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Abstract Programmable vector �elds are an abstraction to represent a new class of
devices for distributed, non-prehensile manipulation for applications in
parts feeding, sorting, positioning, and assembly. Unlike robot grippers,
conveyor belts, or vibratory bowl feeders, these devices generate force
vector �elds in which the parts move until they may reach a stable
equilibrium pose.

Recent research in the theory of programmable vector �elds has
yielded open-loop strategies to uniquely position, orient, and sort parts.
These strategies typically consist of several �elds that have to be em-
ployed in sequence to achieve a desired �nal pose. The length of the
sequence depends on the complexity of the part.

In this paper, we show that unique part poses can be achieved with
just one �eld. First, we exhibit a single �eld that positions and orients
any laminar part (with the exception of certain symmetric parts) into
two stable equilibrium poses. Then we show that for any laminar part
there exists a �eld in which the part reaches a unique stable equilibrium
pose (again with the exception of symmetric parts). Besides giving
an optimal upper bound for unique parts positioning and orientation,
our work gives further evidence that programmable vector �elds are a
powerful tool for parts manipulation.

Our second result also leads to the design of \universal parts feed-
ers," proving an earlier conjecture about their existence. We argue that
universal parts feeders are relatively easy to build, and we report on
extensive simulation results which indicate that these devices may work
very well in practice. We believe that the results in this paper could
be the basis for a new generation of e�cient, open-loop, parallel parts
feeders.
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1 INTRODUCTION

Part manipulation is an important but also time-consuming operation
in industrial automation. Parts and, in particular, small parts arrive at
manufacturing sites in boxes and they need to be sorted and oriented
before assembly. Traditionally part feeding and orienting has been per-
formed with vibratory bowl feeders (Sandler, 1991, for example). These
devices are customly designed for the orientation of a single part or a
small number of parts and rely on mechanical �lters to reject parts in
unwanted orientations. Despite their widespread use, vibratory bowl
feeders have several disadvantages: they have to be redesigned when the
geometry of the part changes; they may damage parts that repeatedly
run through the mechanical �lters, etc.
Recent work investigates alternative ways for feeding parts in assem-

bly workcells. Parts feeders that are programmed, rather than me-
chanically modi�ed, o�er an attractive solution since they can be used
for a wide variety of parts (Goldberg, 1993; Akella et al., 1995; Erd-
mann, 1996; B�ohringer et al., 1996b; B�ohringer et al., 1999c). Practi-
cal considerations favor feeding methods that require little or no sens-
ing, employ simple devices, and are as robust as possible (Erdmann
and Mason, 1988; Goldberg, 1993; Canny and Goldberg, 1994; Akella
et al., 1995; B�ohringer et al., 1995; B�ohringer et al., 1996b; Erdmann,
1996; Lynch, 1996; Wiegley et al., 1996). One of the proposed al-
ternatives is the use of programmable vector �elds (B�ohringer et al.,
1994; Coutinho and Will, 1997). The basic idea is the following: the
�eld is realized on a planar surface on which the part is placed. The
forces exerted on the contact surface of the part translate and rotate
the part to an equilibrium con�guration. The manipulation requires no
sensing.
Until recently, work on force �elds for manipulation has been domi-

nated by the arti�cial potential �elds pioneered by Khatib, Koditschek,
and Brooks. While potential �elds have been widely used in robot con-
trol (Khatib, 1986; Koditschek and Rimon, 1988; Rimon and Koditschek,
1992; Reif and Wang, 1995), micro-actuator arrays present us with the
ability to explicitly program the applied force at every point in a vector
�eld.
Current technology permits the implementation of certain vector �elds

in the microscale with actuator arrays built in micro electro mechanical
system (MEMS) technology (Pister et al., 1990; Ataka et al., 1993;
Fujita, 1993; Konishi and Fujita, 1994; B�ohringer et al., 1994; Liu and
Will, 1995; Cheung et al., 1997, for example), and in the macroscale with
vibrating plates (B�ohringer et al., 1995; Reznik and Canny, 1998). The
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exibility and dexterity that programmable vector �elds o�er has led
researchers to investigate the extent to which these �elds can be useful.
The work in (B�ohringer et al., 1996b) analyzes the properties of vector
�elds that are suitable for sensorless manipulation and proposes novel
manipulation strategies. These strategies typically consist of sequences
of force vector �elds that cascade the parts through multiple equilibria
until a desired goal state is reached.
Programmable vector �elds allow us to shift the complexity of parts

feeding from the design of mechanical tracks, �lters, and cut-outs to con-
trol algorithms and circuitry. No sensors or feeder re-design is required.
However, the designs proposed in (B�ohringer et al., 1996b) require con-
trol software, a clock, and, to some extent, synchronization between
distributed actuators. In this paper we show that the device complexity
can be further reduced. This work can be seen as an example of min-
imalist robotics (Canny and Goldberg, 1994; B�ohringer et al., 1997a),
which pursues the following agenda: For a given robot task, �nd the
minimal con�guration of resources required to solve the task. Minimal-
ism is interesting because doing task A without resource B proves that
B is somehow inessential to the information structure of the task.1 This
paper presents new results on minimalist part feeding, and gives optimal
upper bounds on parts positioning and orienting.
Suppose we take the perspective of an architect seeking to simplify

a parts feeder. MEMS arrays for programmable vector �elds require
control lines for programmability, plus a clock to switch between con-
trol strategies. In addition, control hardware and software are required,
for example in a PC connected to the actuator array. Let us ask the
minimalist question: Which components can be removed? This question
devolves to a question about dynamical systems: Does there exist a sin-
gle �eld in which every part P has exactly one stable equilibrium (up to
part symmetry)? It is somewhat remarkable that a purely architectural
question can reduce to a conjecture about geometric dynamics.
This paper answers the above questions by presenting two speci�c

