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1. Introduction

Let P be a polygon in the plane, possibly with holes, and havingrtices in total. We
denote by the set of vertices oP. For a directed line. in the plane, we denote by
hy (2) (resp.h; (1)) the open half-plane bounded kyon the left-hand (resp. right-) side
of 1. The linex is anarea bisectorof P if the area ofP N h; (1) is equal to the area of
PNh ().

Aline A partitionsV into three sets (two of which may be empty)n h; (1), V N4,
andV N h; (A). We say that two area bisectors Bfarecombinatorially distinctf the
partitioning ofV as above induced by the two bisectors is different. We say that two area
bisectors ofP arecombinatorially equivalenif they induce the same partitioning of.

We assume that the polygdhis connected, and nondegenerate in the sense that its
interior is connected.

Ifinstead of a polygon we take a setgpoints, we can ask how many combinatorially
distincthalving linesthere are, namely, instead of equating the area on the two sides of a
line we now wish to equate the cardinality of the subsets on either side of the line. This is
the well-knowrk-setproblem (fork = n/2) that has been extensively studied in discrete
geometry [8]. The best bounds known to date for this problem are the recently obtained
upper boundd(n*/3) [5] and a lower bound2 (nlogn) [10]. An obvious upper bound
on the number of distincarea bisectors of a polygon witim vertices isO(n?)—see
Section 2. In this paper we show that a polygon witvertices can have (n?) distinct
area bisectors. (Note that the polygon in our constructicmiple)

We devise an output-sensitive algorithm for computing an explicit representation
of all the area bisectors of a given polygon. In our analysis we give a more refined
distinction between area bisectors (than the distinction by the partitioning.ofve
order the area bisectors by slope in the range [2, 7/2), and partition the range into
maximal connected intervals with bisectors of the same combinatorial equivalence class.
We denote by = «(P) the number of such slope intervals for a polyg®rand by (n)
the maximum number of such slope intervals over all nondegenerate polygons with
vertices. We denote big = K (P) the number of combinatorially distinct area bisectors
of a polygonP, and byK (n) the maximum number of combinatorially distinct area
bisectors over all nondegenerate polygons witrertices. It is clear that(n) > K (n);
we show below that there are polygons for whighP) > K (P).

It is convenient to consider the problem at a dual setting as wellb”&etor curve
B is defined in a plane dual to the plane containing the polygadaathe union of points
dual to area bisectors. We show tlfats x-monotone in the dual plane (where the
coordinate corresponds to the slope of the bisector) and that it is a continuous piecewise
algebraic curve. Each maximal pideef 8 thatis defined by the same function describes
a contiguous (in slope) set of bisectors that cross the same set of edges of the [fylygon
the endpoints ob correspond to bisectors that contain a verte¥XPofand any bisector
described by an interior point bfdoes not contain any vertex Bf Hencex (P) denotes
the number of maximal algebraic piecesfofor a polygonP.

A c-oriented polygon is a polygon whose edges are all parallel to exadttgctions,
wherec is a fixed constant. For@oriented polygon witn vertices, our algorithm for
computing an explicit representation of the bisectors by determining the pieces of the
curve 8 runs in timeO((n + «) log? n). For a general nondegenerate polygon having
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n vertices the algorithm runs in tim@((n + «) log? n + (n + «)a(N) ¥ (t)). Here and
throughout the papet;(-) denotes the extremely slowly growing functional inverse of
Ackermann’s functionf denotes the maximum number of distinct slopes of edges of
P intersected by any line, andl(j) denotes the time required to find the roots of a
polynomial equation of degreje

Our algorithm proceeds by constructing tteneof the curveg in anarrangement
of linesin a plane dual to the plane of the polygon. An arrangemht) of a setL of
lines is the subdivision of the plane inducedlbinto vertices, edges, and faces [8]. The
zone of a curve in an arrangement of lines is the collection of faces of the arrangement
crossed by the curve [12]. In our case the equations defining the gutgpend on the
face of the arrangement théicrosses, that is, these equations change from face to face.
Hence, we could not use ready-made algorithms for computing the zghsinte the
algorithms we are aware of assume that the curve for which the zone is computed is
known in advance.

Area bisectors were considered bya@and O’Rourke [6], [7]. However, their focus
is on the continuous version of tim-sandwich cuproblem, and of a problem they
introduce oforthogonal four-sectionsee [6] and [7] for more details.

