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Abstract

Programmable force vector fields can be used to control a variety of
flexible planar parts feeders such as massively paralle microactua-
torarrays or transversely vibrating (macroscopic) p htes. These new
automation designs promise great flexibility, speed, and dexterity—
we believe they may be employed to position, on’ent, singulate, sort,
feed, and assemble parts. However, since they have only recently
been invented, programming and controlling them for manipulation
tasks is challenging. When a part is placed on our devices, the pro-
grammed vector field induces a force and moment upon it. Over
time, the part may come to rest in a dynamic equilibrium state. By
chaining sequences of force fields, the equilibrium states of a part
in the field may be cascaded to obtain a desired final state. The
resulting strategies require no sensing, and enjoy efficient planning
algorithms.

This paper begins by describing new experimental devices that
can implement program m ab # forcefields. In particular, we describe
our progress in building the M-CHIP (Manipulation CHIP), a mas-
sively parallel array of programmable micromotion pixels. Both
the M-CHIP and other microarray devices, as well as macroscopic
devices such as transversely vibrating plates, may be programmed
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with vector fields, and their behaviorpredicted and controlled using
our equilibrium analysis. We demonstrate lower bounds (i.e,, im-
possibility results) on what the devices cannot do, and results on a
classification of control strategies yielding design criteria by which
well-behavedmanipulation strategies may be developed. We provide
sufficient conditions for programmable fields to induce well-behaved
equilibria on every part placed on our devices. We define compo-
sition operators to build complex strategies from simple ones, and
show the resu Bingfields are also well behaved. We discuss whether
fields outside this class can be useful and free of pathology.

Using these tools, we describe new manipulation algorithms. In
particular, we improve existing planning algorithms by a quadratic
factor and the plan length by a linear factor Using our new and
improved strategies, we show how to simultaneously orient and pose
any part, without sensing, from an arbitrary initial configuration. We
relax earlier dynamic and mechanical assumptions to obtain more
robust and flexible strategies.

Finally, we consider parts feeders that can only implement a very
limited “vocabulary” of vector fie Bs (as opposed to the pixel-wise
programmability assumed above). We show how to plan and ex-
ecute parts posing and orienting strategies for these devices, but
with a significant increase in planning complexity and some sacri-
ficein completeness guarantees. We discuss the trade-off between
mechanical complexity and planning complexity.
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Fig. 1. Sensorless sorting using force vector fields: parts of
different sizes are first centered, then subsequently separated,
depending on their size.

1. Introduction

Programmable force fields offer a fundamentally new ap-
proach to automated parts manipulation. Instead of handling
a part directly (e.g., with a robot gripper), a force field sur-
rounding the part causes it to move. Programmable force
fields promise great flexibility, speed, and dexterity for a wide
variety of tasks such as parts orienting, positioning, singulat-
ing, sorting, feeding, and assembly. Recently, severa de-
vices have been invented that can implement programmable
force fields: in particular, actuator arrays fabricated with Mi-
cro Electro Mechanical System (MEMS) technology, as well
as macroscopic vibrating plates. These new automation de-
signs permit distributed, parallel, nonprehensile, sensorless
manipulation tasks that make them particularly attractive for
handling batch microfabricated parts, whose small dimen-
sions and large numbers would prohibit conventional pick-
and-place operations.

A wealth of geometric and agorithmic problems arise in
the control and programming of manipulation systems with
many independent actuators. The theory of programmable
force fields represents the first systematic, computational at-
tack on massively parallel distributed manipulation based on
geometric and physical reasoning. The goal of this paper isto
develop a science base for manipulation using programmable
force fields, and to demonstrate experiments with prototype
devices that support this theory. We present combinatorially
precise planning algorithms that synthesize strategies for con-
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trolling and coordinating a very large number of distributed
actuators in a principled, task-level fashion.

When a part is placed on such a device, the programmed
vector field induces a force and moment upon it. Over time,
the part may come to rest in a dynamic equilibrium state.
In principle, we have tremendous flexibility in choosing the
vector field, since using, e.g., MEMS array technologies, the
force field may be programmed pixel-wise. Hence, we have a
lot of control over the resulting equilibrium states. By chain-
ing sequences of vector fields, the equilibria may be cascaded
to obtain a desired final state-for example, this state may
represent a unique orientation or pose of the part. A system
with such a behavior exhibits the feding property (Akella et
a. 1995):

A system has the feeding property over a set of parts £ and
aset of initial configurations I if, given any part P £, there
is some output configuration q such that the system can move
Pto q from any location in I.

Our work on programmable vector fieldsis related to non-
prehensile manipulation (Donald, Jennings, and Rus 1995;
Zumel and Erdmann 1996; Erdmann and Mason 1996; Erd-
mann 1996): in both cases, parts are manipulated without form
or force closure.

This paper describes our experimental devices, a technique
for analyzing them called equi Bbrium analsis, lower bounds
(i.e., impossibility results) on what the devices cannot do, and
results of a classification of control strategies yielding design
criteria for useful manipulation strategies. Then we describe
new manipulation algorithms using these tools. In particular,
we improve earlier planning algorithms by a quadratic factor,
show how to simultaneously orient and pose a part, and relax
dynamic and mechanical assumptions to obtain more robust
and flexible strategies.

One corollary of our results is a method for coordinat-
ing the actions of a large distributed actuation system. Such
systems comprise arrays with up to tens of thousands of in-
dependently servoable actuator cells, which we call m otion
pixe B. We show how these systems can be programmed in a
fine-grained, SIMD (single instruction multiple data) fashion
to exert force fields on the manipulated object, thereby accom-
plishing massively parallel distributed manipulation. More-
over, the theory of programmable force fields gives a method
for controlling a large number of distributed actuators in a
principled, geometric, task-level fashion. Whereas many con-
trol theories for multiple independent actuators break down
as the number of actuators becomes large, our systems should
only become more robust as the actuators become denser and
more numerous.

The theory developed in this paper is applicable to any con-
trollable array capable of generating force vector fields, and it
is independent of the specific device hardware. We have tested
it thoroughly in collaboration with J. Suh and G. Kovacs on a
MEMS actuator array developed at Stanford (Bohringer et al.
1997c¢). This microcilia device consists of a 16 x 16 array of
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motion pixels, which covers an area of about 2 cm x 2 cm.
Each pixel consists of four thermobimorph actuators. Actu-
ators in each direction can be controlled independently by a
graphical user interface on a personal computer. Bohringer
and coworkers (1997b) reported on experiments in sensorless
manipulation with the microcilia device. Small chips were
placed at arbitrary initial positions on the array and were trans-
lated, rotated, centered, and aligned by the array without sen-
sor feedback. These experiments constitute strong evidence
in support of our theory of sensorless manipulation.

In this paper, we focus on the theoretical foundations of
manipulation with programmable force fields. We pose the
question, Which force fields are suitable for manipulation
strategies? In particular, we ask whether the fields may be
classified. That is, can we characterize all those force fields
in which every part has stable equilibria? While this question
has been well studied for a point mass in a field, the issue
is more subtle when lifted to a body with finite area, due to
the moment covector. To answer, we first demonstrate im-
possibility results, in the form of “lower bounds’: there exist
perfectly plausible fields that induce no stable equilibrium in
simple parts.

Fortunately, there is also good news. We present condi-
tions for fields to induce well-behaved equilibria, by exploit-
ing the theory of potential fields. While potentia fields have
been widely used in robot control (Khatib 1986; Koditschek
and Rimon 1988; Rimon and Koditschek 1992; Reif and Wang
1995), microactuator arrays present us with the ability to ex-
plicitly program the applied force at every point in a vector
field. Whereas previous work has developed control strategies
with artificial potentia fields, our fields are nonartificia (i.e.,
physical). Artificial potentia fields require a tight feedback
loop, in which at each clock tick, the robot senses its state
and looks up a control (i.e., a vector) using a state-indexed
navigation function (i.e., a vector field). In contrast, physi-
cal potentia fields employ no sensing, and the motion of the
manipulated object evolves in an open-loop manner (for ex-
ample, like a particle in a gravity field). This alone makes our
application of potential-field theory to microdevices unique
and novel. Moreover, such fields can be composed using
addition, seguential composition, “parallel” composition by
superposition of controls, or by a new kind of “ morphing” of
control signals, which we will define.

Previous results on array manipulation strategies may be
formalized using equilibrium analysis. Bohringer and col-
leagues proposed a family of control strategies called squeeze
patterns,and a planning algorithm for parts orientation. This
first result proved an 0 (n%) upper bound on the number E of
orientation equilibria of a nonpathological (see Section 3.2)
planar part with n vertices. This yields an O(E?)=0(n*)
planning algorithm to uniquely orient a part, under certain
geometric, dynamic, and mechanical assumptions. In this pa-
per, we argue that this bound on equilibria appears tight. This
results in a high planning and execution complexity.
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Using our equilibrium analysis, we introduce radial fields,
which satisfy our stability property. Radial fields can then
be combined with squeeze fields. We show this has several
benefits:

1. the number of equilibria drops to E =0 (n);

2. the planning complexity drops to 0 ( E2) = 0 (n2);

3. throughout the strategy execution, every part rotates
about one fixed, unique point (after the first step); and

4. this means that we can dispense with one critical as-
sumption (called 2Phase by Bohringer and coworkers
(19944a)): we no longer need to assume that the trans-
lational and rotational motions induced by the array
interact in a“quasi-static” and “sequential” manner.

We motivate our results by beginning with a description
of the experimental devices we are interested in program-
ming. In particular, we describe our progress in building the
M-CHip (Manipulation CHIP), a massively parallel array of
programmable micromotion pixels. As proof of the concept,
we demonstrate a prototype M-CHip containing up to 15,000
silicon actuators in 1 in.2. Our strategies are also applicable
to macroscopic partsfeeders. We describe a planar, vibratory
orienting and manipulation device that also uses our novel
strategies.

Both of these devices portend several key practical is
sues. First, the strategies employed by our improved algo-
rithms and analysis require significant mechanical and control
complexity-even though they require no sensing. While we
believe such mechanisms are feasible to build using the silicon
MEMS technologies we advocate, it is undeniable that no such
device exists yet (the M-CHips has pixel-wise programmabil-
ity, but the first generation does not have sufficient directional
resolution to implement highly accurate radial strategies). For
this reason, we introduce and analyze strategies composed of
field sequences that we know are implementable using current
(microscopic or macroscopic) technology. Each strategy is a
sequence of pairs of squeezes satisfying certain “orthogonal-
ity” properties. Under these assumptions, we can ensure:

1. equilibrium stability,

2. relaxed mechanica and dynamical assumptions (the
same as point 4, above), and

3. complexity and completeness guarantees.