device architectures. Assuming non-symmetric parts, the �rst design
achieves exactly two stable equilibria without sensor feedback, clock,
or control system. More precisely, unique positioning and orienting is
reached modulo 180� in orientation. The second design overcomes this
limitation and for any non-symmetric part achieves unique positioning
and orientation. We explain that our second result demonstrates the �rst
known instance of a universal feeder/orienter (UFO) device (B�ohringer
et al., 1996b), i.e., a general purpose device that can uniquely position
and orient any part without redesigning or reprogramming.
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2 SQUEEZE FIELDS AND RADIAL FIELDS

In this section we summarize some of the basic results in the theory of
programmable vector �elds that are necessary for the remainder of the
paper. In a programmable force vector �eld, every point in the plane is
associated with a force vector in the plane. For example, a unit squeeze
�eld is de�ned as f(x; y) = �sign(x)(1; 0). When a part is placed into
a squeeze �eld, it experiences a translation and re-orientation until a
predictable equilibrium is reached. This property makes squeeze �elds
very useful for sensorless positioning and orienting strategies.
Given a polygonal part P with n vertices, it was shown in (B�ohringer

et al., 1994) that there exist O(n2k) stable equilibrium orientations for
P when placed in f , where k is the number of combinatorially distinct
bisector placements for P .2 This result was used to generate strategies
for unique parts posing (up to symmetry) by reducing the problem to a
parts feeding algorithm developed by (Goldberg, 1993). The strategies
have length O(n2k) and can be generated in O(n4k2) time.
In (B�ohringer et al., 1996b) this result was improved to plan lengths of

O(nk) and planning time O(n2k2), by employing combined squeeze and
unit radial �elds. Unit radial �elds are de�ned as r(x; y) = � 1p

x2+y2
(x; y)

and are described in more detail in Section 5.
The original algorithm in (B�ohringer et al., 1994) exhibited three key

limitations:

1. While unique orientations could be achieved (modulo 180�) the
�nal (x; y) position was only known to lie somewhere along the
last squeeze axis.

2. The dynamics of the part was assumed to be governed by quasi-
static motion with separate phases of translation and rotation
(\2Phase assumption," see (B�ohringer et al., 1994)).

3. Uniqueness of the �nal orientation was only possible modulo 180�

due to the inherent symmetry in the device design.

The improved algorithm in (B�ohringer et al., 1996b) avoided limitations
1 and 2, but item 3 remained. At the same time the improved algorithms
required higher hardware complexity in the device design. In both ap-
proaches the part complexity n appears in the upper bounds in the plan
complexity, O(n2k) or O(nk), respectively.
Using elliptic force �elds f(x; y) = (��x;��y) such that 0 < � < �,

this bound can be reduced to a constant number (2) independent of n
(Kavraki, 1997). We include this result in Section 4.
It was conjectured in (B�ohringer et al., 1996b) that a �eld which com-

bines a radial and gravitational �eld r+�g (where g(x; y) = (0;�1) and
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Task Field(s) Complexity
description properties planning plan

length
# goal
equil.

translate constant constant mag-
nitude and di-
rection

0 1 0

position radial (B�ohringer
et al., 1996b)

constant
magnitude,
continuous
directions

0 1 1 (a)

orient sequence of squeezes
(B�ohringer et al.,
1994)

piecewise con-
stant magni-
tude and di-
rection

O(k2n4) O(k n2) 2 (b)

inertial (Kavraki,
1997)

smooth mag-
nitude, piece-
wise constant
direction

O(1) (c) 1 2 (b)

position
and
orient

sequence of orthog-
onal squeeze pairs
(B�ohringer et al.,
1999a)

piecewise con-
stant magni-
tude and di-
rection

O(k2n4) O(k n2) 2 (d)

sequence of radial +
squeeze (B�ohringer
et al., 1996b)

piecewise con-
tinuous mag-
nitude and di-
rection

O(k2n2) O(k n) 2 (d)

elliptic smooth mag-
nitude and di-
rection

O(1) (c) 1 2 (d)

radial-gravity smooth mag-
nitude and di-
rection

O(1) (e) 1 1

Table 1 Fields and algorithms for manipulation tasks with programmable force vec-
tor �elds. The results on elliptic and radial-gravity �elds are proven in this paper.
Remarks:
(a) Translation equilibrium only, orientation is unconstrained.
(b) Orientation unique modulo 180� symmetry, translation along squeeze line is un-
constrained.
(c) Requires numerical computation of axes of inertia.
(d) Pose is unique modulo 180� symmetry.
(e) Requires numerical computation of �eld parameter �.
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� is a small positive constant), has the property of uniquely orienting and
positioning parts. We call this �eld the radial-gravity �eld and we prove
in Section 5 that for any non-symmetric part, there is a radial-gravity
�eld inducing exactly one stable equilibrium. Our paper also includes a
discussion on implementation issues relating to the radial-gravity �eld.
Such a �eld could be used to build a universal parts feeder (inspired by
the \universal gripper" as proposed by (Abell and Erdmann, 1996).3).
In contrast to the universal manipulator �elds proposed in (Reznik and
Canny, 1998), such a device could uniquely position a part without the
need of a clock, sensors, or programming.
Table 1 gives a summary of our results on part manipulation using

programmable force vector �elds. The �rst column of that table speci�es
a task. The three last columns show the complexity of generating a plan,
the number of steps required during plan execution, and the number
of �nal equilibria states for the particular task. The inertial �eld was
de�ned as f(x; y) = �sign(x)(x; 0). In Table 1, n denotes the number of
vertices of the part and k denotes the combinatorially distinct bisectors
of the part.