Our study is motivated by the development of novel, flexible feeding devices for parts
positioning and orienting (such as microelectromechanical systems and transversely
vibrating plates). The question of determining all the bisectors of polygonal parts arises
in connection with the development of efficient part positioning strategies when using
these devices (see Fig. 1). For more details see [1]-[4].

The rest of the paperis organized as follows. In Section 2 we present basic properties of
area bisectors that are later necessary for the development of the algorithm. In Section 3
we present a simple polygon with vertices that ha$2(n?) combinatorially distinct
area bisectors, and a simple polygémwith « (P) > K (P). The algorithmic results are
then presented in Section 4. In Section 5 we give concluding remarks and point to open
problems raised by our study.

2. Properties of Area Bisectors

Inthis section we show that all combinatorially equivalent bisectors of a fixed equivalence
class of any polygon can be described by a rational function. We develop explicit formulas
for bisectors for given polygon geometry and investigate their algebraic complexity—this
is summarized in Theorems 2 and 3 below.

We extend the definition afombinatorial equivalencésee the Introduction) to ar-
bitrary lines that partition a polygon. We define combinatorially equivalent partitioning
lines of a polygorP to be all those lines that induce the same vertex partitidmh, (1),

V N2, andV Nh (1). A necessary (but not sufficient) condition for combinatorial equiv-
alence is thak intersects the same ordered set of polygon edges.

Itis convenient to study the problem in a dual plane: aline 2xx — y in the primal
plane is transformed into the poi(k, ¥) in the dual plane. A pointx, y) in the primal
plane is transformed into the line= 2xX — y in the dual. The dual of an objectwill
be denoted by*. If O is a set of objects in the plan®* will denote the set of dual
objects. For details on duality transforms see, e.g., [14].
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Fig. 1. Positioning of parts in a two-dimensional force vector field. (a) bgaeeze fieldunit forces act
perpendicularly toward a central line (tbgueeze line The effective forces acting on the left and right portions

of the part are shown as arrows attached to the respective centers of area. (b) The part is in equilibrium if and
only if its bisector coincides with the squeeze line, and if the connector between the left and right centers of
area is perpendicular to the squeeze line. See www.ee.washington.edu/research/mems/Projects/Video for an
animated simulation.

In the following lemma we summarize basic facts on area bisectors of a polygon.
Lemmal. Given a polygon P with vertices, Wi ;= V|, and a lineA.

(i) There exist @n?) combinatorially distinct ways in which a line can partition P
(ii) Let A and B be the intersections of a bisectarith the boundary of the convex
hull of P. As the slope angle of grows from—7x/2to /2, A and B progress
monotonically counterclockwise on the boundary of the convex hull of P
(i) If the interior of P is connectedhen for every slop& there exists a unigque
bisectordr = A(X) of P.
Proof.

(i) This is a well-known fact. We prove it here to demonstrate how duality is
used in our arguments. The du&l of then polygon verticed/ form an arrangement of

n lines in the dual plane. Each point on a lintein the dual plane corresponds to a line
through the polygon vertexin the primal plane, and vice versa. Each point within a face
of the dual arrangement corresponds to a line in the primal plane that does not intersect
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any polygon vertices. Thus, all points within a particular face of the dual arrangement
correspond to combinatorially equivalent line placements. We also have to account for
equivalence classes where the bisecting lines contain one or more vertices of the polygon.
These correspond to edges and vertices of the dual arrangement respectively. Since an
arrangement oh lines hasO(n?) vertices, edges, and faces, there are at roust)
combinatorially distinct ways in which a line can partitién

(i) [6, Lemma 5.3.1] Assume we are given= A(X) with intersection point\ and
B, and we wish to find" = A/ (X + &), with intersection point#&\ andB’. If A’ andB’ lie
to the same side of, then it must be the case that one of the partitionB dietermined
by A lies strictly within one of the partitions determined by a contradiction since both
must be of equal area. Hence it must be the caseAhand B’ lie on opposite sides of
A and sincex’ > X, the progression must be counterclockwise.