The framework is quite general, and applies to any set
of primitive operations satisfying certain “ finite equilibrium”
properties (which we define)-hence it has broad applicability
to a wide range of devices. In particular, we view the restricted
class of fields as a wocabu kry and its rules of composition as a
gram m ar,resulting in a language of manipulation strategies.
Using our grammar, the resulting strategies are guaranteed to
be well-behaved.

Finaly, both our radial strategies and our finite manip-
ulation grammar have the following advantage over previ-
ous manipulation algorithms for programmable vector fields:
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previous algorithms such as those described by Bohringer
and colleagues (1994a, 1996a) guarantee to uniquely orient a
part, but the translational position of the part is unknown at
the strategy’s termination. Both of our new agorithms guar-
antee to position the part uniquely (up to part symmetry) in
trandlation as well as orientation space. Like the algorithms
in Bohringer’s work (1994a,1996a), the new algorithms re-
quire no sensing, and work from any initial configuration to
uniquely pose the part. In particular, the initial configuration
is never known to the (sensorless) execution system, which
functions in an open-loop manner.

The complexity and completeness guarantees we obtain
for manipulation grammars are considerably weaker than for
the ideal radia strategies. For radia strategies, we show that
any nonpathological planar part with finite area contact can
be placed in a unique pose in 0 (E) = 0 (n) steps. Under the
simplified manipulation grammar, our planner is guaranteed
to find a strategy if one exists (if one does not exist, the plan-
ner will signal this). However, it is not known whether there
exists a strategy for every part. This lack of completeness
of manipulation grammar strategies stands in contrast to the
complete general squeeze and radial agorithms for which a
guaranteed strategy exists for all parts. Moreover, the plan-
ning algorithm is worst-case exponential instead of merely
quadratic.

Finaly, the desire to implement complicated fields raises
the question of control uncertainty. We close by describing
how families of potential functions can be used to represent
control uncertainty and analyzed for their impact on equilib-
ria, and we give an outlook on still-open problems and future
work.

2. Experimental Apparatus: Parts Feeders

It is often extremely costly to maintain part order throughout
the manufacture cycle. For example, instead of keeping parts
in pallets, they are often delivered in bags or boxes, whence
they must be picked out and sorted. A parts feeder is amachine
that orients such parts before they are fed to an assembly
station. Currently, the design of parts feeders is a black art
that is responsible for up to 30% of the cost and 50% of work-
cell failures (Nevins and Whitney 1978; Boothroyd, Poli, and
Murch 1982; Farnum and Davis 1986; Schroer 1987; Singer
and Seering 1987). “The real problem is not part transfer
but part orientation,” according to Frank Riley of the Bodine
Corporation (Riley 1983, p. 316). Thus, athough part feeding
accounts for a large portion of assembly cost, there is not much
scientific basis for automating the process.

The most common type of parts feeder is the vibratory
bowl feeder, where partsin abow! are vibrated using a rotary
motion, so that they climb a helical track. As they climb, a
sequence of baffles and cutouts in the track create a mechan-
ical “filter” that causes partsin al but one orientation to fall
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back into the bowl for another attempt at running the gaunt-
let (Boothroyd, Poli, and Murch 1982; Riley 1983; Sandler
1991).

Sony’'s APOS parts feeder (Hitakawa 1988) uses an ar-
ray of nests (silhouette traps) cut into a vibrating plate. The
nests and the vibratory motion are designed so that the part
will remain in the nest only in one particular orientation. By
tilting the plate and letting parts flow across it, the nests even-
tually fill up with parts in the desired orientation. Although
the vibratory motion is under software control, specialized
mechanical nests must be designed for each part (Moncevicz,
Jakiela, and Ulrich 1991).

The reason for the success of vibratory bowl feeders and
the Sony APOS system is the underlying principle of sen-
sorless manipulation (Erdmann and Mason 1988) that alows
parts positioning and orienting without sensor feedback. This
principle is even more important at small scales, because sen-
sor data will be less accurate and more difficult to obtain. The
APOS system or bowl feeders are unlikely to work in the micro
domain: instead, novel device designs for micromanipulation
tasks are required. The theory of sensorless manipulation is
the science base for developing and controlling such devices.

Reducing the amount of required sensing is an example
of minimalism (Canny and Goldberg 1994; Bijhringer et al.
1995b), which pursues the following agenda: for a given robot
task, find the minimal configuration of resources reguired to
solve the task. Minimalism is interesting, because doing task
A without resource B proves that B is somehow inessential
to the information structure of the task. In robotics, mini-
malism has become increasingly influential. Raibert and col-
leagues (1993) showed that walking and running machines
could be built without static stability. Erdmann and Mason
(1988) showed how to do dexterous manipulation without
sensing. McGeer (1990) built a biped, kneed walker with-
out sensors, computers, or actuators. Canny and Goldberg
(1994) argued that minimalism has a long tradition in indus-
triadl manufacturing, and developed geometric algorithms for
orienting parts using simple grippers and accurate, low-cost
light beams. Brooks (1986) developed online algorithms that
rely less extensively on planning and world models. Don-
ald, Jennings, and Rus (1995) and Bijhringer et al. (1995b)
have built distributed teams of mobile robots that cooperate in
manipulation without explicit communication. We intend to
use these results for our experiments in micromanipulation,
and to examine how they relate to our theoretical proofs of
minimalist systems.

2.1. Microfabricated Actuator Arrays

A wide variety of micromechanical structures (devices with
features in the um range) have been built recently by using
processing techniques known from the VLS| industry (see,
for example, the work of Gabriel 1995; MacDonald and col-
leagues 1996; and MacDonald forthcoming). Various mi-
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crosensors and microactuators have been shown to perform
successfully; e.g., a single-chip air-bag sensor is commer-
cially available (Analog Devices 1991), and video projec-
tions using an integrated, monolithic mirror array have been
demonstrated recently (Sampsell 1993) and are now starting
to replace conventional projection systems. A fully integrated
scanning tunneling microscope (STM) has been developed in
our group (Xu, Miller, and MacDonald 1995; MacDonad
et al. 1996). However, the fabrication, control, and program-
ming of microdevices that can interact and actively change
their environment remains challenging.
Problems arise from:

1. unknown material properties and the lack of adeguate
models for mechanisms at very small scales,

2. the limited range of motion and force that can be gen-
erated with microactuators,

3. the lack of sufficient sensor information with regard to
manipulation tasks, and

4. design limitations and geometric tolerances due to the
fabrication process.

Several MEMS researchers, among others (Fujita 1993;
Storment et al. 1994; Liu and Will 1995; Jacobson et al.
1995; Suh et al. 1996) have proposed MEMS manipulator
arrays. For an overview, see the work of Liu and Will (1995)
or Bohringer and colleagues (1994a, 1994b).

Our arrays (Fig. 2) are fabricated using a SCREAM (Single-
Crystal Silicon Reactive Etching and Metallization) process
developed in the Cornell Nanofabrication Facility (Zhang and
MacDonald 1992, Shaw, Zhang, and MacDonald 1993). The
ScREAM process is low temperature, and does not interfere
with traditional VLS| (Shaw and MacDonald 1996). Hence
it opens the door to building monolithic microelectromechan-
ical systems with integrated microactuators and control cir-
cuitry on the same wafer.

One of the goals of research in microactuators is to de-
velop devices for manipulating other small components; for
example, to accurately position micromachined components
for inspection or assembly purposes. Fabrication constraints
limit the design of most of these components (usually small
chiplets made from silicon wafers) to extruded planar shapes,
so manipulation in the plane is sufficient for many applica-
tions. For example, a microactuator array has been success-
fully employed to replace a 3-DOF stage in a scanning electron
microscope (SEM) (Darling et a. 1997).

Our design is based on microfabricated torsional resonators
(Mihailovich et a. 1993; Mihailovich and MacDonald 1996).
Each unit device consists of a rectangular grid etched out of
single-crystal silicon suspended by two rods that act as tor-
sional springs (Fig. 3). The grid is about 200 um long, and
extends 120 um on each side of the rod. The rods are 150
pm long. The current asymmetrical design has 5-um high
protruding tips on one side of the grid that make contact with
an object lying on top of the actuator (Fig. 4). The other side
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Fig. 2. A prototype M-CHip fabricated in 1995: a large uni-
directional actuator array (viewed via scanning electron mi-
croscopy). Each actuator is 180 x 240 um? in size. De-
tail from a 1 in? array with more than 15,000 actuators.
(For more pictures on device design and fabrication, see
the World Wide Web at http://www.cs.cornell.edu/home/karl/
MicroActuators.)

Fig. 3. Released asymmetric actuator for the M-CHip (viewed
via scanning electron microscopy): a dense grid (10 xm spac-
ing) with an aluminum electrode underneath (left); a grid with
5-pm high poles (right).

of the actuator consists of a denser grid above an aluminum
electrode. If a voltage is applied between the silicon sub-
strate and the electrode, the dense grid above the electrode
is pulled downward by the resulting electrostatic force. Si-
multaneously, the other side of the device (with the tips) is
deflected several um out of the plane. Hence, an object can
be lifted and pushed sideways by the actuator.

Because of its low inertia (resonance in the high-kHz
range), the device can be driven in a wide frequency range
from DC to severa 100 kHz AC. Our actuators need not be
operated at resonance: they can also be servoed to periodically
“hit” an object on top, thereby applying both lateral and ver-
tical forces. Our calculations, simulations, and experiments
have shown that the force generated with a torsional actuator
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is approximately 10 uN, which corresponds to a force-per-
arearatio of 100 #N/mm?, which is large enough to levitate a
piece of paper (1 #N/mm?) or asilicon wafer (10 uN/mm?).

Each actuator can generate motion in one specific direc-
tion if it is activated; otherwise, it acts as a passive frictional
contact. Figure 2 shows a small section of such a unidirec-
tional actuator array, which consists of more than 15,000 in-
dividual actuators. The combination and selective activation
of several actuators with different motion bias allows us to
generate various motions in discrete directions, spanning the
plane (Fig. 5).

The microscopic features of these actuators pose a possi-
ble disadvantage, which may make them less useful in harsh

Fig. 4. Released M-CHIP actuators consisting of single-crystal
silicon with 5-pm high tips.

Fig. 5. Released M-CHiP prototype motion pixel, consisting
of actuators oriented in four different directions.
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or dirty environments. Macroscopic objects and forces can
easily damage microactuators. For example, careful handling
is required when placing objects on the array. However, sil-
icon is a surprisingly flexible material at microscopic scales
(Peterson 1982), and extremely large elastic deformations are
possible without structural damage (Taher, Saif, and Mac-
Donald 1995). Ancther concern are dust particles that could
jam the microactuators. As a remedy, tiny venting holes can
be etched from the backside of the substrate, such that dust
particles are removed by a constant flow of air. Such air jets
are also useful for levitating or manipulating objects (Pister
Fearing, and Howe 1990; Konishi and Fujita 1993).