3 CONDITIONS FOR EQUILIBRIA

In this section we give some de�nitions and establish the notation that
will be used in the two following sections. We investigate the conditions
for equilibrium for a part w in the presence of a force �eld f : R2 ! R

2 .
It is assumed that w(x; y) � 0, for x; y 2 R, and W =

R
R2
w(p)dp <1.

Here w can be seen as the support (characteristic) function of the part,
this function is 1 on the part and 0 elsewhere. We assume that the
support of w is compact.
Without loss of generality, the origin of the reference frame in the

plane can be chosen as the center of mass of w :Z
R2

pw(p)dp = 0:

When the part is in con�guration q = (x; y; �), the resultant force is
given by

F =

Z
R2

w(p)f(A�p+ t) dp;

and the resultant torque at the center of mass is given by

M =

Z
R2

w(p)(A�p)� f(A�p+ t) dp;

where t = (x; y)>, and
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Figure 1 Elliptic force �eld (a) and corresponding potential �eld (b) for � = 1 and
� = 2.

A� =

�
cos � � sin �
sin � cos �

�

is the rotation matrix of angle �. From now on, all integrals extend over
R
2 unless otherwise stated.
A total equilibrium is achieved when the resultant force and torque

on the part is zero. For a total equilibrium the following two equations
must hold:

F = 0 (1)

M = 0: (2)

4 TWOSTABLEEQUILIBRIUMORIENTATIONS

In this section we show a force �eld that can orient most parts into
two stable equilibria. The �eld derives from an elliptic potential �eld
and we will call it the elliptic �eld:

f(x; y) = (��x;��y) (3)

where � and � are two distinct positive constants. Without loss of
generality let us assume that � < �. Figure 1a displays one such force
�eld with � = 1 and � = 2. Note that this vector �eld is the negative
gradient of the elliptic potential function u(x; y) = �

2 x
2 + �

2 y
2: This

potential function is plotted in Figure 1b, for � = 1 and � = 2.
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4.1 FORCE AND MOMENT EQUILIBRIUM

Force Equilibrium. We �rst establish the condition for the force
equilibrium. If (x; y) are the coordinates of the center of mass of w
in con�guration q (W is de�ned in Section 3), the total force exerted on
w, given by the left hand side of (1), is equal to

(��Wx;��Wy):

Condition (1) is thus equivalent to (x; y) = (0; 0). Therefore, in looking
for equilibrium con�gurations q, we only need to consider the con�gu-
rations of the type q = (0; 0; �).

Moment Equilibrium. We now proceed to the investigation of con-
dition (2). It turns out that, for \most" parts w and for whatever distinct
positive values of � and �, there are exactly 4 values of � for which (2)
holds. This is shown below.
Taking into account the force equilibrium, the expression of the torque

becomes now

M =

Z
w(p)(A�p)� f(A�p) dp:

The cross product of two vectors v1 = (x1; y1) and v2 = (x2; y2) is

de�ned as v1 � v2 =

�����
i j k
x1 y1 0
x2 y2 0

����� and the above equation gives after

calculations

M = (�� �)

�
sin 2�

2

Z
(x2 � y2)w(x; y) dx dy

�
� k +

(�� �)

�
cos 2�

Z
xy w(x; y) dx dy

�
� k: (4)

Thus, since � 6= �, we have M = 0 if and only if

s20 � s02
2

sin 2� + s11 cos 2� = 0: (5)

In the above
smn = smn(w) =

Z
R2

xmynw(x; y) dx dy (6)

de�ne moments of w. Equivalently, we want the vectors

(cos 2�; sin 2�) and (s11;
1

2
(s20 � s02))

to be orthogonal. We now have to distinguish two cases.
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\Symmetry": s11 = 0 and s02 = s20.
Clearly in this case (5) is satis�ed for all � 2 [0; 2�) and we have equi-
librium regardless of orientation. When a part is in equilibrium for all
�, we say that orientation fails for the part.

\Asymmetry": s11 6= 0 or s02 6= s20.
When � goes from 0 to 2� the vector (cos 2�; sin 2�) traverses the unit
circle twice. The two vectors, (cos 2�; sin 2�) and (s11;

1
2(s20�s02)) will be

orthogonal for exactly 4 values of �, say �1 = �0, �2 = �0+�, �3 = �0+
�
2 ,

and �4 = �0 +
3�
2 . In addition, either the �rst pair of them is stable and

the second unstable, or vice versa. The reason is that the sign of M in
(4) determines the direction in which momentM rotates the part. If this
sign is positive,M rotates the part counter-clockwise, else the rotation is
done clockwise (see also (B�ohringer et al., 1996b)). While (cos 2�; sin 2�)
is rotated around the vector (s11;

1
2 (s20� s02)), the sign of the left hand

side of (5) changes after the two vectors attain an orthogonal orientation.
Hence, we observe sign changes of the left hand side of (5) for the 4 values
of � given above. Let �1 and �2 be the roots of (5) for which the sign
of its left hand side changes from a negative value to a positive value
while moving in a counter-clockwise direction. Since we assumed that
� � � < 0, �1 and �2 indicate stable equilibrium con�gurations of the
part (see equation 4), whereas �3 and �4 are unstable con�gurations.
This leads to the following theorem.