(i) [6, Section 5.2] The existence and uniquenessa.©f) is guaranteed since the
area behind any sweep line Bfincreases strictly monotonically from zero to the area
of P. O

Now consider a bisectok of polygon P for varying X values, as described in
Lemma 1(ii). The intersections afwith the boundary of the convex hull &, AandB,
progress monotonically about that boundary. In general, this progression corresponds to
a simultaneous rotation and translatior.of

Our goal is to obtain a precise mathematical relationship between bisectorgloge
intercepty. To this end, we first analyze the effects of rotation and translation separately.
To simplify the analysis, we choose a parametrization of the partitioning.liferent
from X andy. The linex is given by a fixed poins on A and a vectomp that specifies its
direction (see Figs. 2 and 3).

The results of this analysis are given in Theorems 2 and 3 below. Note that during
pure rotation or pure translation, in general the bisector property is not maintained. By
imposing the bisector conditio® N h;(1)] = |P N h;(1)| we obtain the relationship
between rotation and translationafThis is addressed in Theorem 3.

Theorem 2. Let P be a polygon with n verticdset s be a pointifR?, let p be a vector
in R?, and letx be a line through s in direction p that intersects r edges of P withrt
distinct slopes

(i) LetA’ be a line through s in direction’pwhere p = p + «q for some fixed
vector g and some parametere R. If A’ is combinatorially equivalent ta.,
then the area of B h;(1') is given by a rational function &) of numerator
and denominator degree ©. In particular, the combinatorially equivalent area
bisectors of P passing through s are determined by the roots of a polynomial
equation of degree t

(i) Let)” be a line parallel tor” with distancex’ to A’. If 1" is combinatorially
equivalent taV, then the area of P h;(1”) is given by a quadratic polynomial
b (a').

1 The transformation t& and ¥ is straightforward: givers = (s, sy) andp = (px, py), we getx =
Py/2px andy = pySx/px — Sy-



274 K.-F. Bdhringer, B. R. Donald, and D. Halperin

Fig. 2. Two nonparallel lines. and’ in combinatorially equivalent intersection with polygén

Note that the rational functioress andb, express the changing area®in h, (1) for
pure rotation and pure translationxfrespectively. I, is a bisector, this area needs to
remain constant, which results in a coupling between the rotational parawesterthe
translational parametet. This relationship is characterized in the following theorem:

Theorem 3. LetA be a bisector of Pand consider the combinatorially equivalent line
A" parametrized by, o’ € R as described in Theoretabove There exists a function
f (o, ) such thath” is a bisector of P iff {«, @’) = 0. f is a polynomial of degree t
in « and a quadratic polynomial i’, where t < r is the number of distinct slopes of
the r polygon edges intersected band”.

Proof (Theorems 2 and 3). Consider a Ilneand a poins that lies onk (Fig. 2). The
direction of A is given by a vectomp. Assume for now that the ling intersects two
edges; ande; of the polygonP in pointsp; and p,. Also assume that these edges have
direction vectorg); anddp.

We use the following notation throughout this proof. For two vectars= (X1, Y1)
andv, = (X2, Y2), V1 X Vo denotes the signed real whose value; i — y1%,. This value
constitutes the area of the parallelogram defined,mndv,.

Rotating the Bisector Consider another ling with directionp’ thatintersects ins (2’
can be understood as a rotatiori@rounds). Assume that and)” have combinatorially
equivalent intersections with polygd®, and that.’ intersects the polygon edgesand
e in p; andp, respectively. We writgy = s+o; pandp = s+ p’. Then the polygon
areaa betweem. anda’ is

a = 3(05p x 02— 01 x 01P)
= 3(0502 — 0101 (P' X P).
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In the general case whekeand )’ intersect multiple edges with directiogs of some
arbitrary polygorP at pointspy, po, ..., prandpy, p5, ..., p; (r even), we can compute
the polygon area between. and)’ as a sum of signed areas of triangdgsp; :

a= %;H)‘wi
= 30 x P) Y _(-D'cloi.
i=1

Without loss of generality assunge # 0. Thenp’ can be written ap’ = p + aq; for
somex € R, and the above equation becomes

a = 3(p+ag) x p) Y _(-D'ca
= 5 P Y Dele (1)

From the two vector equatiorns = s+ o p’ andp’ = s+ o p + 10, 4 € R, we can
determinep; as

r_ 0i (g x p)

@ xp +a@ xg)
Note that the denominator in (2) can be writtemjas (p+«0,) = g x p’ # 0 sinceq;
cannot be parallel tp’ as long as the intersectioms lie in the same equivalence class.