The fabrication process and mechanism analysis have been
described in more detail in other works (Bohringer et al.
1994a, 1994h; Bohringer, Donald, and MacDonald 1996b).

2.2. Macroscopic Vibratory Parts Feeder

Bohringer and colleagues (1995a) have presented a device
that uses the force field created by transverse vibrations of a
plate to position and align parts. The device consists of an
aluminum plate that is attached to a commercially available
electrodynamic vibration generator,! with a linear travel of
0.02m, and the capability to produce a force of up to 500 N
(Fig. 6). The input signal, specifying the waveform corre-
sponding to the desired oscillations, is fed to a single-coil
armature, which moves in a constant field produced by a ce-
ramic permanent magnet in a center-gap configuration.

For low amplitudes and frequencies, the plate moves longi-
tudinally with no perceptible transverse vibrations. However,

1. Model VT-100G, Vibration Test Systems, Akron, Ohio, USA.

Fig. 6. Vibratory plate parts feeder: an aluminum plate (size
50 cm x 40 cm) exhibits a vibratory minimum. Parts are
attracted to this nodal line, and reach equilibrium there. (See
also the World Wide Web at http://www.ee.washington.edu/
faculty/karl/Research/Vibratory/Plate.)
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as the frequency of oscillations is increased, transverse vibra-
tions of the plate become more pronounced. The resulting
motion is similar to the forced transverse vibration of a rect-
angular plate, clamped on one edge and free along the other
three sides. This vibratory motion creates a force field in
which particles are attracted to locations with minimal vibra-
tion, called the nodal Enes. This field can be programmed
by changing the frequency, or by employing clamps as pro-
grammable fixtures that create various vibratory nodes.

Figure 6 shows two parts, shaped like a triangle and a
trapezoid, after they have reached their stable poses. To better
illustrate the orienting effect, the curve showing the nodal line
has been drawn by hand. Note that this device can only use the
finite manipulation grammar described in Section 6.2, since it
can only generate a constrained set of vibratory patterns, and
cannot implement radial strategies.

3. Equilibrium Analysis for Programmable
Vector Fields

For the generation of manipulation strategies with pro-
grammable vector fields, it is essential to be able to predict
the motion of a part in the field. Particularly important is de-
termining the stable equilibrium poses that a part can reach
in which al forces and moments are balanced. This equi-
Bbrium analsis w as introduced in our short conference pa-
per (Bohringer et al. 1994a), where we presented a theory of
manipulation for programmable vector fields, and an ago-
rithm that generates manipulation strategies to orient polygo-
nal parts without sensor feedback using a sequence of squeeze
fields. We now review the algorithm from that work and give a
detailed proof of its complexity bounds. The tools devel oped
here are essentia to understanding our new and improved re-
sults, and will be used throughout this paper to develop com-
plexity bounds for our distributed manipulation algorithms.
In general, we assume that the dynamics of a part moving
in the force field are governed by first-order dynamics. This
assumption is based on extensive experimentation with the
devices presented in Section 2. In a first-order system, the
velocity of a part is directly proportional to the force acting
on it. Basicaly, it is a rigid-body dynamical system that is
heavily damped.

3.1. Squeeze Fe ls and Equilibria

In the work of Bohringer and colleagues (1994a), we pro-
posed a family of control strategies called squeeze fields and
a planning algorithm for parts orientation.

DeriniTioN 1. Assume [ is a straight line through the ori-
gin. A squeezefield T is atwo-dimensiona force-vector field
defined as follows:

LifzeR?liesonl,then F(Z) = 0; and

2. if zdoesnot lie on [,then f(2) is the unit vector normal
to ! and pointing toward 1.

Werefer to thelinel asthesqueeze HBne, because!l liesin
the center of the squeeze field. See Figure 7 for examples of
squeeze fields.

Assuming quasi-static motion, an object will move per-
pendicularly toward the line ! and come to rest there. We are
interested in the motion of an arbitrarily shaped (not neces-
sarily small) part P.Let us cal Py, P, the regions of P that
lie to the left and to the right of I, respectively, and ¢y, ¢z their
centers of area. In arest position, both translational and rota-
tional forces must be in equilibrium. We obtain the following
two conditions:

1. The areas Py and P, must be equal, and
2. The vector ¢; — ¢l must be normal to .

Part P has atranglational motion component that is normal
toif condition 1 does not hold, and P has a rotational motion
component if condition 2 does not hold (see Fig. 8). This
assumes a uniform force distribution over the surface of P,
which is a reasonable assumption for a flat part that is in
contact with a large number of elastic actuators.

Fig. 7. Sensorless parts orienting using force-vector fields. the
part reaches unique orientation after two subsequent squeezes.
There exist such orientating strategies for al polygonal parts.
(See the World Wide Web at http://www.ee.washington.edu/
faculty/karl/PFF for an animated simulation.)



Bohringer, Donald, and MacDonald / Force Fields for Distributed Manipulation 175

- squeeze line

Fig. 8. Equilibrium condition: to balance the force and mo-
ment acting on Pin a unit squeeze field, the two areas P; and
P, must be equa (i.e., I must be a bisector), and the line con-
necting the centers of area c; and ¢z must be perpendicular to
the node line.

DeriniTioN 2. A part Pisin trans htion equi Bbrium if the
forces acting on P are balanced; Pisin orientation equilb-
rium if the moments acting on P are balanced. Total equi lb-
rium is simultaneous translation and orientation equilibrium.

Let (xo, yo, f0) be an equilibrium pose of P. (no, yo) is
the corresponding trandlation equilibrium, and 6p is the cor-
responding orientation equilibrium.

Note that conditions 1 and 2 do notimply that in equilib-
rium, the center of area of P has to coincide with the squeeze
linel. For example, consider alarge and a small square con-
nected by a long rod of negligible width (Fig. 9). If the rod
is long enough, the center of area will lie outside of the large
sguare. However, in equilibrium, the squeeze line I will al-
ways intersect the large square.

3.2. Polygon Bisectors and Complexity

Consider a polygonal part Pin a unit squeeze field, as de-
scribed in Section 3.1. In this section, we describe how to
determine the orientations 6; in which P achieves equilib-
rium. This construction will show that equilibria always ex-

Fig. 9. A part consisting of two squares connected by along,
thin rod. The part is in total equilibrium, but its COM does
not coincide with the squeeze line 1.

ist, as long as the contact areas have finite size, and that for
connected parts, the orientation equilibria are discrete. More
precisely, if a connected part is in equilibrium in a squeeze
field, there are discrete values for its orientation and its off-
set from the center of the squeeze line. The equilibrium is
of course independent of its position along the squeeze line.
Hence, in the remainder of Section 3, when using the term
“discrete equilibria,” we mean that the orientation and offset
of the part is discrete. We will derive upper bounds on the
number of these discrete equilibria.

DeriniTioN 3. A bisector of a polygon Pisaline that cuts
Pinto two regions of equal area.

PropPosiTion 1. Let Pbe a polygon whose interior is con-
nected. There exist O (kn?) bisectors such that Pis in equi-
librium when placed in a squeeze field where the bisector
coincides with the squeeze line. n is the part complexity mea-
sured as the number of polygon vertices, and k denotes the
maximum number of polygon edges that a bisector can cross.

If Pis convex, then the number of bisectors is bounded by
O(n).

For most part geometries, k isasmall constant.? However,
in the worst case, pathological parts can reach k = O (n). A
spiral-shaped part (e.g., a rectilinear part) would be an ex-
ample for such a pathological case, because every bisector
intersects 0 (n) polygon edges.

Lemma 1. Given a polygon Pand alinel:y=mx+ c,
let n be the number of vertices of P

1. there exist 0 (n%) combi natorially different ways that a
line 1 canintersect P;

2. let a and b be the intersections of bisector 1 with the
convex hull of P. Asm \aries from—o0 to+o00, aand
b progress monotonically counterclockwise about the
convex hull of P;and

3. if the interior of Pis connected, then there exists a
unique bisector of Pfor every m €R.

2. In particular, in au earlier work (Bahringer €t al. 19942), we assumed that
k= O(1).
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Combinatorially equivalent intersections of polygon P are
al those placements of the intersecting line I such that the
sets of left and right polygon vertices are fixed. A necessary
condition for combinatorial equivalenceis that ! intersects the
same ordered set of polygon edges.

Proof. There are 0 (n?) different placements for I such that it
coincides with more than one vertex of P.Hence, al place-
ments of Z fall into one of O(r2) combinatorially equiva-
lent classes. This was proven by Dfaz and O’Rourke (1990,
Lemma 3.1).

Assume [ is a bisector of P with a fixed slope m . Since
the interior of Pis connected, the intersection between { and
P must be aline segment of nonzero length. Hence a transla-
tion of I (e.g., toward the left) will cause a strictly monotonous
decrease in the left-area segment of P, and vice versa. There-
fore, the bisector placement of / for a given slope m is unique.
O

Consider the bisector [ of polygon Pfor changing m values,
as described in Lemma 5. The intersections of ! with the
convex hull of P, a and b, progress monotonically about the
convex hull. In general, this progression corresponds to a
rotation and a trandlation of .

In the following proof for Proposition 1, we investigate the
relationship between the location of the bisector and the cor-
responding left and right areas of P and its respective centers
of area

Thiswill alow usto show that for combinatorially equiva-
lent bisector placements, there are only a finite number of pos-
sible equilibria, and this number is bounded by 0 (k), where
k <n is the number of polygon edges that the bisector inter-
Sects.

Proof (Proposition 1). Consider two combinatorialy equiv-
alent placements of bisector I on polygon P. We will show
that the number of equilibria for this bisector placement is
bounded by O(k). Since there are O(n?) such placements
for P (see Lemma 1), the total number of equilibria will be
O (kn?).

Rotating the Bisector. Consider the line ! and a point s
that lieson I (Fig. 10). The direction of ! is given by a vector
r. Assume for now that the line I intersects two edges of the
polygon P in the points rj and r2. Also assume that these
edges have directions a; and az. Now consider another line
I’ with direction r’ that intersects I in s. Assume that I and
1 have combinatorially equivalent intersections with polygon
P, and that I" intersects the polygon edges in rjand 5. Let
us write r; = s + p;r and r{ = s+ p;r’ fori =1, 2. Then the
polygon area between I and I’ is

1
A= :L(pépz —pip) (r' x7) -

In the general case where ! and I’ intersect multiple edges of
some arbitrary polygon Pat pointsri,ra,...,rgand r, 13,
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Fig. 10. Two nonparallel lines I and !’ in a combinatorially
equivalent intersection with polygon P.