Theorem 1 Let w : R2 ! R be a part with �nite sij with i + j � 2
and whose \center of mass" is at 0, and let f(x; y) = (��x;��y), with
0 < � < �, be the underlying force �eld.
\Symmetry": If s11 = s20 � s02 = 0 the part w(A�p + t) is at (force
and moment) equilibrium whenever t = 0.
\Asymmetry": Otherwise, the distribution w(A�p+t) is in equilibrium
only when t = 0 and for exactly 4 distinct values of � 2 [0; 2�). These 4
values of � are �

2 apart and only 2 of them, say �0 and �0+ �, represent

stable equilibria, the others, �0 +
�
2 and �0 +

3�
2 being unstable.

4.2 PREDICTION OF EQUILIBRIA

In practice, we seek to orient a �nite part and it is very easy to com-
pute with numerical techniques the values of s11, s20, and s02. We can
thus predict, for a given part, whether it will have 2 stable equilibria
in the force �eld considered. The equilibrium orientations can be calcu-
lated using (5). Note that the equilibrium con�gurations of a part are
independent of � and �, as long as 0 < � < �.
Figure 2 shows the orientation of a polygonal part, called the ratchet,

under the elliptic �eld with � = 1 and � = 2.
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Figure 2 Orientation of a polygonal part under the elliptic force �eld with � = 1
and � = 2.

In many cases it is clear that a part will have many equilibrium ori-
entations. For example, consider a planar part that is a regular n-gon.
This part will be at equilibrium when its \center of mass," as de�ned
in Section 3, is at 0 no matter what its orientation is. The \center of
mass" in this case is the centroid of its n-gon surface. Suppose now
that the part had only two equilibria �0 and �0 + � and that the part is
at equilibrium �0. If we rotate the part by 2�

n then we should have an
equilibrium again, due to the geometrical symmetry of the part. Hence,
since this part can not have only two equilibrium orientations it must be
in equilibrium for any value of �, according to Theorem 1. Indeed, for
this part, it can be shown that s11 = s20� s02 = 0. Note that symmetry
and asymmetry as in the above theorem do not always correspond to
the notion of geometric symmetry and asymmetry, i.e. there may exist
parts that are not geometrically symmetric but are symmetric according
to the de�nitions above.

Equilibria, Principal Axes, and Part Symmetry. The construc-
tive proof of Theorem 1 provides a method to predict the stable and
unstable equilibria of any two-dimensional part w. For a given w we
determine its center of mass c and the angles �1; :::; �4. w is in stable
equilibrium in the force �eld f if and only if the line through c at angle
�1 coincides with the x-axis.
Readers familiar with theoretical mechanics will recognize the analogy

between the proof of Theorem 1 and the transformation equations for
moments and products of inertia. These equations are the basis for
the argument that the principle axes of any two-dimensional part are
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perpendicular. It is worthwile to explore this analogy in more detail. For
any part, there exists a coordinate frame such that s11 = 0. The axes of
this coordinate frame are the principal axes of inertia of the part (i.e.,
axes with maximum or minimum moment of inertia). It can be shown
that these axes intersect at the center of mass c. From the previous
computations, it is easy to deduce that in the two stable con�gurations,
these axes are lined up with the axis of the force �eld. More speci�cally,
s20 and s02 are the second area moments of w, often denoted Ix and Iy,
and s11 = Ixy is the product of inertia. The line through c at angles
�1 or �2 (corresponding to the stable equilibrium) is the major principal
axis, and the line through c at angles �3 or �4 (corresponding to the
unstable equilibrium) is the minor principal axis. These observations
explain why the equilibrium is independent of the values of � and � as
long as � < �.
Since all axes of symmetry are principal axes, it further follows that

a su�cient condition for \symmetry" as de�ned in Theorem 1 is that
w has two non-perpendicular axes of symmetry. Conversely, a necessary
condition for \Symmetry" is that the product of inertia of w must be
zero for any axis through c, and that the moment of inertia is equal for
all axes through c. For more details on principal axes and moments of
inertia, see for example (Meriam and Kraige, 1997).

5 ONE STABLE EQUILIBRIUM ORIENTATION

We now exhibit a class of force �elds that induce one stable equilib-
rium for most parts. These �elds are combinations of a unit radial and
gravity �eld and we will call them radial-gravity �elds:

A unit radial �eld r is de�ned by: r(x; y) = � 1p
x2+y2

(x; y).

A unit gravity �eld g is given by g(x; y) = (0;�1).
For a given � 2 R, the radial-gravity �eld is de�ned as the sum of
a unit radial �eld r and a gravity �eld g scaled by �: f� = r+ �g.

Figure 3 plots a radial-gravity �eld for which � = 0:4.

5.1 FORCE AND MOMENT EQUILIBRIUM

In this section we reason with potential �elds instead of using directly
equations (1) and (2). First we notice that f� derives from the potential

�eld u�(x; y) =
p
x2 + y2��y and we de�ne the following potential �eld

over the con�guration space C of the part:

U�(q) =

Z
w(p)u�(A�p+ t)dp:
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Figure 3 Radial-gravity �eld f� = r + �g with � = 0:4. (a) force �eld, (b) corre-
sponding potential �eld.

