 
the output encoding problem, while maintaining the same 
time complexity as the basic bit generation algorithm. The 
problem size p must now take into account dominance and 
disjunction constraints. We note that, in order to satisfy 
these dominance and disjunction constraints, a framework 
of ordered dichotomies was introduced, which led to even 
more complicated prime generation and prime covering 
[la. 

VI. SEVERAL APPLICATIONS 
Although the formulation of constrained encoding in the 

state assignment of asynchronous sequential machines was 
discovered in the 1960’s [is], [19], its relation with the 
optimal state assignment for synchronous sequential ma- 
chines was understood only very recently [lo], [23]. In- 
deed, despite the huge volume of literature on sequential 
logic optimization, the problem is still not fully under- 
stood. In this section we describe how dichotomy-based 
constrained encoding relates to correct and economical 
sequential logic design. 

A. Race-Free State Assignment for Asynchronous 
Machines 

The design of sequential logic circuits begins with a 
behavioral specification, which is often a state table, 
where columns corresponds to inputs, rows to present 
states, and entries to transitions. Transitions are ordered 
pairs representing the next state and the current output, 
respectively. An example of a state table is given in Table 
111. To find a logic implementation, states are encoded by 
binary k-tuples. For example, an encoding of (sl, s2, s3, 
s4) is (00, 01, 11, 10). This can be viewed as an assign- 

TABLE I11 
A FLOW TABLE 

XI x2 

00 01 11 10 

ments of two binary state variables y1 and y2 .  With such 
encoding, the transition functions can be described by 
Boolean logic functions in terms of state variables. 

A circuit is said to be asynchronous, if it has no clocks 
[19]. Such a circuit can be constructed directly from the 
transition functions and uses feedback lines to relate the 
current state variables and the next state variables. If more 
than one state variable must change in the course of a 
transition, the subsequent state of the circuit may depend 
on the order in which the state variables change, that is, 
on the variable that wins the race. Such a race is criticat 
and may lead to a malfunction of the circuit. 

Critical races can be avoided by choosing state encod- 
ing carefully. It is assumed that only one binary input 
variable changes at a time, and that the delays in the feed- 
back lines are sufficiently large to let all the circuit changes 
take place before any state variable can affect the gate 
inputs. Suppose that, under a given input, if the machine 
starts in state si it should change to state sj,  while if it 
starts in state sk it should remain in sk. If the transition si 
-P si involves a critical race, the circuit may end in state 
sk. To avoid this, it is sufficient that one state variable be 
assigned one value in states si and si and the opposite value 
in state sk. This constraint is represented by a dichotomy 
({si, s j } ,  {sk)). Two transitions are disjoint if the corre- 
sponding sets of states involved in the transitions are dis- 
joint. In general, the encoding of states should be such 
that all the states “spanned” by a transition occurring 
within one column must have one bit differing from the 
encoding assigned to the states spanned by any disjoint 
transition in this column. These conditions are known as 
Tracey ’s conditions [ 181. For example, Tracey ’s condi- 
tions for a race-free implementation of Table I11 are: 

column 00: ({sl}, {s2, s3, s4}) 
column 01: ({sl, s2, s3), {s4}) 
column 11: ({SI, 4, (82, s4)) 
C O ~ ~ ~  10: ({Sl) ,  {Sd), ({SI), {s2,  s4)), ({Sd, 
{s2, s4)) 

B. Delay-Free State Assignment for Asynchronous 
Machines 

In general, to avoid critical races and other delay-re- 
lated timing problems, one has to insert certain delays in 
the feedback lines. The question arises whether the states 
of a given FSM can be encoded in such a way that its 
correctness is independent of the stray delays in the cir- 
cuit, without the insertion of any delays. Such an encod- 
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ing is called a delay-free assignment. It turns out that a 
delay-free assignment exits if an FSM satisfies certain 
conditions discovered by Unger, namely if it has no “es- 
sential hazards” [20]. 