If we also choose the edge direction vectgrsuch that(g; x p) = 1, then (2) and (1)
simplify respectively to the following rational functionsdn

2

o Qi
@ = L+ a( xar)’ ®)
ale) = _Z(_ Y ira@ > 1+a(q| X G’ @

We look at the denominatal («) = 1+ «(g x @) in more detail. This is important
because we shall see that in the formulas that we obtain, the denominators consist only
of di (@)’s. For an arbitrary polygort; is a linear function o&. If all g; are parallel, then
d =1

Equation (4) can be used to find a bisectoiPofhat passes through a given paint
Giveng; andg; (i = 1---r),ais chosen such thgP Nh (1) = [P Nh (1) = 3|P|.
Then (4) can be transformed into a polynomiakiof degreer . More specifically, the
degree of the polynomial is equal to the numberof distinct slopes of polygon edges
that the bisector crosses, which in the worst cage @ndc for a c-oriented polygon.
This result was summarized in Theorem 2(i).

Translating the Bisector We now consider the case whereshifts parallel (Fig. 3)
and show that the change in polygon altes a quadratic function of the translation
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Fig. 3. Two parallel lines\” andA” in combinatorially equivalent intersection with polygén

parametery’. Intuitively, as long as the lingé’(«') remains in the same combinatorial
class, the total length of the intersectiBm A'(«’) is a linear function of’. Using an
integral argument, it follows that the change in aloé&) is a quadratic function af’.

We now derive the exact formula fd«’). Analogously to the rotation case, let
B =5 +o/p andp’ =s"+ o' p’. Alsos ands” are chosen such th&t — s' = &/qp.
Then the polygon area betweghandl” is

b = o'dz x (P, + P3) — (P + PY))

o
= E(Q’ﬁ@’z’ — 01— o)) (@ x (p + ady))

a I " / 1
= 5(92"‘92 — 01— 01)- )

Note that the edge direction vectags were chosen such that x p = 1. In the
general case’ andA” intersect multiple edges of some arbitrary polyg®rat points
P1. Py, ..., Py andpyf, p5, ..., p;. We choose&’ ands” such thas” — s' = «’q,. Now
the ¢’ can be determined from the two vector equatigfis= p/ + ug, 1 € R, and

pi// — S// + QI// p/

” ’ ,di X O
I e Y
g xp
— Q-/—Ol/ g X Qg
' 1+ (g x o)
_ o L ACTRE (6)

14+ a(G x0g)
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Then the polygon area betweghandl” is

Ol/ . i / "
b = 52—1) (o + o)

o ¢ i 201 — o/ (G X OF)
5;(_1) T+a(g xo) @)

This is a quadratic polynomial i’ (unless ally; are parallel, in which case it simplifies
to the linear equatiobh = «’ Z{zl(—l)‘ oi ). Equation (7) can be used to find a bisector
of P with a given directionp, i.e., with a given slope. This result was summarized in
Theorem 2(ii).

Maintaining the Bisector Property From the analysis so far we see that if the bisector
A is rotated ta\/, then the left and right areas are changed by a val{s¢ O in general)
as described in (4). Hence a subsequent shift' @ necessary to restore the bisector
property, by changing the areas by a vatyas described in (7).

This implies the conditioa + b = 0, with a andb given by (4) and (7):

- i @0f + 2001 — (@)*(@ x &)
_ 1 _1|OCQ| + 0i i r
ath 2;( ) 1+a(@ x o)

= 0. (8)

This equation ensures thats a bisector oP. Equation (8) describes+ b as a rational
function ine, and a quadratic polynomial &l. Hence for all combinatorially equivalent
bisectors, we can obtain an explicit formula to descsites a function od. We conclude
that all combinatorially equivalent bisectors can be represented by an explicit expression
parametrized bw.