.., . (k even), the polygon area between land I’ is
1 ‘ ,
A=z (xn) Y (=D oipi.
i=l1

Without loss O generality, let o # 0. Then r’ can be written
asr’' =r +aa; for some ¢ €R, and the above equation
becomes

k
1 )
A=z ((r =t aa)xT) Y (=1 o}pi»
i=l1

. )
= 2 (@ x r)i‘;l(—l)"p;p,-.

From the two vector equations r; =s+ pir' andr;=s
+pir+ Aai, L €R, we can determine p] as

r_ pi(ai x r)
P = Wi x r)+ola; x ag)’ 2)

If we also choose the edge-direction vectors a; such that (a;
x r) =1, then egs. (1) and (2) simplify to the following rational
functionsin a:

Pi

Pi= +oa; x a;)’ (3)
oo ; 0?
A= 5;:(_1) 1 o xag) )

Let us look at the denominator d;(e) = 1+ a(a;i X ax) in
more detail. This is important because we shall see that in
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all formulas we will obtain, the denominators consist only of
d; (or). For an arbitrary polygon, d; is alinear function of o.
If al a; are parallel, then d; = 1. If the polygon is rectilinear,
i.e., al a; are either parallel or perpendicular, then d; (a) = 1
if aiflag, and d; (@) = 1 + aay if ai L ax, where ay is
constant. So in this case, there are only two different constant
denominators, one of which is 1.

Translating the Bisector. We now consider the case where
I’ shifts parallel (Fig. 11) Analogously to the previous para-
graph, let ri=s + plr',and r/ = s" + p/r'. Also, let the
vector between s and s” be s” — s’ = Baa. Then the polygon
areabetween 1’ and 1" is

B = Bz x5 ((+ )~ (i + 1)),

=L(oh i) @x (. aa), )
=§(pé+ Py = P1=P1)-

In the general case, I and " intersect multiple edges of some
arbitrary polygon P at pomtsry,r5,...,rpandr{, rl, ... r{.
Now the p;’ can be determined from the two vector eguations
r! =rl+iai, A€ R,andr] =s" + p/r":

"_ a; X ag
Pi = Pi ﬂa,-xr”
o a; X ag
=p—F 14 afa; x u)’ ©
— Blai x ar)
T 1l 4aa x uk

Fig. 11. Two parallel lines I’ and I” in combinatorially equiv-
aent intersection with polygon P.

Then the polygon area between 1’ and " is

8 k
:52 —1) (o} + o),
" (7)
_ﬂz —Bla;i x Uk
2 P 1+a(a, X Uk)

This is a quadratic polynomia in g8 (unless al a; are paral-
lel, in which case it simplifies to the linear equation B =
BY 1 (=1 pp).

Maintaining the Bisector Property. From the above two
paragraphs, we see that if the bisector 1 is rotated to I, then
the left and right areas are changed by a value A(#0in
general) as described in eq. (4). Hence, a subsequent shift of
I’ is necessary to restore the bisector property, by changing
the areas by avalue B, as described in eq. (7).

This implies the condition A + B = 0, with A and B given
by egs. (4) and (7):

2 1 +aa; x uk) 8)

i=1

= 0.

This equation ensures that 1 is a bisector of P. It is a necessary
and sufficient condition for trandation equilibrium in a unit-
sgueeze field. Equation (8) is a rational equation in «, and a
quadratic polynomial equation in 8. Hence for all combinato-
rially equivalent bisectors, we can obtain an explicit formula
to describe B as afunction of c.

In generdl, eg. (8) is equivalent to a polynomial in e and
B whose degree depends on the number k of polygon edges
intersected by the bisectors I,!’, or I”. The degree of this
polynomial is limited by k for o, and by 2 for B. In the
rectilinear case, the degrees for o and 8 are limited by 2. In
thecasewhereall a; are parallel, eq. (8) simplifiesto alinear
equation: "X (—1)! (@4 + B)pi= 0.

Moment Equilibrium. After rotating (parameter o, obtain
1"y and translating (parameter B, obtain I”) the bisector 1, its
intersections with the polygon edges move from r; to

r! =s+p{r' + Ba,

=5 +pLTﬂ(ai—XUk(r . oaar) , Bak. ©)
1 oa(axar)

If al a; are parallel, this simplifies tor/ = s+ pir + (ap;
+B)ak.

Suppose that ¢; and ¢,, are the left and the right centers
of area of P, and A; and A, are the respective area sections,
so A; + A, = A. We are interested in how these points
change when the bisector changes. Note that always ¢ =
A(A,c1+ Ayc;), and if Pis bisected (i.e, Aj= A = %A)
then ¢ = (c; + ¢r).
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We consider the area between [ and /", which can be written
as a sum of quadrangles (r;,r«,ry ,r{"). The weighted center
area of this area can be determined as

k
.1
C =Y (12t +m)rixre) + (re+ r)rexry)
i=1 6
s g X)) x ).
(10)

For the left areas, the following relationship holds (assuming

A #£0):

A;ICEI = Aicg+ C
Ay 1
=4 C;/ = A—;,C[ + Z;—,C,

and similarly, for the right areas (assuming A} # 0):

! = %cr - ‘A,C .
' I

A A 1 1
f = = gra = et <_A£’ +- )¢
r r

Both [ and I are bisectors, so A4; = A, = A = Al = 4,
and

4
o —c =q —cr+ZC.

For orientation equilibrium, we require that the line connect-
ing the centers of area, ¢} —¢;, and the direction of the bisector
¥, are perpendicular:

4
¢ —¢) r=@—cr+ ZC) -r,

n

= 0.

The value of C = C(«, 8) can be determined by using egs.
(9) and (10), and the eguation r-=r+aag. Equation (11) isa
necessary and sufficient condition for orientation equilibrium.

By using the expressions derived in egs. (1)-(10), both
egs. (8) (for trandlation equilibrium) and (11) (for orientation
equilibrium) can be expressed with rational functions in ¢ and
B whose numerator (respectively, denominator) degrees are
O(K) (respectively, O(1)) for @ and 2 for 8. Hence, we can
obtain a system of two polynomial eguations of degree 0 (k)
for @ and 2 for 8. This system has at most O(k) solutions,
resulting in O (k) total equilibria for bisector placements that
are combinatorially equivalent. Since there are (n?) com-
binatorially different bisector placements, there are at most
0 (kn?) total equilibria. O

3.3. Phnning of Manipubtion Strategies

In this section, we present an algorithm for sensorless parts
alignment with squeeze fields (Bohringer et a., 1994a;
Bohringer, Donald, and MacDonald 1996a). Recall from
Section 3.2 that in squeeze fields, the equilibria for connected
polygons are discrete (modulo a neutrally stable trandlation
parallel to the squeeze line, which we will disregard for the
remainder of Section 3).

To model our actuator arrays and vibratory devices, we
made the following assumptions:

Density: the generated forces can be described by a vector
field, i.e., the individual microactuators are dense com-
pared to the size of the moving part; and

2Phase: the motion of apart has two phases: (1) pure tranda
tion toward [ until the part isin translation equilibrium,
and (2) motion in translation equilibrium until orienta-
tion equilibrium is reached.

Note that due to the elasticity and oscillation of the actuator
surfaces, we can assume continuous area contact, and not just
contact in three or a few points. If a part moves while in
trandlation equilibrium, in general the motion is not a pure
rotation, but also has a translational component. Therefore,
relaxing the 2Phase assumption is one of the key results of
this paper.

DerINITION 4. Let 8 be the orientation of a connected poly-
gon P in a squeeze field, and let us assume that condition 1
holds. The turn function ¢:9 —{—1, 0, 1} describes the
instantaneous rotational motion of P:

1 if Pwill turn counterclockwise,
t@® =4 -1 if Pwill turn clockwise,
0 if Pisin tota equilibrium.

See Figure 12 for an illustration. The turn function (&)
can be obtained, for example, by taking the sign of the lifted
moment Mp (2) for poses z = (X, Y, 8), in which the lifted
force fp(z) is zero.

Definition 4 immediately implies the following lemma.

LEMvA 2 (Bshringer, Donald, and MacDonald 1996a).  Let
P be a polygon with orientation & in a squeeze field such that
condition 1 holds. P is stable if £(8) = 0, t(64)<0, and
t(#—) > 0; otherwise, Pis unstable.

Proof. Assume the part Pisin apose (x, y, #) such that con-
dition 1 is satisfied. This implies that the trandlational forces
acting on P balance out. If in addition t (0) = O, then the
effective moment is zero, and P isin total equilibrium. Now
consider a small perturbation 85 > 0 of the orientation 8 of P
while condition 1 is still satisfied. For a stable equilibrium,
the moment resulting from the perturbation 8¢ must not ag-
gravate, but rather counteract, the perturbation. Thisis true if
and only if £ (6 + 8p) < 0 and (6 — dp) > 0.
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Fig. 12. (a) Polygonal part: stable (thick line) and unsta-
ble (thin line) bisectors are also shown. (b) Turn func-
tion, which predicts the orientations of the bisectors. Sta-
ble (respectively, unstable) bisectors correspond to angles
at which the turn function changes from +1 to -1 (respec-
tively, from -1 to +1). (c) Squeeze function, constructed
from the turn function. (d) Alignment strategy for two ar-
bitrary initial configurations. (See the World Wide Web at
http://www.ee.washington.edu/faculty/Karl/Research/ for an
animated simulation.)

Using this lemma, we can identify all stable orientations,
which alows us to construct the squeeze function (Goldberg
1993) of P (see Fig. 12c); i.e., the mapping from an initial
orientation of P to the stable equilibrium that it will reach in
the squeeze field:

Lemma 3. Let Pbeapolygona part on an actuator array -+
such that the Density and 2Phase hold. Given the turn function
tof P, its corresponding squeeze function s:S!'—Slis
constructed as follows:

1. al stable equilibrium orientations 8 map identically
tod;

2. all unstable equilibrium orientations map (by conven-
tion3) to the nearest counterclockwise stable orienta-
tion; and

3. dl orientations & with ¢ () = 1(- 1) map to the nearest
counterclockwise (clockwise) stable orientation.

Then, s describes the orientation transition of P induced by s.