Table I11 has no essential hazards. Single input changes 
are assumed. In order to produce a delay-free realization, 
the encoding of states should be such that all the states 
involved in every possible transition occurring between 
any two adjacent columns have at least one state variable 
differing from all the states involved in any other disjoint 
transition beginning or ending in one of the two adjacent 
columns. These are called Unger ’s conditions [ 191. From 
Table 111, we have: 

column00andcolumnOl: ({sl, s2, s 3 } ,  {s4}), ({sl},  

column 01 and column 11: ( { s 2 ,  s4},  {sI}), ({s,, 

column 11 and column 10: ( { s 2 ,  s4},  {sI, s3}) 
column 10 and column 00: ({s3, s4} ,  {sl}) 

{s2,  s3, s4)) 

{ s 2 } ,  (s41) 

C. Optimal State Assignment for Synchronous Machines 
In synchronous design, clocks are used to control each 

transition so as to avoid critical races and hazards. The 
major concern for the state assigment of synchronous 
FSM’s is to find a state encoding so as to minimize the 
cost of implementation. If a PLA is used to implement 
combinational logic blocks, then the PLA area, which is 
the main portion of the chip area, is the objective to min- 
imize. The optimal state assignment problem here is to 
find a state encoding that has a minimum-area two-level 
logic implementation. 

To show how the state assignment problem here can be 
solved using dichotomy constraints, we consider the FSM 
of Table IV. We can group together those entries in the 
state table that have the same next state, and express the 
next state function as follows. 

s1 = xi(s3 + s4) (1) 

$2 = X I S 3  + x2(s2 + s4) (2) 

$3 = + s2) (3) 

~4 = ~ 2 ~ 1  + X ; X ~ S ~  (4) 

There exist many such groupings; we select the one with 
the minimal number of “groups”. This is known as sym- 
bolic logic minimization. A good tool for this purpose is 

Note that the area of a PLA is determined by the num- 
ber of binary variables times the number of distinct prod- 
uct terms. If we encode the states in such a way that each 
group is represented by one Boolean product of the en- 
coding variables cy1, - - - , ak, then the number of prod- 
ucts in the final logic is no larger than the number of 
“groups”. This can be achieved by using dichotomy con- 
straints, as explained below. 

Each group is either a single state or a sum of states. A 
singleton can be expressed directly as a product of the 

ESPRESSO-MV [ 111. 

TABLE IV 
A SKNCHRONOUS STATE TABLE 

XI x2 

00 01 11 10 

encoding variables al, * , ak. For example, if a(sl) = 
(101), then s1 is represented as C Y ~ C Y ~ C Y ~ .  If only two states 
appear in a sum, and the code words assigned to those 
two states are adjacent, it is still straightforward to rep- 
resent the sum as one product of al, * , ak. Consider 
s1 + s3, for example, with a(sJ = (100) and a(s3) = 
(000); then a(s l )  + a(s3) = (-00), i.e., s1 + s3 can be 
represented as aiai. This is the smallest “subcube” that 
contains the code words assigned to every state in {sl, 
s3}. Now, suppose a(sl)  = (101) and a(s3) = (110), i.e., 
the two code words are not adjacent. If we still take the 
smallest subcube containing a(s l )  and a&), that is (1 - 
-), to represent the sum s1 + s3, it will include not only 
code words (101) and (1 10) assigned to s1 and s3, but also 
two additional code words (100) and (111). Such an en- 
coding would be invalid, if (100) and (1 11) are assigned 
to states s2 and s4. This can be avoided by setting up con- 
straints ({sl, s 3 } ,  { s 2 } )  and ({sl, s3}, {s4}). In general, 
for every sum si, + si2 + - - * + si, we introduce con- 
straints ({si,, si2, * * , sij}  {q}), for all I E I but I # { i l ,  
1 2 ,  - * ’ , i j}  , where I denotes the integer set ranging from 
1 to n. In our example, we thus have constraints ({s3, s4}, 

({SI, ~ 2 ) ~  ( ~ 3 ) ) ~  and ({SI,  ~ 2 ) ~  ( ~ 4 1 ) .  
It should be noted that partial constrained encoding, 

i.e., bounded-length encoding, may be more relevant than 
complete constrained encoding. Partial constrained en- 
coding may result in more product terms, but it uses fewer 
encoding variables. Since the PLA area is related to the 
product of these two parameters, it is possible that partial 
encoding yields less PLA area. 