In general, (8) is equivalent to a polynomialdnanda’ whose degree depends on
the numbett < r of distinct slopes of polygon edges intersected by the biseators
A’, or A, provided that thed; («)’s are all nonzero; see the remark above. The poly-
nomial is at most quadratic iw’. In the case that alyj are parallel, (8) simplifies to
the linear equatior) {_;(—1)' («(0i/2) + ') i = 0. This result was summarized in
Theorem 3. O

With Theorem 3 we obtain a parametric description for every set of combinatorially
equivalent bisectors oP: Given a polygon, we can generate (8) for any particular
equivalence class, which yields the polynomial equafiél, «') = 0. Solving f for o/,
we finally obtainx andy parametrized by.

While Theorem 3 gives an algebraic characterization of the area bisectors, in subse-
guent sections we only use an intermediate result, summarized in Theorem 2(i), describ-
ing the area bisectors through a given point in the plane. In this case we have a univariate
(in @) polynomial equation. We use this equation in the time analysis of the algorithm
in Section 4, and for a combinatorial upper bound«oim Section 5. In the following
section on lower bounds we show that there exist polyddifar which « (P) is strictly
greater tharkK (P).
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Fig. 4. A simple polygon withn vertices that ha& (n?) combinatorially distinct bisectors.

3. Lower Bounds

As argued above, a polygon withvertices can have at mo§(n?) combinatorially
distinct area bisectors. Here we give an example where the g is attained.

Theorem 4. There exist simple polygons P with n vertices &n@?) combinatorially
distinct bisectors

Proof. Consider Fig. 4. All the vertices, v/, u;, andu; lie on a circle whose center is
atc. The verticesw; lie very close tac on a small circle whose centerdsas well, along
two convex polygonal chains.

We fix an integem (that we determine later; for the polygon in the figune= 3).
The distance between the verticgsand v, is the same for = 1,..., m, and it is
the same as the distance betwegandv , fori =1, ..., m. The area of all triangles
viuivipgfori =1,..., misthe same and is equal to the area of all triangles; , , for
i =1,...,m. There are & verticesw; nearc and they are equally spaced on a small
circle centered at. As can be easily verified, for every pair of vertiagsandv;, there
is a bisector passing through these points that passes also through the centeMdeint
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next claim that as we rotate the bisector fronto v; 1 it will move off the centerc and
sweepm verticesw;.

The reason that the bisector will move off center as it rotates frota vj; is that
the angleZu;vivi 11 is greater than the angléu; v/v/ ;. Hence, as the bisector rotates, it
will proceed “faster” on the bottom part of our polygon than on the top part and therefore
will sweep half of the vertices); on its way.

Finally, m is chosen such that (roughlg)= 6m + 8. It follows that the number of

distinct area bisectors @(m?) = Q(n?). O

Recall from the Introduction that for a polygd®, K (P) is the number of combi-
natorially distinct bisectors oP, and« (P) is the number of maximal bisector slope
intervals such that within each interval the bisectors are combinatorially equivalent. We
conclude this section by showing a polygBrfor which K (P) andx (P) are not equal.

This example is due to Lovett.

Theorem 5. There exist simple polygons P such théP) > K (P).

Proof. We show that for a given polygon with vertices and two combinatorially
equivalent area bisectokg and,, as we vary the slope between the slopé.paind
A2 the corresponding area bisectors exit and enter the equivalence claséofli ;)
Q(n) times.

Letabcbe atriangle. It is easily verified that a median in a triangle is an area bisector
of the triangle. We denote the median incidenttay A1, and the median incident &
by A,. Consider the family= of all the area bisectors obtained when we vary the slope
between the slopes af anda.,, in the interval where all area bisectors intersect the edges
ab andbc. We take the upper envelope of the linesFipwhich is a convex curvé .3
See Fig. 5 for anillustration. For a givenwe take a se® of | (n— 1)/3] evenly spaced
points alonge, and draw the tangent line t at each of these points. Each tangent line
is an area bisector. Consider two consecutive points and their tangents: In between the
points, slightly below the envelope and above the two tangent lines we draw the apex of
a thin spike extending from the edge of the triangle. We carve this spike out of the
triangle. We repeat this process for each pair of consecutive poiQsidh, c}. Finally
we pull the edgec outward so that the area of the polygon abayéwhich is half the
area of the original triangle) will be equal to the area belqywcompensating for the
area of the spikes.