Proof. Assume that part P initidly is in pose (x,y,8) in
array +. Because of the 2Phase assumption, we can assume
that P trandlates toward the center line [ until condition 1 is

3. Equally, one could define ¢ to map unstable equilibrium orientations to the
nearest clockwise stable equilibrium. This choice for a set of measure zero
does not affect our subsequent analysis and algorithms.

satisfied without changing its orientation 6. P will change its
orientation until the moment is zero, i.e,, t=0: a positive
moment (t> 0) causes counterclockwise motion, and a neg-
ative moment (t <0) causes clockwise motion until the next
root oft is reached. O

We conclude that any connected polygonal part, when put
in a squeeze field, reaches one of a finife number of possi-
ble orientation equilibria (Bohringer et al. 1994a; B&ringer,
Donald, and MacDonald 1996a). The motion of the part
and, in particular, the mapping between initial orientation
and equilibrium orientation is described by the squeeze func-
tion, which is derived from the turn function (as described in
Lemma 3). Note that all squeeze functions derived from turn
functions are monotone step-shaped functions.

Goldberg (1993) has given an agorithm that automatically
synthesizes a manipulation strategy to uniquely orient a part,
given its squeeze function. While Goldberg’s algorithm was
designed for squeezes with a robotic parallel-jaw gripper, in
fact, it is more general, and can be used for arbitrary mono-
tone step-shaped squeeze functions. The output of Goldberg's
agorithm is a sequence of angles that specify the required di-
rections of the squeezes; therefore, these angles specify the
direction of the squeeze line in our force-vector fields (for
example, the two-step strategies in Figures 7 and 12d). It
is important to note that the equilibria obtained by a MEMS
squeeze field and by a parallel-jaw gripper will typicaly be
different, even when the squeeze directions are identical. For
example, to see this, consider squeezing a square-shaped part
(Fig. 13). Stable and unstable equilibria are reversed. This
shows that our mechanical analysis of equilibrium is different
from that of the parallel-jaw gripper. Let us summarize these
results in the following statements.

ProrosiTion 2. Let P be a polygon whose interior is con-
nected. There exists an alignment strategy consisting of a

stable

unstable

i

unstable

(@) Pardlel-Jaw Chipper (b) Squeeze Field

Fig. 13. Equilibrium configurations for a square-shaped part
using (@) africtionless parallel-jaw gripper, and (b) aMEMS
sgueeze field. In this example, stable and unstable equilibria
are reversed.
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sequence of squeeze fields that uniquely orients P up to sym-
metries.

Since the strategies of Proposition 2 consist of fields with
squeeze lines at arbitrary angles through the origin, we call
them general S! squeeze strategies, or, henceforth, general
squeeze strategies.

CoroLLARY 1. The alignment strategies of Proposition 2
have O(kn?) steps, and they may be computed in time
0(k2n4), where k is the maximum number of edges that a
bisector of P can cross. In the case where P is convex, the
alignment strategy has O(n) steps, and can be computed in
time O(n?).

Proof. Proposition 1 states that a polygon with n vertices
has E = O(kn?) stable orientation equilibria in a squeeze
field (O(n) if Pis convex). This means that the image of its
corresponding squeeze function is a set of E discrete values.
Given such a squeeze function, Goldberg’s algorithm (Gold-
berg 1993) constructs alignment strategies with O(E) steps.
Planning complexity is 0 ( E2).0

The strategies of Goldberg (1993) have the same complex-
ity bounds for convex and nonconvex parts, because when us-
ing squeeze grasps with a parallel-jaw gripper, only the con-
vex hull of the part need be considered. This is not the case
for programmable vector fields, where manipulation strate-
gies for nonconvex parts are more expensive. As described
in Section 3.2, there could exist parts that have E = Q (kn2)
orientation equilibria in a squeeze field, which would imply
alignment strategies of length  (,72) and planning complex-
ity Q (k2n*).

Note that the turn and squeeze functions have a period of
due to the symmetry of the squeeze field; rotating the field by
an angle of 7 produces an identical vector field. Rotational
symmetry in the part also introduces periodicity into these
functions. Hence, general squeeze strategies (see Proposi-
tion 2) orient a part up to symmetry, that is, up to symmetry
in the part and in the squeeze field. Similarly, the grasp plans
based on squeeze functions in the work of Goldberg (1993)
can orient a part with a macroscopic gripper only modulo
symmetry in the part and in the gripper.® Since in Goldberg’s
(1993) work we reduce to the squeeze-function algorithm, it
is not surprising that this phenomenon is aso manifested for
squeeze-vector fields as well. A detailed discussion of parts
orientation modulo symmetry has been provided (Goldberg
1993).

The agorithm in this section uniquely orients a part (up
to symmetry); however, its position cannot be predicted pre-
cisely. In Section 6, we will present new and improved ma-
nipulation algorithms that position and orient parts uniquely,
and also reduce the number of equilibria to E = O(kn). In
Section 6.2, we will show that the algorithm described in this

4. Parallel-jaw gripper symmetry is also modulo xr.

section can be extended easily such that unique positioning
and orienting can be achieved.

Squeeze fields may be generalized to the case where [ is
dlightly curved, asin the “node” of the vibrating plate in Fig-
ure 6 (details are available in Bohringer 1995a). The remain-
ing sections of this paper investigate using more exotic fields
(not simple squeeze patterns) to:

* dlow disconnected polygons,

* relax the 2Phase assumption,

* reduce the planning complexity,

* reduce the number of equilibria,

* reduce the execution complexity (strategy length), and

* determine feasibility results and limitations for manip-
ulation with general force fields.

3.4. Relaxing the 2Phase Assumption

In Section 3.3, the 2Phase assumption alowed us to determine
successive equilibrium positions in a sequence of squeezes,
by a quasi-static analysis that decouples translational and ro-
tational motion of the moving part. For any part, this obtains
a unique orientation equilibrium (after several steps). If the
2Phase assumption is relaxed, we obtain a dynamic manip-
ulation problem, in which we must determine the equilibria
(x,0) given by the part orientation 6 and the offset x of its
center of mass from the squeeze line. A stable equilibrium
is a (Xi, 6;) pair in R x S! that acts as an attractor (the x
offset in an equilibrium is, surprisingly, usually not O; see
Fig. 9). Again, we can compute these (x;, 8;) equilibrium
pairs exactly, as outlined in Section 3.2.

Considering (x;, 6;) equilibrium pairs has another advan-
tage. We can show that, even without the 2Phase assumption,
after two successive, orthogonal squeezes, the set of stable
poses of any part can be reduced from €=R?x S'to a
finite subset of € (the configuration space of part P); see
Claim 1 (Section 6.2). Subsequent squeezes will preserve the
finiteness of the state space. This will significantly reduce the
complexity of atask-level motion planner. Hence, if assump-
tion 2Phase is relaxed, this idea still enables us to simplify
the general motion-planning problem (as formulated, for ex-
ample, by Lozano-Perez, Mason, and Taylor 1984) to that of
Erdmann and Mason (1988). Conversely, relaxing assump-
tion 2Phase raises the complexity from the “linear” planning
scheme of Goldberg (1993) to the forward-chaining searches
of Erdmann and Mason (1988) or Donald (1990).

4. Lower Bounds: What Programmable Vector
Fields Cannot Do

We now present “lower bounds’-constituting vector fields
and parts with pathological behavior, making them unusable
for positioning. These counterexamples show that we must
be careful in choosing programmable vector fields, and that,
apriori, it is not obvious when afield is well behaved.
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41.Unstab B Helis

In Section 3, we saw that in a vector field with a simple squeeze
pattern (see again Fig. 7), polygonal parts reach certain equi-
librium poses. This raises the question of a general classifi-
cation of all those vector fields in which every part has stable
equilibria. There exist vector fields that do not have this prop-
erty, even though they are very similar to a simple squeeze.

DerINITiIon 5. A skewed field fs is a vector field given by
fs(x,y) = -sign(x) (1, €), where 0 #e€ R.

ProPOsiTion 3. A skewed field induces no stable equilib-
rium on a disk-shaped part.

Proof. Consider Figure 14, which shows a skewed field with
€= —%: only when the center of the disk coincides with the
center of the squeeze pattern do the trandational forces acting
on the disk balance. But it will still experience a positive
moment that will cause rotation. O

ProrposiTion 4. A diagonaly skewed field (e = fl) in-
duces no stable equilibrium on a square-shaped part.

Proof. To reach equilibrium in a diagonally skewed field,
the sgueeze line has to bisect the part such that the connector
between the left and the right centers of areais diagonal (i.e.,
parallel to the force vectors). An analysis similar to the proof
of Proposition 1 (Section 3.2) shows that for a square, no
bisector placement can achieve an angle with the connector
of less than 83". O

Propositions 3 and 4 show that skewed squeeze fields can-
not be used for open-loop positioning or orienting of parts,
since there may not exist any stable equilibria. However,
skewed squeeze fields may be very useful if our goal is to
continuously rotate a part (e.g., for inspection purposes).

Fig. 14. Unstable part in the skewed squeeze field (e = —%).
The disk with its center on the squeeze line will keep rotating;
moreover, it has no stable equilibrium in this field.

4.2. Unstable Parts

Similarly, we would like to identify the class of al those parts
that always reach stable equilibria in particular vector fields.
From Section 3, we know that connected polygons in simple
sgueeze fields satisfy this condition. This property relies on
finite area contacts: it does not hold for point contacts. As a
counterexample, consider the part Ps in Figure 15.

PROPOSITION 5. There exist parts that do not have stable
equilibriain a simple squeeze field.

Proof. The S-shaped part in Figure 15 has four rigidly con-
nected “ feet” with small contact surfaces. As the area of each
of these four feet approaches zero, the part has no stable equi-
librium in a simple squeeze field. There is only one orientation
for the part in which both force and moment balance out, and
this orientation is unstable. O

In Section 5.2, we discuss this phenomenon in greater de-
tail, after the tools necessary for a complete mathematical
analysis have been developed.

Finaly, the number of stable equilibria of a given part
influences both the planning complexity and the plan length
of an alignment strategy. It also affects the resolution of the
vector field that is necessary to perform a strategy accurately.
Even though all parts we have considered exhibit only one or
two orientation equilibria, there exist no tight bounds on the
maximum number of orientation equilibria in a unit squeeze
field.

ProposiTion 6. Let n be the number of vertices of a polygon
P,and letk be the maximum number of edges that a bisector
of P can cross:

Fig. 15. The S-shaped part Ps with four rigidly connected
point-contact “feet” in unstable total equilibrium (forces
and moments balance). There exists no stable equilibrium
position for this part in a vector field with a simple squeeze
pattern.
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1. regular polygons have n stable orientation equilibria in
a squeeze field; and

2. every connected polygon has O (kn?) stable orientation
equilibriain a squeeze field.