{ S l ) ) ,  ( { s 3 9  s41, {sd), (is29 s41, {sll), ({h s4L {sd), 

D. PLA Decomposition 
Another problem that, surprisingly, resembles opti- 

mum state assignment is PLA decomposition [4], [ 5 ] .  To 
illustrate why PLA decomposition can be solved within 
the framework of constrained encoding, we consider a 
PLA with seven primary inputs and two primary outputs, 
described by the following expressions: 

y1 = xlx3xAx6 + x2xgxhx7 + xlx4x; 

+ x;x;x4x; +x;x;x:x; ( 5 )  

y2 = xix ix6  + x3xix6 + xix5xkx7 + x;x$x4x; 

+ x;xjx;x:x; + x&x&x;x; (6) 

This PLA has 10 distinct product terms and cannot be 
further simplified by using logic minimizers such as ES- 
PRESSO [2]. 
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We would like to decompose the given PLA into the 
configuration of Fig. 1 .  We assume that the selected sub- 
set of inputs is SI = {x4, x5,  x6, x,} .  Five product terms 
of the selected inputs appear in (5) and (6): xix6, x&x7, 
x ~ x ; ,  x;xix;,  and xi xi x;. In order to re-encode SI, we first 
need to make all product terms involving selected inputs 
disjoint. Products ~ 4 . ~ 4  and x; are not disjoint; neither 
arex;x&x; andxixix;. So we expand those terms into min- 
terms. By removing some redundant product terms, the 
expressions above reduce to 

y1 = X I X 3 X i X S  + x2xgx;x7 + x1x4x; 

+ x;x;x4x; +x;xix;x;x; (7) 

+ xixj&x;xkx; + X $ X ~ X ; X ~ X ;  (8) 

y2 = x$xix6 + x3xix6 + xixgxix7 + xix;x4x; 

Now all the product product terms xi x6, x5xix7, x4x;, and 
Xix;xbx;, of the selected inputs are disjoint. We may view 
them as four values of a multiple-valued symbolic input 
variable s, denoted by s l ,  s2, s3,  s4. Then the above logic 
expressions with three binary-valued inputs ( x l ,  x2, x 3 } ,  
one four-valued input {s} , and two binary-valued outputs 
{ y l ,  y 2 } ,  can be simplified by multiple-valued symbolic 
logic minimization. For this example, by using ES- 
PRESSO-MV [ 1 11, we find 

Y1 = x2s2 + xlx3(s1 + s3) + x;(s3 + s4) 

y2 = x $ ( s ~  + ~2 + 84) + ~ 3 . ~ 1  + x ; x ~ ( s ~  + 84) 

(9) 

(10) 
There are six symbolic product terms in these expres- 
sions. 

We reduce the PLA decomposition to constrained en- 
coding. For this example, we have a total of 5 con- 

( ( ~ 3 ,  s4}, ( ~ 2 ) ) ~  and ({SI, s2, 541, (4). It is easily veri- 
fied that the encoding a(s2,  s2, s3,  s4) = (001, 011, 100, 
11 1) is a minimum-length binary encoding satisfying all 
the constraints. Therefore, we need three binary vari- 
ables, denoted by x& x9, and xlo, to encode the symbolic 
input variable s. Substituting into (9) and (lo), we obtain 
the re-encoded PLA: 

(1  1) 

(12) 

(13) 

(14) 

straints:({% 8 3 3 ,  {s21), (b1, 4, {s43), ((s3, s41, {SI)), 

y1 = x ~ x ~ x ~ x I O  + ~ 1 x 3 ~ 4  + ~ 4 x 8  

y2 = x ~ x ~ O  + X ~ X ~ X ~ X I O  + x;x;xg 

The driving PLA is expressed as 

x8 = x4x; + xix!jxix$ 

x9 = x5x& + xix;x;x; 

Note that PLA area is calculated as (2 * (number- 
of-inputs + number-of-outputs) * number-ofgrod- 
ucts. Thus the area cost of the original PLA is (2 * 7 + 
2) * 10 = 160. The cost of the decomposed PLA, which 
is the sum of the driving PLA and the driven PLA, is (2 
* 4  + 3) * 4  + (2* (3  + 3) + 2) * 6  = 44 + 84 = 128. 
Both the original PLA and the decomposed PLA has 10 
product terms. 