A con�guration q is a stable equilibrium of the part if and only if q is a
local minimum of the function U�.
In order to take advantage of the radial symmetry of r(x; y), we de�ne

a new system of coordinates (X;Y; �) from the standard one by

X = x cos � + y sin �

Y = �x sin � + y cos �:

The expression of U� in this new system of coordinates is obtained by a
change of variable in the integral:

U�(X;Y; �) =

Z
w(�; �)

p
(X + �)2 + (Y + �)2d�d�

��W (X sin � + Y cos �):

To establish the existence and uniqueness of a stable equilibrium, we
proceed in two steps. First we state the existence and uniqueness of
a local minimum of the potential �eld for any �xed �. This partial
minimum is the force equilibrium. Then we study the curve of force
equilibria when � describes S1 and reason about moment equilibria. For
our discussion below, we de�ne the following functions:

U�;�(X;Y ) = U(X;Y; �; �) = U�(X;Y; �):

Force Equilibrium. A force equilibrium is a local minimum of U�;�.
Using common results of the theory of integration, we �nd that U is of
the class C2 and that its partial derivatives with respect to X and Y are
obtained by di�erentiating under the integral. The following proposition
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establishes the existence and uniqueness of a stable force equilibrium for
a �xed � by proving that the function U�;� is convex.

Proposition 2 If � < 1, U�;� has a unique local minimum.

Proof: We �rst notice that for � < 1, U�;� tends toward in�nity with
(X;Y ). We show then that U�;� is convex, i.e. the Hessian of U�;� is
positive de�nite, that is its eigenvalues are both positive. This condition
is ful�lled if and only if the trace and determinant of the Hessian are
both positive:

det Hess U�;�(X;Y ) =

�����
@2U�;�

@X2 (X;Y )
@2U�;�

@X@Y (X;Y )
@2U�;�

@X@Y (X;Y )
@2U�;�

@Y 2 (X;Y )

����� > 0

tr Hess U�;�(X;Y ) =
@2U�;�

@X2 (X;Y ) +
@2U�;�

@Y 2 (X;Y ) > 0:

Let us compute the partial second derivatives of U�;�:

@2U�;�

@X2
(X;Y ) =

Z
w(�; �)

(Y + �)2

((X + �)2 + (Y + �)2)3=2
d�d�

@2U�;�

@Y 2
(X;Y ) =

Z
w(�; �)

(X + �)2

((X + �)2 + (Y + �)2)3=2
d�d�

@2U�;�

@X@Y
(X;Y ) =

Z
�w(�; �) (X + �)(Y + �)

((X + �)2 + (Y + �)2)3=2
d�d�:

From these expressions, we deduce easily that tr Hess U�;�(X;Y ) > 0.
Then using the identities (

R
f(�)d�)(

R
g(�)d�) =

R R
f(�)g(�)d�d� =R R

f(�)g(�)d�d� we have:

detHess U�;�(X;Y ) =
@2U�;�

@X2
(X;Y )

@2U�;�

@Y 2
(X; Y )� (

@2U�;�

@X@Y
(X;Y ))2

=

Z Z
(Y + �1)

2(X + �2)
2 � (X + �1)(Y + �1)(X + �2)(Y + �2)

((X + �1)2 + (Y + �1)2)3=2((X + �2)2 + (Y + �2)2)3=2
d�1d�1d�2d�2

=
1

2

Z Z
(Y + �1)

2(X + �2)
2 + (Y + �2)

2(X + �1)
2

((X + �1)2 + (Y + �1)2)3=2((X + �2)2 + (Y + �2)2)3=2
d�1d�1d�2d�2

+
1

2

Z Z �2(X + �1)(Y + �1)(X + �2)(Y + �2)

((X + �1)2 + (Y + �1)2)3=2((X + �2)2 + (Y + �2)2)3=2
d�1d�1d�2d�2

=
1

2

Z Z
((Y + �1)(X + �1)� (Y + �2)(X + �1))

2

((X + �1)2 + (Y + �1)2)3=2((X + �2)2 + (Y + �2)2)3=2
d�1d�1d�2d�2

> 0:

where w(�1; �1)w(�2; �2) has been omitted to make the notation clearer.
2



DISTRIBUTED MANIPULATION

Moment Equilibria. Having established the force equilibrium, we
proceed to express it as a function of �; �.

Equilibrium curve. We denote by (X�(�; �); Y �(�; �)) the unique
force equilibrium relative to � and by (x�(�; �); y�(�; �)) its expression
in the (x; y; �) system of coordinates:

x�(�; �) = cos � X�(�; �) � sin � Y �(�; �) (7)

y�(�; �) = sin � X�(�; �) + cos � Y �(�; �): (8)

We call the curve of force equilibria f(x�(�; �); y�(�; �)); � 2 S1g equilib-
rium curve of parameter �.
When � = 0 (pure radial �eld), due to the radial symmetry of the

�eld, the set of equilibrium con�gurations is generated by the rotations
of the part about one of its points called the pivot point (B�ohringer et al.,
1996b).

Proposition 3 X�; Y �; x�; y� are continuously di�erentiable.

Proof: The proof of this proposition is based on the implicit function
theorem. Let us de�ne the following function from R

4 into R2

F : (X;Y )!
�

@U
@X (X;Y; �; �)
@U
@Y (X;Y; �; �)

�
:

(X�; Y �) minimizes the potential function U�;� for constant � and �,
and therefore �ts the following implicit representation:

F (X�; Y �; �; �) = 0:

F is continuously di�erentiable and the di�erential of the partial function
F�;� of the variables (X;Y ) is exactly the Hessian of U�;�. From Propo-
sition 2, this di�erential is invertible everywhere. All the hypotheses of
the implicit function theorem are thus satis�ed, and therefore X�(�; �)
and Y �(�; �) are continuously di�erentiable. From relations (7) and (8),
x� and y� are also continuously di�erentiable. 2

Let us now denote by U�

� (�) the minimum value of the potential func-
tion for each �. Then it is straightforward that (X;Y; �) is a local mini-
mum of U� if and only if � is a local minimum of U�

� and X = X�(�; �)
and Y = Y �(�; �). The following proposition establishes a relation be-
tween the derivative of U�

� and the position in the plane of the force
equilibrium.