Proof.

1. Because of their part symmetry, regular polygons have
2n equilibria. Half of them are stable, the other n are
unstable.

2. See Section 3.2.

As described in Section 3.2, there exist simple polygons
with n vertices that can be bisected by a straight line in up to
0 (kn?) topologically different ways (Bohringer et al. 1997a).
This suggests that there could be parts that have Q (kn?) orien-
tation equilibria in a squeeze field, which would imply align-
ment strategies of length Q(kn?) and planning complexity
Qk*n*).

While the counterexample in Figure 15 may be plausibly
avoided by prohibiting parts with “point contacts,” the other
examples (Fig. 14 and Proposition 6) are more problematic. In
Section 5, we show how to choose programmable vector fields
that exclude some of these pathological behaviors, by using
the theory of potential fields to describe a class of force vector
fields for which all polygonal parts have stable equilibria. In
Section 6.1, we show how to combine these fields to obtain
new fields in which al parts have only 0 (k n) equilibria.

We believe parts with point contact (not having finite area
contact) will behave badly in all vector fields. We can model a
point contact with delta functions, such that, e.g., for a point-
contact Py at (xo, ¥0):

/fdA =/f5(XO,yo)dA = f(xo0, yo).
Py

This model is frequently used in mechanics (see, e.g., Erd-
mann 1994). Point contact permits rapid, discontinuous
changes in force and moment. Hence, bodies with point con-
tact will tend to exhibit instabilities, as opposed to flat parts
that are in contact with a large number of (elastic) actuators.
Finaly, we believe that as the area contact-the size of the
“feet” of a par-approaches zero, the part may become un-
stable. This represents a design constraint on parts that are to
be manipulated using programmable planar parts feeders.

The lower bounds we demonstrate are indications of the
pathologies that can arise when fields without potential or
parts with point contact are permitted. Each of our coun-
terexamples (Figs. 14 and 15) is “generic” in that it can be
generalized to a very large class of similar examples. How-
ever, these lower bounds are just a first step, and one wishes
for examples that delineate the capabilities of programmable
vector fields for planar parts manipulation even more
precisely.
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The separating field shown in Figure Ic is not a poten-
tial field, and there exist parts that will spin forever, with-
out equilibrium, in this field (this follows by generalizing the
construction in Fig. 14). However, for specific parts, such as
those shown in Figure 1, thisfield is useful if we can pose the
parts appropriately first (e.g., using the potential field shown
inFig. 1b).

Finally, we may “surround” nonpotential fields with po-
tential fields to obtain reasonable behavior in some cases.
Figure 1 shows how to “surround” a nonpotential field in time
by potential fields, to eliminate pathologies. Similarly, we
can surround nonpotential fields spatia . For example, if
field Ic could be surrounded by a larger potential field, then
after separation, parts could reach a stable equilibrium.

Nonpotential fields can be used safely with the following
methodology: let H c € =R?x S! be the undesirable limit
set. For example, H could be a limit cycle where the part
spins forever. Let ﬁv(H ) be the weak pre-image (Lozano-
Perez, Mason, and Taylor 1984; Donald 1989) of H under the
field \/ If we can ensure that the part starts in a configuration
ZEPy (H),it will not reach the unwanted limit cycle. For
example, in Figure 1 the centering step (b) ensures that the
part does not end up on the border between the two separating
fields, where it would spin forever in step (c).

5. Completeness: Classification using Potential
Fields

We are interested in a general classification of all those vector
fields in which every part has stable equilibria. As motivation,
recall that a skewed vector field, even though very similar to
a regular squeeze field (see again Fig. 7), induces no stable
equilibrium in a disk-shaped part (Fig. 14). In this section,
we discuss a family of vector fields that will be useful for
manipulation tasks. These fields belong to a specific class of
vector fields: the class of fields that have a potential.

We believe that fields without potential will often induce
pathological behavior in many parts. Fields without poten-
tial admit paths along which a particle (point mass) will gain
energy. Since mechanical parts are rigid aggregations of par-
ticles, this may induce unstable behavior in larger bodies.
However, there are some cases where nonpotential fields may
be useful. For example, see Figure Ic, which is not a potential
field. Such fields may be employed to separate but not to sta-
bilize, pose, or orient parts. This strong statement devolves to
our proof that fields like Figure 14 do not have well-behaved
equilibria. Hence, they should only be employed when we
want to induce an unstable system that will cast parts away
from equilibrium, e.g., to sort or separate them.

Consider the class of vector fields on R? that have a po-
tential, i.e, fields f in which the work is independent of the
path, or equivaently, the work on any closed path is zero,
§ f-ds=0.In apotential field, each point (x, y) is assigned
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area value U(x, y) that can be interpreted as its potential
energy. When U is smooth, then the vector field fassociated
with U is the gradient -VU. In genera, U(x,y)is given, up
to an additive constant, by the path integra fa f.ds (when
it exists and it is unique), where « is an arbitrary path from a
fixed reference point (xg, yo) to (X, y). Assuming first-order
dynamics, when U is smooth, an ideal point object isin stable
equilibrium when it is at alocal minimum of U.

DeFmimion 6. Let fbe a force-vector field on R?, and let
p be a point that is offset from a fixed reference point by a
vector r(p) = p — q. We define the generalized force Fasthe
force and moment induced by fat point p:
F(p) = (f(p), x(p) X f (). (12)
Let P be a part of arbitrary shape, and let P, denote the

part Pinpose z = (x, y, )€ C. We define the Bfted force
field fp as the areaintegral of the force induced by fover Py:

@) = _/fdA- (13)

Py

The lifted generalized force field Fp is defined as the area
integral of the force and moment induced by fover Pin
configuration z:

Fp(z) - / FdA,
P
(14)
- /fdA,/rxfdA
Pz Py

Hence, Fp is avector field on €. Findly, we define the lifted
potntialUp :€—R. Up is the area integral of the potential
U over Pin configuration z:

Ur@) - f Uda. (15)

Pz

We now show that the category of potentia fields is closed
under the operation of lifting, and that Up is the potential of
Fp (see Fig. 16). Note that U need not be smooth.

Letg : X >Yandh:Y - Z Letk: X - Z
be the function that is the composition of g and 4, defined
by k(x) = h(g(x)). In the following proposition, we use
the notation h(g) to denote k , the function composition of g
and 4.

ProposiTion 7. Let Fbe aforce field on R? with potential
U, and let Pbe apart of arbitrary shape. For the lifted gener-
alized forcefield Fp and the lifted potential Up, the following
equality holds: Up = f,UdA= [, Fp-dz + c, where ais

Fp = Up
2 i
oy
R
: | /
& P P
f => U

potentia: path integral

Fig. 16. Determining the potential, and lifting are commuta-
tive operations on force-vector fields.

an arbitrary path in € from afixed reference point, and cisa
constant.

Proof. Given a force field fwith potential U, and a part
P, w e define P* as the set {{r, n)|(r cos n,rsinn)e P}c
R x S!. P*is arepresentation of Pin polar coordinates: p =
(r cos n,rsinn)e Pif and only if (r,n)e P*

We write P, to denote P in pose z = (X,, ¥z,6z). If P
is moved into pose z, then the point p moves to p; = (x;
tr cos(fz+ 1n),yz+ rsin(@z +n) = (xz,¥z) + rz. Let us
assume that for a given P, the COM of Pisat 0; thisimplies
that the COM of Py lies at (x4, yz)-

We define three families of functions p, ¢, and «, as fol-
lows:

Pr: 0,11 - R?

such that p,, is a smooth path in R? with p;,, (0) = 0 and
pry(1) = Po = (rcosn,rsinn),

¢tz 110,11 > R? x S!

such that ¢ is a smooth path in R? x S! with £,(0) = 0 and
L(1) = 2 = (xz, Y, 02), and

R?2 xS! - R2
x,y,0) > (x+rcos@+n),
y + rsin(@ + n).

Oy

S0 &z is an arbitrary smooth path from 0 to z in €, and
ary(¢z) is a smooth path in R? from po = (r cos n,rsinn)
to pz = (xz+ rcos(bz+ n),yz+ rsin(fz+n)). Recal that
ar,p(¢z) is the function composition of ¢z and o 5.

We are interested in the potential of U at p;.
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U(p2) =/f~ds,
8

where 8 is some path from 0 to p,. The integra is
path independent, because f has potential U. Since
we can choose any path, we choose a path g that
consists of two parts: (1) a path from 0 to the point
po; and (2) a path from pg to p..

=p;{’f-ds+ / f-ds,

Qr,p (&2)

where the path e, 5(¢z), given by the composition of
&z and or,y, depends on z as well as on rand », but
Pr.n is independent of z. The left integral is the
potential difference between pg and 0. Without loss
of generality, let us choose U(0) = 0.

vt + [ -1,
<

where J is the Jacobian:

] ]

jo (B F T\ _(1 0 —rsn@+n

“\oey day 3y ) T\O 1 rcos@+n) )’
ax ay a6

which is the derivative of «;,5. f(a,5) is the function

composition of ., and f. Also note that dz =
(dx, dy,do).

=U(po) + f (fx(ar,n), Fy(ary),
&

r cos(d + U)fy(dr,r,) ~r sin(@ + n)fx(ar,n)) -dz.

—U(po) + f F(ay)- dz. (16)
¢

Equation (16) states that the potential at a point p; = (X,
trcos(@;+ n),yz+ rsin(@; + 1)) can be determined as the
sum of two integrals: the first integrates the force f over a
path from 0 to pg = (r cos 7, r sin p). If we choose U(0) = 0,
then the first integral is the potential at point pp. The right
part of the expression can be understood as the path integral
of the generalized force from pg to p;.

With this result, we can now consider the lifted potential
Up atapointz = (xg, yz,0;) € C:

Up(@ - f U@)da,

Py
- f f Upa)r dr dn,
P*

where p; = (xz +rcos(6z+ 1), y.
+ r sin(fz + n)) such that (r, ) € P*.

=f/ U(po)+/F(a,,,,)-dz rdrdn,
p* [

by using eg. (16). Again, F(«;,5) denotes the
function composition of «,, and F.

=//U(p0)r dr dn
P*
+// /F(oz,,,,)-dz rdrry.

P* \&
The first expression is the areaintegral of U over
P_From Definition 6, it follows that this express-
ionisequa to Up (0) (note that Up (0) is a con-
stant that does not depend on z).
=Up(0)

1
+// (/ F(O!r,n(iz(t)))-i;z'(t)dt) rdrry,
P+ \0

where ¢, is the derivative of Zz. The dot product
yields a scalar value. We can now switch the
integrals.