VII. EXPERIMENTAL RESULTS 
The proposed encoding algorithm, along with the im- 

provement techniques, has been implemented in a pack- 
age called ENCORE using the C programming language. 
In this section we describe some experimental results ap- 
plied to several sets of problem instances. 

The first set of small examples comes from the early 
literature on the synthesis of asynchronous FSM’s. Here 
the aim is either a race-free [18] or a delay-free imple- 
mentation [19]. We have written a program to derive the 
dichotomy constraints from the original flow table speci- 
fication. ENCORE is then used to find the minimum- 
length encoding that satisfies all these dichotomy con- 
straints. As summarized in Table V,  ENCORE generates 
encodings with the same lengths as those given by exact 
methods in the literature for all these examples. 

The second set of tests consists of 40 industrial exam- 
ples available from the MCNC benchmarks representing 
a wide range of FSM’s. The raw data can be found in 
[21]. We have incorporated ENCORE into Berkeley oct- 
tools to produce PLA realizations from given FSM spec- 
ifications. We have conducted two groups of experiments. 
In the first group, we solve the constrained encoding that 
satisfies all the constraints. We have written a pre-pro- 
cessing program to generate the dichotomy constraints 
from the group constraints, where group constraints are 
obtained by running ESPRESSO-MV [2]. We compared 
ENCORE with several available state assignment pro- 
grams: KISS [9], NOVA [21], and DIET [23]. The results 
are summarized in Table VI. For each example tested, the 
table reports the minimum number #bits of bits by uncon- 
strained encoding, the minimum number #cbits of bits by 
constrained encoding, the encoding lengths obtained by 
KISS, NOVA, DIET, and ENCORE (with and without a 
balance criterion), and the CPU time used. The reported 
time for all the tools does not include the time used by 
ESPRESSO-MV for generating group constraints. The 
time reported by ENCORE does not include the time used 
by pre-processing program for generating dichotomy con- 
straints from group constraints, since it is so small that is 
not measurable. For all the test examples (with the excep- 
tion of the keyb FSM), ENCORE with the balance crite- 
rion obtained the shortest length encodings, with only one 
tenth to one thousandth of the CPU-time used by NOVA 
and DIET. Note that both ENCORE and DIET work on 
dichotomy constraints, but DIET uses the prime-covering 
approach. KISS and NOVA work on the group constraints 
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TABLE V 
SYNTHESIS OF ASYNCHRONOUS FMS'S. 

FSM #states #constraints #bits References 
~ 

fsml 5 7 3 ~ 9 1 ,  P. 84 
fsm2 6 16 4 [191, P. 97 
fsm3 9 19 4 [19], p. 108 
fsm4 7 94 4 [191, p. 144 
fsm5 5 10 3 [18], Fig. 3 
fsm6 6 10 3 1181, Fig. 4 

35.0% 36.0% 

65.0% 

KISS 
64.0% 

NOVA 

92.0% 92.0% 

DIET ENCORE 
I non-optimum 

Fig. 2 .  Comparison of several encoding programs. 

and are based on different theoretical foundations. The 
time complexities of the encoding algorithms used in these 
programs are at best quadratic in the size of the problem. 

The second group of experiments gave very interesting 
results. Here we solve the partial constrained encoding 
problem: Given a bound on the encoding length, maxi- 
mize the number of satisfied dichotomy constraints. The 
lengths chosen are the minimum ones needed to distin- 
guish all the states. ENCORE produces better overall re- 
sults than NOVA (cf. Table VII). For most of the FSM's, 
especially the large ones, the final PLA implementations 
occupy less area than those given by NOVA. Note that 
ENCORE aims at maximizing the number of satisfied di- 
chotomy constraints, where NOVA aims at maximizing 
the number of satisfied group constraints. 

VIII. CONCLUSIONS 

existing techniques for solving large-size VLSI-CAD 
problems. We note that the lack of efficient methods for 
finding state assignments in asynchronous sequential syn- 
thesis has once been considered a major obstacle to the 
use of the asynchronous design methodology [3]. 