Proposition 4 For any � 2 S1,

dU�

�

d�
(�) = �Wx�(�; �):
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Proof: In this proof we omit � in the expressions of X� and Y � to
make the notation simpler. By de�nition U�

� (�) = U�(X
�(�); Y �(�); �).

Di�erentiating this expression with respect to � leads to

dU�

�

d�
(�) =

@U�

@X
(X�(�); Y �(�); �)

dX�

d�
(�) +

@U�

@Y
(X�(�); Y �(�); �)

dY �

d�
(�) +

@U�

@�
(X�(�); Y �(�); �)

=
@U�

@�
(X�(�); Y �(�); �)

= �W (cos � X�(�)� sin � Y �(�))

= �Wx�(�; �);

since the partial derivatives of U� with respect to X and Y are null at
(X�; Y �). 2

Proposition 4 states that a stable equilibrium con�guration corre-
sponds to a value of � where the equilibrium curve crosses the y-axis
from x < 0 to x > 0. Figure 7 (bottom left) shows the value of U�

�
along the equilibrium curve for the ratchet part in the same �gure and

illustrates perfectly the linearity of the relation between
dU�

�
d� and x�. In-

deed, it can be easily checked that the torque M is equal to the partial
derivative of U� with respect to �.

Unique global equilibrium. We combine our results in propositions
2, 3, and 4 to establish the concluding theorem of this section.

Theorem 5 For any compact part w , if (X�(�; 0); Y �(�; 0)) 6= (0; 0)
(i.e. the center of mass and the pivot point are distinct) then there
exists � > 0 such that w has a unique stable equilibrium con�guration
under the potential �eld U�.

Proof: First, let us notice that the curve (X�(�; 0); Y �(�; 0)) is reduced
to a point since when � = 0, the potential �eld U� does not depend on
�. Let us express this point in polar coordinates

X�(�; 0) = R cos'

Y �(�; 0) = R sin':

Then if (X�; Y �) 6= (0; 0), from relations (7) and (8), the curve
(x�(�; 0); y�(�; 0)) is a circle centered on (0; 0) (Figure 4). We have

x�(�; 0) = R cos(� + ')

y�(�; 0) = R sin(� + '):
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3π/2−ϕ−α1

Figure 4 Decomposition of the equilibrium curve for � = 0 into four intervals.

The current proof is based on the continuity of the functions x� and
y� and their derivatives. We proceed in two steps: near �=2 � ' and
3�=2 � ', where x�(�; 0) crosses 0, the variation of the tangent vector
to the curve (x�(�; �); y�(�; �)) can be made su�ciently small in order to
prevent the curve to cross twice the y-axis. For the remaining values of
�, the variation of the position of the curve can be bounded in such a
way that the curve cannot cross the y-axis. The complete proof follows.
Let us recall that @x�=@�(�; �) is a continuous function and that

@x�=@�(�' + �=2; 0) = �R and @x�=@�(3�=2 � '; 0) = R. Therefore
there exists �1 > 0 and �1 > 0 such that

8� < �1;8� 2 [�'+ �=2� �1;�'+ �=2 + �1];
@x�

@� (�; �) < 0

8� < �1;8� 2 [�'+ 3�=2 � �1;�'+ 3�=2 + �1];
@x�

@� (�; �) > 0:

These inequalities imply that the equilibrium curve does not cross more
than once the y-axis on the corresponding intervals of �.
We are going now to show that for the remaining values of �, there

exists a � small enough such that the corresponding part of the equilib-
rium curve does not cross the y-axis. To make the notation clearer, let
us de�ne the following compact set

I = [�'+�=2+�1 ;�'+3�=2��1][ [�'+3�=2+�1 ;�'+5�=2��1 ]:
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Then for � = 0 and � 2 I, the equilibrium curve stays at a strictly
positive distance from the y-axis:

�2 = Inffjx�(�; 0)j; � 2 Ig > 0:

x� is continuous, thus its restriction to the compact set I � [0; �1] is
uniformly continuous. Therefore, there exists a constant �2 > 0 such
that

8� 2 I;8� 2 [0; �2]; jx�(�; �)� x�(�; 0)j < �2

and this condition ensures that the equilibrium curves does not cross
the y-axis for � 2 I and � < �2.

Therefore, for any � < min(�1; �2), the equilibrium curve crosses the
y-axis exactly twice. Once in each direction. 2

5.2 PREDICTION OF EQUILIBRIA

The previous computation shows that if a part has a pivot point dif-
ferent from the center of mass, then there exists a small value of � to
uniquely orient this part. However, this does not mean that there exists
one unique value of � orienting any part. In other words, the combina-
tion of a radial unit �eld and a gravitational �eld is a strategy that can
orient almost any part, but for each part the maximum � is di�erent.
For each part, the value of �max can be computed numerically. These
computations are discussed in more detail in Section 6.1.
Figure 5 shows equilibrium curves for the ratchet for di�erent values

of �. In this example, we can see that for large �, the equilibrium curve
crosses the y-axis several times, and thus the minimum is not unique
anymore. An annealing process may be used to determine �. The process
starts with a value of � just below 1. This causes the part to be centered
and oriented quickly. By reducing � we ensure that eventually we obtain
a �eld that uniquely orients the part.
Alternatively, we can determine the maximum value for � for which

the equilibrium is unique. By using numerical methods, we observe that
for the ratchet for all � values up to 0.46 the equilibrium is unique. This is
demonstrated in Figure 5. Numerous simulation runs were performed to
observe the behavior of the ratchet in the �eld r+0:46g. It consistently
reaches the unique �nal position. Some of these simulation runs are
shown in Figure 6. Figure 7 combines all these observations for the �eld
r+ 0:3g.
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(a)