All the tangent lines induced by the 9gtare area bisectors of the same equivalence
class—they have the single vertexon one side of the bisector. Evidently as we let the
slope vary, every time we cross a spike the equivalence class changes. Hence we obtained
a polygon withn vertices and an equivalence class of area bisectors that is entered and
exitedQ2(n) times as we let the slope vary. O

2'S. Lovett, personal communication, Tel Aviv University, 1997.
3 For example, if we choose the coordinatesT&f vertices to be = (0, 1), b = (0, 0), andc = (2, 0),
thenE is the hyperbolaf (x) = 1/4x.
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b | K

Fig. 5. A simple polygon withn vertices for whichk > K: by continuously changing the slope bf a
particular equivalence class of bisectors is entered and eRitagtimes.

4. Output-Sensitive Algorithm

Let P be a polygon wittn vertices as defined in the Introduction, namely, connected,
nondegenerate, and possibly with holes. Throughout this section we assume that no three
vertices of P are collinear (see also the remark at the end of the section). In the dual
plane every vertex of P is transformed into a line* which is the collection of all
points dual to lines in the primal plane that pass through

For any given direction there is a unique area bisector. We denote the oriented bisector
of P that makes an angtewith the positivex-axis byB(9), and (because of symmetry)
confine ourselves to the range# /2, 7 /2) for 6. We denote the collection of points dual
to area bisectors d? in that range bys. Note that any (besides—x/2) corresponds
to anx-coordinate in the dual plane.

The curveg is a piecewise algebraic andmonotone curve (see Theorem 3 and
Lemma 1(iii)). We callg thebisector curveof P, as it gives a complete specification of
all the area bisectors of the polygéh The numbek as defined in the Introduction cor-
responds to the number of maximal connected algebraic piegesihere the function
describing each piece is defined by the fixed set of edges that the corresponding set of
bisectors cross. In this section we describe an output-sensitive algorithm to cgtnpute

Since we aim for output-sensitivity, we cannot afford to compute the entire arrange-
ment.A(V*) whose complexity can b (n?). We will discover the maximal pieces of
B in their order along by dynamically exploring the faces of the arrangement through
which 8 passes, and by computing the intersection poingwith the edges bounding
these faces.



On the Area Bisectors of a Polygon 281

exit point

(b)

Fig. 6. (a) The facef containingp is the intersection of half-planes containipg(b) the maximal pieces of
B inside f and its exit points fromf .

We choose an arbitrary directiop € [—r/2, 7/2) and look for the area bisector of
P in that direction. This can be done @D(nlogn) time for an arbitrary polygon [7],
and inO(n) time for a simple polygon [16]. We assume that the biseBi®@p) does not
pass through a vertex &f, otherwise we chang® slightly so thatB(6p) does not pass
through a vertex.

Next, we obtain the set of edges crossedBgy) in O(n) time (this could also be
obtained as a by-product of the algorithm for findi&fo)). We denote by () the set
of edges crossed y(0). The setE (6y) determines the function describing the bisector
curve g in a neighborhood ofy. More precisely, the sdf (6p) induces a function that
describes the bisectors as long as the set of edges crossed by the bisector does not change
(see Section 2). In the dual plane this function describes the guaglong as we do
not leave the face afl(V*) which contains the poinp := (B(6p))*.

Our next step is to construct the fae= f (p) that contains the poirp in A(V*).
We do a little more than just exploring the fade in preparation for the rest of the
algorithm. For each line;" € V*, let h; (f) denote the half-plane bounded by and
containing the facd . Let H = H () denote the collection af half-planed; (). The
face f equals the intersection of all half-planedHr f); see Fig. 6 for aniillustration. We
explore the faces of the zone®fn the arrangemend (V*) by dynamically maintaining
the intersection of half-plandd [15]. We denote the necessary dynamic data structure
by D. The time to construct the facdeand prepard® is O(nlog?n) [15].

Now we determine the maximal piecesgsh f . We split the edges boundirfginto an
upper chain and a lower chain, each set being ordered from left to right. For each edge on
the upper chain we compute the intersection of its supporting linegvi@omputing the
intersection of8 with the linev* supporting an edge is equivalent to finding the bisectors
that pass through the vertexand intersect a fixed set of edges®f Hence we can
use (4) (see also Theorem 2(i)). The roots of the polynomial determine the intersection
points; we may have to filter out roots that correspond to bisectors with slope outside
the given slope interval. We order the resulting intersections alongthés. We repeat
the same for the edges of the lower chain, and merge the two lists of intersection points
into a single listl . Since the curve is X-monotone, the list provides a description of
the curveg inside f. Moreover, the list indicates what are the neighboring faces that
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B crosses. We mark each of these additional faces by the point whenesses out of
f. We call each such point axit point See Fig. 6(b).