Second, it is demonstrated for the first time that syn- 
thesis results obtained using dichotomy constraints are 
comparable with the conventional group constraints in 
terms of PLA area used. We note that, while the reason 
for maximizing the number of satisfied group constraints 
is intuitively clear, the reason why maximizing the num- 
ber of satisfied dichotomy constraints still yields the same 
result is not obvious. A theoretical analysis is needed as 
to improve our understanding of this aspect of sequential 
logic synthesis. 

In addition, our framework of constrained encoding, 
which includes unary constraints as a special case of di- 
chotomy constraints, allows us to formulate network par- 

There are two major results in this paper. First, we have 
developed an effective and efficient method for dichot- 
omy-based constrained encoding-a problem fundamental 

cuits. Our method successfully combines the best features 

titioning [71, and via minimization [14l, as two special 
cases (See [15]). Applications of the local search heuristic 
to via minimization is described in [14]. A further ab- 

these to the synthesis of combinational and sequential logic cir- straction of constrained encoding is the signed hypergraph 
described in [I6]. It permits us to 

of the previous methods, and provides a unified solution problems in a convenient graph-theoretic framework [161. 
to bothcomplete and partial constrained encoding. In ad- 
dition, our framework of constrained encoding can handle 
dominance constraints and disjunctive constraints arising 
from the output encoding problem. 

Experiments with a number of applications indicate that 
our algorithm, as implemented in ENCORE, generates 
better results than the existing programs developed spe- 
cifically in each application field. Since ENCORE is or- 
ders of magnitude faster, it is a promising alternative to 

APPENDIX A 
FORMAL DESCRIPTION OF THE ENCODING ALGORITHM 
The algorithm is presented in a top-down manner. The 

pseudo-code for the entire encoding algorithm, called 
GREEDY-ENCODING, is given below. The algorithm 
starts with an empty matrix A, and then invokes the pro- 
cedure GENERATE-BIT to find a bit assignment a that 
satisfies as many constraints in C as possible. The process 
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TABLE VI 
ENCODING WITH ALL THE DICHOTOMY CONSTRAINTS SATISFIED 

The Encoding Length CPU-time(s)* 

FSM #bits #cbits KISS NOVA DIET ENCOREnb ENCOREb NOVA DIET ENCOREb 

dkl5 
lion 
mc 
taV 
train4 
s8 
bbtas 
beecount 
dk14 
dk27 
dk17 
ex6 
shiftreg 
ex5 
lion9 
bbara 
ex3 
ex7 
opus 
train1 1 
modulo 12 
ex4 
dk512 
mark 1 
bbsse 
cse 
kirkman 
sse 
ex2 
keyb 
ex1 
s l  
sla 
donfile 
dk16 
styr 
sand 
tbk 
planet 
scf 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
3 
4 
4 
5 
4 
4 
4 
4 
4 
4 
4 
5 
6 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
6 
7 

4 
- 
- 

2 
2 
3 
3 
4 
4 
3 
4 
4 
3 
5 
4 
5 
5 

4 
5 
4 

5 

6 
5 

- 

- 

- 

- 
- 

6 
7 
7 
5 
5 

C l 1  
7 
6 
6 

6 
1 8  

- 

4 
2 

2 
2 
3 

- 

- 
- 
4 

4 
4 
3 
5 
4 

7 
6 

5 

4 
5 
4 
6 
5 
6 
6 
6 
8 
7 
5 
5 
7 
8 
6 
6 
f 
f 
f 

- 

- 

- 
- 

4 
2 
2 
2 
2 
3 
3 
4 
5 
3 
4 
5 
3 
5 
4 
5 
6 
6 
4 
5 
4 
4 
5 
4 
6 
6 
6 
6 
7 
9 
7 
5 
5 
9 
8 
8 
6 

23 
7 
8 

4 
2 
2 
2 
2 
3 
3 
4 
4 
3 
4 
4 
3 
5 
4 
5 
6 
6 
4 
5 
4 
4 
5 
4 
6 
5 
6 
6 
6 
8 
7 
5 
5 
6 
8 
6 
6 