δ = 0.000 δ = 0.025 δ = 0.050 δ = 0.075 δ = 0.100 δ = 0.125 δ = 0.150

δ = 0.175 δ = 0.200 δ = 0.225 δ = 0.250 δ = 0.275 δ = 0.300 δ = 0.325

δ = 0.350 δ = 0.375 δ = 0.400 δ = 0.425 δ = 0.450 δ = 0.475 δ = 0.500

δ = 0.525 δ = 0.550 δ = 0.575 δ = 0.600 δ = 0.625 δ = 0.650 δ = 0.675

δ = 0.700 δ = 0.725 δ = 0.750 δ = 0.775 δ = 0.800 δ = 0.825 δ = 0.850

δ = 0.875 δ = 0.900 δ = 0.925 δ = 0.950 δ = 0.975

(b)

δ = 0.420 δ = 0.430 δ = 0.440

δ = 0.450 δ = 0.460 δ = 0.470

δ = 0.480 δ = 0.490 δ = 0.500

Figure 5 Detailed equilibrium curves for the ratchet: (a) Curves from � = 0 to
� = 0:975, increment 0.025. (b) Curves from � = 0:42 to � = 0:50, increment 0.01.
We observe that up to � = 0:46 the curve has only two intersections with the y-axis,
hence the equilibrium is unique.
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Figure 6 Simulation runs for the ratchet in the �eld r+ 0:46g. In all runs the part
reaches the same �nal pose from a random initial pose.

6 IMPLEMENTATION

The previous sections show that there exist universal feeder/orienter
devices that can uniquely position almost any part. We now briey
investigate practical issues on building such devices. To this end we
pose two key questions:

How di�cult is it to build devices that implement programmable
vector �elds?

How e�cient is a universal feeder/orienter device in practice?

The �rst question concerns the initial setup cost as compared, e.g., with
a vibratory bowl feeder or a robotic parts feeder. The second question
addresses the issue that even though unique equilibria exist for almost
all parts, it is not obvious a priori how quickly these equilibria will
be reached. To obtain an answer to these questions we have built a
comprehensive simulation and analysis system, and we have investigated
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Figure 7 Analysis of the radial-gravity �eld f� = r+�g with the ratchet and � = 0:3.
Top left: Equilibrium curve. Each point on this curve corresponds to a speci�c �

value, with 0 � � � 2�. Middle: Equilibrium curve with simulated trajectories
of the ratchet. The center of mass always reaches the unique stable equilibrium
(corresponding to the lower intersection of the curve with the x-axis). Right: Multiple
simulation runs. The ratchet always reaches the same stable total equilibrium.
Bottom left: Equilibrium curve with corresponding torques. For a part whose center
of mass is at (x; y) in f� the torque is directly proportional to �x. Middle: Torque as
a function of part orientation � when the part is in force equilibrium.

multiple designs that implement prototype devices for programmable
vector �elds.

6.1 SIMULATION

We have implemented a sophisticated simulator for programmable
force vector �elds in Matlab. The system is capable of exact calcula-
tion of the force acting on polygonal parts in various �elds, including
squeeze, unit radial, gravity �elds, and combinations thereof. To calcu-
late the force acting on a polygon in the �eld, the polygon is triangulated
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and the force �eld is integrated over the individual areas. This can be
done without numerical integration since there exist closed-form inte-
grals for all these �elds. To predict the part motion in the �eld, we
have implemented a full dynamic simulator that includes inertia, vis-
cous damping, and Coulomb friction. Figures 2, 6, and 7 show output
of the dynamic simulator.
Force equilibria are determined numerically by solving the constraints

F = 0 as given in equation (1). Equilibrium curves are determined
numerically by calculating force equilibria for discrete part orientations.
Figures 5 and 7-left/middle were generated in this way. Finally, pivot
points are also determined numerically by solving Equation (1) for a
part in a unit radial �eld.
Figures 6 and 7 consist of output from the software package and in-

clude dynamic simulation, numerical computation of force equilibria,
and computation of torque when the part already is in force equilibrium
(i.e., the torque associated with each point on the equilibrium curve).
For the torque calculation see the last part of Figure 7.

6.2 DEVICE CONSTRUCTION

In Section 1 we have already mentioned some device designs that im-
plement programmable vector �elds. The idea of open-loop parts feeding
is particularly attractive when dealing with very small or microfabricated
parts, where precise feedback is di�cult or extremely expensive. It also
opens the opportunity for massively parallel positioning and assembly:
since no control is required, the positioning process can be parallelized
without communication overhead.
Towards this end, various researchers have demonstrated microfabri-

cated actuator arrays based on MEMS (micro electro mechanical system)
technology. These devices consist of a surface with potentially thousands
or even millions of microscopic actuators, each of them capable of gen-
erating a unit force in a speci�c direction (Pister et al., 1990; Ataka
et al., 1993; Fujita, 1993; B�ohringer et al., 1994; Liu and Will, 1995, for
example).
While MEMS actuator arrays may be useful to implement force �elds

that require high spatial resolution, alternative (macroscopic) designs
are possible as well. In the following subsections we give some speci�c
design ideas.