Since f has already been constructed, we know for each exit poiitthé line that
contains it (in fact we know a little more, we also know the two lines that bound the edge
from which g exits). We next explore one of the faces, ddyinto which the curves
crosses out of through an edge that we denotedyLet v* be the line containing the
edgee. In terms of intersection of half-planes, to obtdirthe only half-plane that needs
to be modified is the half-plane supportedify More specifically to obtain the new set
H(f"), we deleteh; (f) from H and addh; (f’) which is the half-plane supported by
on the other side of;". (Some caution is neededgfcrosses out of through a vertex.
However, since only two lines intersect at that vertex, the operations are similar to those
described for the case of crossing out of an edge, and their asymptotic running time is
the same.)

Thus we need to delete a half-plane frdnand insert a half-plane int®. As a
result we obtain the new fack. The cost of the operation 8(log? n + C(f’)), where
C(f’) is the number of edges on the boundaryfof The insertion and deletion each
costsO(log? n), and the cost of reporting the edges on the boundary of the new face
f’ is proportional to the number of these edges [15]. We keep a data structure, say a
guad-edge structure [11], that describes all the face4(®f*) that have already been
constructed so that we do not construct the same face twice. The cost of updating the
guad-edge structure with the new face is proportion& ¢é’).

We continue exploring the faces through whigpasses by moving monotonically in
the positivex-direction. When the move in that direction has been completed, namely,
there are no more exit points to the right of the last exit point handled, we return to the
starting pointp and repeat the process in the negativdirection. The algorithm stops
when we have identified all the intersection pointgafith lines inV*, and so we have
also identified theoneof g in A(V*), namely, all the faces ofl(V*) crossed bys.

Recall thatc is the sum, over all faces in the zone of8 in A(V*), of the number
of maximal connected componermtsn f. The overall running time of the algorithm
consists of the following components:

1. The initial construction of the structuf takesO(n log? n).

2. For each exit point we pa®(log? n) to updateD, for a total of O (x log? n).

3. For each newly visited fack we also payO(C(f)) to report its bounding edges
and keep them in the quad-edge structure.

4. For each edge on each explored face we compute its intersectiof.with

To estimate the cost of components 3 and 4, we need a bound on the 8¢ afver
all facesf of the zone ofg in the arrangement(V*). The following lemma bounds
the complexity of the zone of an arbitrary curve in an arrangement of lines. We make no
assumptions on the curve besides that it consists of a single connected component.

Lemma 6. Given a collectionC of n lines in the plane and a connected cugvéhat
intersects the lines af in N points in totaJ then the complexity of the zoneyoin A(L)
is O((n + N)a(n)).

Proof. We modify the arrangement4$(L) as follows (by an idea borrowed from [9]).
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Wherevery crosses aliné € £, we make a small gap if splitting¢ into two segments
such thaty passes between them. As a result we get a colle&iohn + N segments,
andy liesin a single face of the arrangemeftS). Since the complexity of a single face
in an arrangement dfsegments i© (ta(t)) a bound ofO((n + N)a(n + N)) follows.
Har-Peled [13] showed that if all the segments lie on anlines, then the complexity
of a single face i©O((n + N)«(n)). |

Since the number of intersection points betwgeandV* is k — 1 we have the
following immediate corollary.

Corollary 7. The maximum combinatorial complexity of the zong af A(V*) is
O((n + k)a(n)).

Thus component 3 of the running time @&((n + «)«(n)) which is subsumed by
components 1 and 2. It remains to bound component 4, namely, the time to compute all
the intersection points ¢f with the edges of the zone @f Lett denote the maximum
number of distinct slopes of edges®intersected by a single line. Also, it j) denote
the time to find the roots of a polynomial equation of degre@symptotically, the term
¥ (]) subsumes the time to construct the polynomial.) For general polygons (of the type
defined in the Introduction) the time to compute all the intersection poimsiath V*
is obviously bounded b@ ((n + x)a () (1)).