1
=/ (f f F(@ry(&(0))) - L, (8) r dr dﬂ) dt
0 P*

+Up (0).
¢, is constant with respect to the integration
parameters r and n; hence, we can move &, out-
side of the area integral.

- /1 ( f f F (@ GO)r dr dn) /) dt
J.

0
+Up(0),

=j (/ / F(lax (8) + 1 cos(Cep () + 1),
0 P
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Lay(8) + 7 8in(Gr0(6) + m)r dr dn) - £L(0)ds
+Up(0),
where ¢, = (gz,x, $z,y, Ez,G)-
1

=/ f/F(rcosn,rénn)rdrdn S Ea(t)dt

0 P}

$z(t)
+Up(0),
where P/ ) = {(r, n)|(r cosn, r sinn)€ Pr,n)}.
1

= f f FdA | -¢l(t)dt + Up(0),

0 Vro

= [ Ftcut)- 5 +Up @)
0
by definition of the lifted force Fp.

=f Fp -dz+Up(0).
{2

Hence, Up is indeed the potential of Fp. O

We believe that a shorter proof is possible by using differ-
ential forms for the case that both f and U are smooth. How-
ever, since the fields in consideration are usually not smooth
(e.g., unit squeeze or radial fields), we give the longer general
proof here. Note that this proof does not rely on the fact that
f isavector field on R2. Therefore, the proof generalizes to
dimensions 3 or higher.

CoroLLAry 2. Let T beaforcefield on R? with potential U,
and let Pbe apart of arbitrary shape. For the lifted generalized
force Fp and the lifted potential Up, the following equality
holds if Up is differentiable: VUp = —Fp.

Proof. Follows directly from proposition 7. Cl

So again, Up (x,y, 8) can be interpreted as the potential en-
ergy of part Pin configuration (x, y, €) Therefore, we obtain
alifted potential field Up whose local minima are the stable
equilibrium configurations in € for part P . Furthermore, po-
tential fields are closed under addition and scaling. We can
thus create and analyze more complex fields by looking at
their components. In general, the theory of potential fields al-
lows us to classify manipulation strategies with vector fields,
offering new insights into equilibrium analysis and provid-
ing the means to determine strategies with stable equilibria.
For example, it allows us to show that orientation equilibrium

Fig. 17. Two triangles P, and Py with reference points z and
z’ whose symmetric difference is less than e.

in a simple squeeze field is equivalent to the stability of a
homogeneous boat floating in water, provided its density is
p= %pwm, (for references on boat stability, see the works of
Gillmer (1956, p. 42ff) or Newman (1977, p. 290ff)).

5.1. Properties of Lifted Force and Potential Fields

In this section, we show that for a polygona part P, the lifted-
force field is aways continuous, and the lifted potentia is
always smooth.

ProrosiTion 8. Consider a polygon P at two configura-
tions: z = (x,y, 8) andz = (x',y,6"),z, 7 eC=R2x Sl
For al e> 0, there exists a8 > 0 such that if Z' lies within
aé-ball around z, Z € Bs(z), then w(P,APy) <€ (u(.) de-
notes the size of an area, and A is the symmetric difference
of two sets).

Proof. First we will create aregion S around P, such that for
any perturbed triangle P, C S, the nonoverlapping regions
of P, and Py are less than a given € in size. Then we will
show that there always exists a region Bs(z) around z such
that if Z € Bs(z), then Py liesin S.

For now, let us assume that P, is a triangle in configuration
z, and let a be the length of its longest side. Consider the set
S=pP,& B,0), for some o> 0 (Fig. 17). The area of
S — P, is u(S — P;) <3a(a + 200). Let us choose o <3
min(1, €, €/a). Then, ife < 1, u(S—P,) < (e +2€?) < e.
If €21, u(S—P;)<1(e+ 2) <e. So in both cases, if
Py c S, then the area of the symmetric difference, P,A Py
isat most e.

We are interested in the distance between a point p € Py,
and the corresponding perturbed point p~e Py. We can
describe the points pand p”asp = (X + rcos(¢p+ 6),y +
rsin(¢+0)) andp’ = (x'+r cos(¢p+6"),y +rsin(¢p+6),
where r and ¢ are the length and the angle of aline from the
reference point of Pto the point p. The distance between the
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x-coordinates is

|xp —xprl = Ix + rcos(@+ 8)— x>—rcos(¢p + )]
24+604+0 66
sin
2 2

<|x —x'|+|2r sin
<lx—=x'|+rlo -6l
If we choose & = z—*—, we obtain

|xp"xp’|5 ald + ald
= a/2.

Similarly, |yp—yp'l< (r/2, and hence |p—p'| <.
We conclude that p’ € S whenever z’ € Bs(z). Hence we
can always find a é-ball around z such that the areas of P,
and Py differ by at most € (by choosing 5<W3‘W’ i.e,

§< min(l,e,e{a))
36 max(1,r) 7 . . .
This proof generalizes to arbitrary polygons (e.g., by using

triangulations). O

ProrosiTIoN 9. Let P be a polygonal part in a force field
f with potential U. The lifted force field fp(z), and the
lifted generalized force field Fp (2, withz=(X,y, 8)eC =
R2x S!, are continuous functions in x, y, and 6.

Proof. For a given y > 0, we want to determine an up-
per bound on the difference between Hz) and F(z') for an
arbitrary z € B, ().

|F@z) — F(Z)| = ffdA—/fdA ,
P, Py

< / fdA|+ / fdA
Py—Py Py-P
<f f dA+ / dA
P—Py Py—p
= fIP,APy|,

where f = sups (If (X, Y|} with S = {s € Pylz’ € B, (z)}.
This supremum exists whenever f is integrable; i.e., if fp
exists.

From Proposition 8, we know that we can make the area
of P,A Py arbitrarily small, by choosing an appropriate 3-
ball around z. In particular, we can force it to be less than
1/f. Hence we can ensure that | Hz) — F(z')| < € for any
Z' € Bs(z), and any € > 0. This implies that Fis continuous
inz=(xY, 0).

An analogous argument holds for the lifted generalized
force Fp.[1

CoroLLAry 3. For a polygond part P, the lifted potential
field Up(2) = fp, UdAisC! (i, its derivative exists and

is continuous). Moreover, VUp(z) =—Fp(z), Wwhere Fp is
the lifted generalized force acting on P.

Proof. Because of Proposition 7, Up(z) = [, Fp-dz + cfor
some constant ¢. From Proposition 9, we know that the lifted
generalized force Fp is continuous, hence the path integral of
Fp must be C1.VUp (z) = —Fp(z) because of Corollary 2.
O

5.2. Examples: Classification of Force Fields

ExampB 1 (Radial FHels): A radial field is avector field
whose forces are directed toward a specific center point. It
can be used to center a part in the plane. The field in Fig-
ure Ib can be understood as aradial field with arather coarse
discretization using only four different force directions. Note
that this field has a potential .

DerinTION 7. A unit radia field R is a two-dimensional
force-vector field such that R(z) = —z/|z|if z =0, and
R() =0.

Note that R has a discontinuity at the origin. A smooth
radial field can be defined, for example, by R 1z) = —z.

Prorosi Tian 10, Given the radial fieldsR and R *, the cor-
responding potential fields are U(z) =|lz|[,and U7Tz) =
L11z12, respectively.

Note that U is continuous (but not smooth), while U ”is
smooth.

Counterexamp B 1 (Skewed Squeeze HeBs): Consider again
the skewed squeeze field in Figure 14. Note that, for example,
the integral on a cyclic path along the boundary of the disk
isnonzero. This explains why the disk-shaped part has no
equilibrium.

Prorosi Tion 11, No skewed squeeze field has a potential.

Counterexam p b 2 (Parts w ith Point Contacts): Consider
again the globally unstable S-shaped part Pg from Section
4 (Fig. 15). At first glance, this example may seem coun-
terintuitive. It can be shown (see Lemma 4) that there must
exist a pose zmin in Which Ps achieves minimal potential, so
why is Pg not stable in pose zmin? TO better understand this
problem, we investigate S-shaped parts with finite area con-
tacts, and the transition as their contact areas are decreased
towards O.

Let us consider an S-shaped part with four square “ feet.”
We choose the reference point at the COM, such that two
of the feet are centered at £(r4, 0), and the other two feet
are at +(rgcos¢,rg Sin@) with ¢ constrained to -n/2 <
¢ <m/2 (Fig. 18). Figure 19 shows two equilibria for an
S-shaped part. It is easy to see that these are the only two
total equilibria, and that one of them (Fig. 19a) is unstable.
For the following discussion, it is sufficient to investigate the
behavior in a squeeze field with its reference point fixed at
(0,0).

Figure 20a shows the moment function M p; and the po-
tentiadd Ups of an S-shaped part, where ra=12,rg=4,¢ =
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Fig. 18. An S-shaped part with four rigidly connected square
“feet” in configuration (X, y, 8)=(0,0,0),r4a =12, rg =
4,and ¢ = 60".

60°, and the feet have area size 10. Notice that in poses with
#-angles corresponding to minima in the potential, the mo-
ment has a root with negative slope, which indicates a stable
(orientation) equilibrium. Figures 20b and 20c show the (nor-
malized) moments and potentials for parts with feet sizes 5
and 1, respectively. We observe that with decreasing contact
areas, these functions become “less smooth,” and the slope at
the moment root increases. Figure 20d depicts moment and
potential for a part with infinitesimally small feet. In this case,
the moment function does not have a root at the minimum of
the potential; rather, it exhibits a discontinuity at this orien-
tation. This has the consequence that the part is not stable
in this pose. In fact, for the moment function in Figure 20d,
there exist no roots with negative slope, and hence there exists
no stable equilibrium.

This observation can be made mathematically precise. The
exact eguations for the lifted potential and the moment of Ps
are

Upg =2ralcos6|+ 2rg| cos(d + @)1,
Mp; =2rsS0) 4 2rpS(@ + ¢),

(17)

sing if0<89 <mw/20r3/27 <6 < 2m,
with§(0) = {—s¢nd if n/2 <8<3/2n,
0 if 6 =n/2 or 6 =3/2m.

(18)

The potential minimum is reached at 8 = n/2 or 6" =
3/2w. However, we see that, for example, Mpg(/2) =
—2rgS(m/2 + ¢) = —2rgpcos¢ # 0. Furthermore,
Mps(m/2—) >0, and M(7/2+) < 0. This implies that the
part Ps will oscillate about 8 = n/2. Under first-order dy-
namics, this oscillation will be infinitesimally small, because
any infinitesmal angular deflection of Ps resultsin a restor-
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Fig. 19. Tota equilibria of an S-shaped part with area
contacts in a squeeze field. (8) Maximum potential, Zmax =
(0, O, Bmax), such that r4 sine,, = —rpsin(Gpax + ¢);
Omax ~ -0.24. (b) Minimum potential, Zmin = (0, 0, fmin);
Omin ~ N/2.

ing moment with opposed orientation. Under second-order
dynamics, the part may have afinite oscillation amplitude be-
cause of the inertia of the part. However, damping will reduce
this amplitude over time.