23 
I 
8 

3.2 
- 
- 
- 
- 
- 
0.0 
0.1 
1.9 
0.28 
0.5 
0.9 
0.35 
3.95 - 

120.6 
0.53 
- 
- 
3.46 
- 
- 
35 
29 
0.3 
0.2 
- 
- 
2.46 

28 
35 
2.33 
- 

555 
311 
52 
39.71 

1301 
37.6 
- 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.2 
0.4 
0.3 
0.6 
0.3 
0.2 
0.6 
0.5 
0.5 
1.2 
0.8 
0.5 
1.7 
1.4 
2.5 
4.0 
2.5 
2.1 
3.4 
6.7 
2.1 
8.6 
7.7 

11.2 
12.1 
8.7 

26.6 
87.6 
26.4 
62.1 
f 
f 
f 

0.00** 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.01 
0.05 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.01 
0.03 
0.02 
0.00 
0.00 
0.00 
0.02 
0.03 
0.01 
0.04 
0.03 
0.10 
0.02 
0.05 
0.10 
0.12 
0.01 
0.01 
0.01 
0.09 
0.15 
0.03 
0.14 
1.07 
0.53 

*VAX-1118650 
**less than 0.01 
- not applicable 
? solution not found within the used CPU time 
f failed 
b with balance requirement 
nb without balance requirement 

is repeated until all the constraints are satisfied. A solu- 
tion A is the concatenation of all the bit assignments 
found. 

GREEDY-ENCODING(S, C) 
1 A+[]  
2 while C # NIL 
3 
4 A + [A;  a] 
5 
6 return A 

do a + GENERATEBIT(S, C) 

C + C - {constraints satisfied by a} 

GENERATEBIT: Lines 1 and 2 initialize the seed a. 
Line 3 invokes the procedure COMPUTE-GAIN to cal- 
culate the distances and to construct 63 under a. The re- 

turn value of COMPUTE-GAIN is the number of un- 
satisfied constraints. In line 4, the component of highest 
gain is returned with the aid of the operation MAX on 63. 
If the gain value is positive, Lines 5-9 perform one move, 
that is, lock component i, remove the gain of component 
i from 63, invoke the procedure UPDATE-GAIN to up- 
date @and the related distances due to the change of air 
change ai, and finally calculate the number U of unsatis- 
fied constraints. Lines 5-9 repeat until either there is no 
positive-gain component, or all components are locked, 
i.e., Cl3 is empty. 

COMPUTE-GAIN: Line 1 initializes the number U of 
unsatisfied constraints to n. Lines 2 and 3 initialize the 
temporary array y to zero. Lines 4 to 23 form the main 
body for calculating the distances U and the gain vector 



1824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993 

TABLE VI1 
COMPARISONS OF NOVA/ih, NOVA/ig AND ENCORE 

1-hot 
~~ ~ 

NOVA/ih NOVA/ig ENCORE random 

FSM #cubes #bits #cubes area 

dk15 17 2 19 323 
lion 8 2 6 66 
mc 10 2 9 153 
tav 12 2 11 198 
train4 7 2 6 66 
s8 14 3 10 180 
bbtas 16 3 9 135 
beecount 12 3 13 247 
dk14 25 3 29 580 
dk27 10 3 9 117 
dk17 20 3 19 304 
ex6 23 3 25 675 
shiftreg 9 4 4 48 
ex5 19 4 14 252 
lion9 10 4 8 136 
bbara 34 4 25 550 
ex3 21 4 18 324 
ex7 20 4 17 306 
opus 19 4 16 448 
train1 1 11 4 9 153 
modulo 12 24 4 12 180 
ex4 21 4 19 627 
dk512 21 4 18 306 
mark1 19 4 21 798 
bbsse 30 4 30 990 
cse 57 4 46 1518 
kirkman 61 4 79 3318 
sse 30 4 30 990 
ex2 38 5 29 609 
keyb 77 5 48 1488 
ex1 44 5 48 2496 
s l  92 5 80 2960 
s la  92 5 76 2812 
donfile 24 5 35 700 
dk16 55 5 59 1298 
styr 111 5 94 4042 
sand 114 5 101 4646 
tbk 173 5 154 4620 
planet 92 6 91 464 1 
scf 151 7 148 19388 
TOTAL 63688 
% 90 

#cubes area #cubes area #cubes' area' 