If P isc-oriented, then by Theorem 2(i) the equation describing the bisectors through
a given vertex and intersecting a fixed set of edges is a polynomial of constant maximum
degree and it takes constant time to find its roots. It follows that, in this case, the time
to compute the intersections gfwith the linesV* is asymptotically dominated by the
time to compute the zone gfin A(V*).

We summarize the discussion above in the following theorem.

Theorem 8. Given a nondegenerate polygon(possibly with holeswith n vertices
we can find a complete specification of its bisectors in timénG- «) log’n + (n +
©)a(N)y (1)), wherek is the number of maximal connected algebraic pieces of the
bisector curves. If P is c-orientedthen the algorithm runs in time @n + «) log? n).

Remark. We assumed above that no three vertices of the polyane collinear. If

we relax this assumption the following situation may arise. As we explore the zghe of
in the arrangemenf crosses out of a facé through a vertexi at whichn, > 2 lines

are incident. We could reach the face into whglerosses out off by O(n,) update
operations to the structuie. However, the overall cost of operations at such degenerate
crossings is no longer as sharply related @s in the bounds above.

5. Conclusions and Open Problems
In this paper we have characterized the family of area bisectors of a polygon. We have

shown that a polygon with vertices can hav® (n?) combinatorially distinct area bisec-
tors, namelyP (n?) equivalence classes of bisectors, where two bisectors are equivalent
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if the lines containing them split the set of polygon vertices in the same fashion. We have
also presented an output-sensitive algorithm that produces an explicit representation of
all bisectors of a polygo®.

Our algorithm produces the bisector families ordered by slope. We have shown at the
end of Section 3 that there exist polygons for which, as we vary the slope of the bisector,
the same equivalence class can be entered and €xitedimes. This raises the following
problem: How many equivalence classes of bisectors can be encountered when we let
the slope of the bisector vary in the rangen]/2, 7/2)? In the paper’s notation the
question is to obtain a bound on the vaku@). The lower bound? (n?) for K (n) shown
in Section 3 applies here as well. The best upper bound we can show at the moment
is O(n®) derived by the following argument, using the dual arrangement formulation.
Consider one edgeof the arrangementl(V*). The bisectors whose dual points lie on
eare determined by the roots of a polynomial of degree at m¢sguation (4)), so their
number is at mosh, thus the bisector curve cannot cross an edge of the arrangement
more tham times. Since the arrangement l@&?) edges, the cubic bound follows. In
summary there is a gap of an order of magnitude between the lower bound and upper
bound ork (n) and the problem is to tighten this gap.

Another open problem is raised by the motivating application. As explained in the
Introduction, area bisectors correspond to force equilibria of polygonal parts put on
certain part-orienting devices. We are in fact interestetbfal equilibria which are
simultaneously force anthomentequilibria of polygonal parts. A line. crossing a
polygon P induces total equilibrium if (i) is an area bisector d?, and (ii) the line
connecting the center of mass (areajof h; (1) with the center of area d? N h; (1)
is perpendicular to..* The problems we propose are to bound the number of total
equilibria of a polygon, and to compute them efficiently. For the combinatorial problem
we have only trivial bounds: a lower boursd(n) for a regularn-gon and an upper
boundO(n?) which is obtained in a way similar to the upper boundon), namely,
for every equivalence class of area bisectors, the total equilibria are defined by the
roots of a polynomial of degree at mast wheren is the number of vertices of the
polygon. As for an algorithm, our way to obtain total equilibria is first to find all the
distinct bisectors and then solve the problem for each class of bisectors. Could the stage
of computing all bisectors be avoided when computing total equilibria? For example,
for a sufficiently largen, the part in Fig. 4 (Section 3) has only one stable (and one
unstable) total equilibrium, even though there egigh?) distinct area bisectofsThis
equilibrium is attained when the connecting bar between the outer circle segments and
the inner circle is parallel to the squeeze line, and for the unstable equilibrium, the
squeeze line is perpendicular. In both cases the squeeze line passes through the center
pointc. For more details on total equilibria and the motivating application, see [3].

4 The locations of the centers of area can be computed by an analysis similar to the derivatiartios
proof of Theorem 2.

5 Small disturbances from stableequilibrium cause the part to return to this equilibrium. Slight distur-
bances in amnstableequilibrium are sufficient to move the part further away from equilibrium.
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