Elliptic Fields. The realization of elliptic �elds could be achieved
with MEMS actuator arrays (B�ohringer et al., 1996a; B�ohringer et al.,
1997b), or arrays of motors (Luntz et al., 1997), and possibly with vi-
brating plates (B�ohringer et al., 1995). The main challenge for vibrat-
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Figure 8 Unidirectional MEMS actuator array build on a silicon wafer. Each actu-
ator is about 0.2 mm in size.

ing plates will be to obtain a surface that approximates the elliptic force
pro�le with su�cient spatial resolution. Microscopic (MEMS) or macro-
scopic (motor) actuator arrays o�er alternatives. Note that individual
control of the actuators is not necessary; control by rows and columns
only is su�cient. Furthermore, the proposed vector �eld could be im-
plemented with a technology that allows the speci�cation of a force only
in one of the x or y directions at each pixel/actuator. Then two arrays,
one controlled only in the x direction and the other controlled only in
the y direction can be \interleaved." If the arrays are dense, the result-
ing force will be a force with the desired magnitude and direction. The
main challenge for micro actuators remains the generation and control
of forces over a su�ciently large range of force magnitudes.

Universal Fields. A prototype unidirectional array was built by
(B�ohringer et al., 1996a) (see Figure 8). This array can generate a
unit gravity �eld. Its design could be modi�ed such that the actuators
are arranged in a circular pattern, which would result in a unit radial
�eld. The variable gravity �eld could then be added simply by tilting
the array accordingly (see Figure 9). Hence such a device would be rel-
atively easy to build. The key observation is that with current MEMS
technology it is easy to build actuator arrays with high spatial resolution
(� 1mm) and constant force, but it is di�cult to build actuators with
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Figure 9 Conceptual design of an actuator array that implements a combined radial-
gravity �eld. Individual actuators are tiled in a circular array pattern. The array
is tilted by an angle � to add a gravity component �g. Under some simplifying
assumptions � = tan�.

variable force. In addition, MEMS actuators can be easily arranged into
arbitrary patterns (in particular, a radial pattern). Hence it is easy to
build arrays that implement unit radial �elds.
Alternatively, a resonating speaker, or a vibrating disk-shaped plate

that is �xed at the center, might be used to create a radial force �eld.

7 SUMMARY

This paper proves the existence of devices for parts positioning and
orienting that can bring arbitrary (non-symmetric) parts into exactly one
or two stable equilibria. These devices are extremely simple: they do
not require a feedback control, a clock, synchronization, or programming.
Their functioning principle is based on force vector �elds. Such a device
could revolutionize industrial and precision parts handling.
This result opens the door for a multitude of new questions, some of

which are briey outlined below.

Open Questions

Parallelism. So far we have considered only the equilibria of one part
in a force �eld. But what happens if two parts are placed into the �eld
simultaneously? It is conceivable that the parts will settle in predictable
con�gurations. This e�ect could be exploited for automated assembly.
When parts are initially placed far enough apart, it may be possible

to implement several radial-gravity �elds next to each other to achieve
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parallel positioning. This issue is particularly interesting since there is
no overhead for parallelism in such a device, as no communication and
control is required.

Symmetric parts. In Section 4 we have shown that elliptic �elds
achieve two equilibria for any part with s11 6= 0 and s20 6= s02. Parts that
do not satisfy this condition will be in neutral orientation equilibrium
once their centers of mass reach the center of the elliptic �eld. Since the
above conditions are not met for parts with rotational symmetry, these
parts cannot be uniquely oriented in an elliptic �eld.
Similarly, Theorem 5 requires that the pivot point and center of mass

of a part do not coincide. Thus, this result does not apply to rotationally
symmetric parts such as, e.g., squares or hexagons. However, simulation
results indicate that symmetric parts may still reach a unique equilib-
rium up to part symmetry. In case a part is symmetric, the user may
not care about multiple equilibria as long as there exists no noticeable
di�erence in the �nal poses. Therefore we generalize Theorem 5 to ob-
tain the following conjecture: A radial-gravity �eld uniquely poses any
part up to part symmetry.

Large � values. We have shown that there always exists a �max such
that for all 0 < � < �max we obtain a unique equilibrium. Figure 5
shows that for � > �max the equilibrium curve becomes more compli-
cated, causing multiple equilibria. However, as � approaches 1 the curve
becomes simpler again. Since higher � values imply faster convergence,
it would be interesting to know whether unique equilibria can be found
for � close to 1.
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Notes

1. In robotics, minimalism has become increasingly inuential. (Raibert et al., 1993)
showed that walking and running machines could be built without static stability. (Erdmann
and Mason, 1996) showed how to do dextrous manipulation without sensing. (McGeer, 1990)
built a biped, kneed walker without sensors, computers, or actuators. (Canny and Goldberg,
1994) argue that minimalism has a long tradition in industrial manufacturing, and developed
geometric algorithms for orienting parts using simple grippers and accurate, low cost light
beams. (Brooks, 1986) developed online algorithms that rely less extensively on planning
and world models. (Donald et al., 1995; B�ohringer et al., 1997a) built distributed teams of
mobile robots that cooperate in manipulation without explicit communication.

2. For details on combinatorially distinct bisector placements see (B�ohringer et al.,
1999b).

3. In a universal gripper a part is free to rotate after being picked up from an arbitrary
initial state. Its center of mass will settle at the unique minimum of potential energy, causing
the part to reach a unique, predictable equilibrium.
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