18 
6 
9 

11 
6 

10 
12 
12 
27 

8 
19 
25 

8 
18 
9 

25 
18 
17 
16 
12 
12 
19 
19 
19 
30 
45 
77 
30 
36 
55 
51 
87 
80 
48 
72 

103 
102 
176 
89 

146 

306 
66 
153 

198 
66 

180 
180 
228 
540 
104 
304 
675 
96 

324 
153 
550 
324 
306 
448 
204 
180 
627 
323 
722 
990 

1485 
3234 
990 
756 

1705 
2652 
3219 
2960 

960 
1584 
4429 
4692 
5280 
4539 

19126 
65858 

93 

18 
7 
8 

11 
6 
9 

10 
10 
27 

8 
17 
25 

6 
16 
8 

25 
17 
18 
18 
10 
14 
21 
19 
18 
30 
45 
61 
30 
32 
51 
45 
86 
73 
18 
58 
93 

100 
128 
90 

140 

306 
77 

136 
198 
66 

162 
150 
190 
540 
104 
272 
675 

72 
288 
136 
550 
306 
324 
504 
170 
210 
693 
323 
684 
990 

1485 
2745 

990 
672 

1581 
2475 
3182 
2701 

3 60 
1276 
3999 
4600 
3840 
4590 

18340 
60979 

86 

20 
7 
9 

11 
7 
9 

12 
14 
33 
9 

19 
30 
11 
18 
11 
28 
19 
17 
20 
12 
12 
19 
22 
19 
32 
51 
87 
32 
38 
58 
60 
96 
84 
60 
87 

126 
93 

183 
96 

152 

340 
77 

153 
198 
17 

162 
180 
266 
660 
117 
304 
810 
132 
324 
187 
616 
342 
3 06 
5 60 
204 
180 
627 
374 
722 

1056 
1683 
3654 
1056 
798 

1798 
3120 
3553 
3 108 
1200 
1914 
5418 
4278 
5490 
4896 

19912 
70852 

100 

'best random solution 
'average of random solutions 
#bits: code-length 
#cubes: number of product-terns after ESPRESSO logic minimization 
area: (2*(#inputs + #bits) + #bits + #outputs)*#cubes 

y .  Lines 24 and 25 build 63 according to the calculated 
gain vector. 

GENERATE-BIT($, C) 
1 fori + 1 t o m  

3 
4 
5 do lock ai 
6 DELETE (63, i) 
7 

2 doai + 1 
U + COMPUTE-GAIN($, C ,  a, 63) 
while (gain of MAX (63) > 0 and U > 0) 

UPDATE-GAIN(S, C, i ,  a, 63) 
8 ai + -aj 
9 U + U - MAXGAIN 

10 return (Y 

area' 

368 
96 

157 
198 
80 

198 
206 
299 
743 
14 1 
352 
842 
132 
352 
250 
662 
405 
387 
581 
243 
195 

683 
419 
786 

1173 
2083 
464 1 
1176 
905 

3154 
3281 
3703 
3468 
1382 
1981 
569 1 
4972 
6090 
5260 

21294 
79029 

112 

- 

- 

COMPUTE-GAIN(S, C ,  a, 63) 
1 u + n  
2 fori + 1 tom 
3 doyj + 0 
4 for each cj E C 
5 
6 

do dj' + d j  6 0 
for each si contained in cj 

7 do 6 ,  + c~icij 
8 i f6 . .  = -1 
9 

10 
1 1  
12 if dj = 0 
13 

tden dj' 6 dj' + 1 
else dJ: + dJ: + 1 

dj + min { df , dj: 

then U + U - 1 
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14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

for each si in cj 
do yi + yi - 1 

if dj = 1 
then if lCil = 2 

then for each si in cj 

else for each si in cj 
do yi + yj + 1 

do if si is ai-sensitive 
then yi + yi + 1 

break 
for i + 1 to m 

return U 
do INSERT((%. i. yi) 

MODIFY-GAIN: Given a constraint cj, the distance dj, 
and a parameter f, the procedure MODIFY-GAIN( f, cj, 
dj, &) works as follows. Iff = 1, the constraint’s contri- 
bution is added to 63; iff = - 1, the contribution is re- 
moved from &. 
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