We conclude that parts with point contacts can exhibit
pathologica behavior even in very simple and otherwise well-
behaved potential fields: this example shows that for such
parts, it is possible that the generalized force is not zero in a
pose that minimizes the potential of the part.

This pathology cannot occur when only parts with finite
area contact are allowed. From Corollary 3, we know that the
(lifted) potential of a part with area contact is C'; hence its
gradient exists everywhere. In particular, the gradient is zero
at the minimum of the potential. This means that in a pose
with minimum potential, the generalized force must be zero.
Let us summarize these results.
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Fig. 20. Moment function M pg (thin line) and potential Ups (thick line) for S-shaped parts: (a) feet have contacts of area size
10; (b) size =5; (c) size= 1, (d) point contacts. Note how a discontinuity is created in the moment function when the contact

areais decreased toward 0.

CoroLLARY 4. Let Pbe a part with finite area contact in a
force-vector field f with potential U. In a configuration zp
that corresponds to a local extremum of the lifted potential
Up, the lifted generalized force Fp (zg) is zero.

In other words, for a first-order dynamical system and a
part Pwith finite-area contact, a local minimum (maximum)
of Up corresponds to a stable (unstable) equilibrium of P
in f.

Exam p B 2 (Morphing and Com bining \éctor FHe Bs). Our
strategies from Section 3 have switch points in time, where the
vector field changes discontinuously (Fig. 7). Thisis because
after one squeeze, for every part, the orientation equilibria
form a finite set of possible configurations, but in genera
there exists no unique equilibrium (as shown in Section 3.3).
Hence, subsequent squeezes are needed to disambiguate the
part orientation. These switches are necessary for strategies
with squeeze patterns.

One may ask whether, using another class of potentia field
strategies, unique equilibria may be obtained without discrete
switching. We believe that continuously varying vector fields

of the form (1 —¢) f +tg, where te [0, 1] represents time,
and f and g are sgueezes, may lead to vector fields that have
this property. Here, “+” denotes point-wise addition of vector
fields, and we will write “f ~» g" for the resulting continu-
ously varying field. By restricting f and g to be fields with
potentialsU and V,w ¢ know thatU+ Vand (1—n)U+ tV
are potential fields, and hence we can guarantee that f + g
and f ~- g are well-behaved strategies. These form the basis
of our new agorithms in Section 6.

Let us formalize the previous paragraphs. If f is a vector
field (in this case a squeeze pattern) that is applied to move
part P,w e define the equilibrium set Ep (f) as the subset of
the configuration space € for which Pis in equilibrium. Let
us write fx g for a strategy that first applies vector field f,
and then vector field g, to move part P. f + g can be under-
stood as applying f and g simultaneously. We have shown
that in general, Ep () isnot finite, but for two orthogonal
squeezes f and g, the discrete-switching strategy f * g yields
afinite equilibrium set Ep (f* g) (see Section 6.2, Claim 1).
Furthermore, for some parts, the equilibrium is unique up to
symmetry.



Bohringer, Donald, and MacDonald / Force Fields for Distributed Manipulation

We wish to explore the relationship between equilibria
in simple vector fields Ep(f) or Ep(g), combined fields
Ep (f + g), discretely switched fields Ep (f * g), and contin-
uously varying fields Ep (f ~» g). For example, one may ask
whether there exists a strategy with combined vector fields, or
continuously varying fields, that, in just one step, reaches the
same equilibrium as a discretely switched strategy requiring
multiple steps. Findly, let fix fo * - . . % f; bea sequence of
squeeze fields guaranteed to uniquely orient a part P under
assumption 2Phase. We wish to investigate how continuously
varying strategiessuchas fi ~ fo » . . . ~ fycanbeem-
ployed to dynamically achieve the same equilibria even when
the 2Phase assumption is relaxed. The distributed actuation
srategy ¥ * g isdistributed in space, but not in time. The
strategy T + g is parallel with respect to space and time, since
T and g are simultaneously “run.” Research in this area could
lead to a theory of parallel distributed manipulation that de-
scribes spatially distributed manipulation tasks that can be
parallelized over time and space by superposition of controls.

5.3. Upward-Shaped Potential Fields

S0 far we have presented specific force fields that always
(e.g., squeeze and radia fields) or never (e.g., skewed squeeze
fields) induce stable equilibria on certain classes of parts. We
conclude this section with a criterion that provides a sufficient
condition on force fields such that all parts of a certain size
reach a stable equilibrium.

We have observed in Section 4 that a priori it is not obvious
when a force field induces stable equilibria. Our equilibrium
criterion will be based on two important properties:

1. The field has a potential. Potential fields do not alow
closed paths (technicaly, limit cycles) along which the
work is positive, which could induce infinite motion of
a part.

2. Theforcefield is“inward-directed,” which implies that
(assuming first-order dynamics) parts can never leave a
certain region, R. This useful property is a direct con-
sequence of the definition of inward-directedness. An
inward-directed force field corresponds to an “upward-
shaped” potential, in which all paths that leave region
R have an ascending slope.

We will require Property 1 to hold for the entire force field,
while Property 2 devolves to a boundary condition.

5.3.1. Elementary Definitions

DerFiniTION 8. Let zeR". The r-ball around z, denoted
Bc(z), isthe set {r e R"||r — z] < ¢} of al points within a
distance € of z.

DerFiNiTioN 9. (Lozano-Perez 1983). Let A, B be sets in

R". The Minkowski sum A & B of two sets A and B is
defined as the set {a + blae A, b € B}.
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From these definitions, it follows that for a region R with
boundary 9R, the set 3R & By(0) = {r + z|r € 3R, and
|z| < d} comprises all points that are within a distance d
from the boundary of R.

DeriNITION 10. Given a region R ¢ R”, define the set
CZ(Rd) = R — (3R & B,;(0)), which is the region R
shrunk by distance d. Note that CZ(R, d) is based upon
the configuration-space interior (Lozano-Perez 1983) of R
for B4 (0). Abusing terminology slightly, we call CZ (R, d)
the configuration-space interior of Rin this paper.

DeriNniTioN 11.  Theradius rp of apart P is the maximum
distance between an arbitrary point of P and the center of
mass (COM) of P.

5.3.2. Equilibrium Criterion

We are now able to state a genera criterion for a force field
T to induce stable equilibria on al partsin aregion S. As
mentioned at the beginning of Section 5.3, this criterion is
based on two main conditions: (1) if ¥ has a potential, limit
cycles with positive energy gain are avoided inside S; and
() if ¥ is “inward-directed” (see the definition below), parts
cannot leave the region S.

In the following, we give a genera definition of inward-
directed vector fields on a manifold Z. We then specialize the
definition to the specia instances of Z = € = R2x S! (the
configuration space) and Z = R?, and give a sufficient, prac-
tical condition for inward-directed vector fields. We conclude
with the presentation of our equilibrium criterion.

DerniTion 12.  (Inward-Directed Force Fields).” Let Z be
an arbitrary smooth manifold, and let Y ¢ Z be a compact
and smooth submanifold with boundary of Z. Assume that
dY has codimension 1 in Z, and that the boundary of Y is
orientable. Let g €8 Y be a point on the boundary of Y, and
V, €T, Z be atangent vector to Z at ] -

We say Vjisinward-directed to aY at q if there exists a
sufficiently small e>0suchthat ( + eV €Y.

Let V be avector field on Z. We say V is inward-directed
tod Y if V() isinward-directedto dY at  fordlg € 8.

Assume the set S ¢ R? is compact and smooth. Consider
the part P when it is placed into the force field ¥ such that
its COM liesin S. The set of all such posesis a subset of the
configuration space € = R2x S!, whichwecall §=SxS!.
The boundary of §is35=25 x S!. Note that 85 separates
the interiori § = §—8.5 from the exterior C—§ = R2—SxS!,
and that 3§ is isomorphic to a torus S!x S!.

Now let z = (x, y, 8) €S, and let F, € T,C represent
the lifted generalized force acting on part P in pose z. F;
is inward-directed (with respect to 3S) if F, points into the
interior of S. Note that this condition is equivalent to saying

5. In this definition, for convenience we assume that Z is embedded in R™
for some m. This condition may be relaxed.
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that the projection of F, onto the tangent space at (x, y) to
R? points into S, because the rotational component of Fyis
tangential to 85. So, for example, if z = (x,y, 6) €3S, then
Z =(x,y,8)€dS for any 6.

The following proposition gives a simple condition on a
force field f that tells us if, for a given part P, its lifted
generalized force field Fp is inward-directed:

ProrosiTion 12.  Let Pbe a part with radius r whose COM
is the reference point used to define its configuration space € =
R2x S'. Let f be a force-vector field defined on a region
R cR?, with Fp the corresponding lifted generalized force
field. Let S c R? be a convex, compact, and smooth subset
of the configuration-space interior of R,and Sc CZ (R, r).

Consider a point g€dS with outward normal ng4, and a
ball B,(q) with radius rabout q. If for every point g€dS,
and for every point s in the corresponding ball B,(q), the
dot-product g(s) = f(s) -ng is less than O, then the lifted
generalized force field Fp is inward-directed to 38 (note: (+)
is the standard inner product).

Proof. Consider the part Pin pose z = (x,, 8)€dS such
that g = (x, y). P has radius r;hence it lies completely
inside the ball B,(q), independent of its orientation 6. As
we know that g(p) = f(p) -n4<0for al p€ B,(q),
w e can conclude that the integral of g(p) over P is aso less
than 0: [, g(p)dA = [, fp) -ngdA = fp -ng< 0. This
implies that for fp , which is the translational component of
Fp (see Definition 6), the vector g+ €fp(2) lies inside S, if
e is positive and sufficiently small. As mentioned above, this
suffices to ensure that the vector z + € Fp (z) liesinside S.01

Lemva 4. (Equilibrium Criterion). Let P be a polygona
part with radius r, let f be a force field with potential U
defined on a region R CR?, and let S C R as specified in
Proposition 12. Let us also assume that the motion of part P
is governed by first-order dynamics. _

If the lifted force-vector field Fp is inward-directed to 3.,
then the part P will reach a stable equilibrium under fini$
whenever its COM is initially placed in S.

Proof. Assume that the COM of part P is placed at a point
(X,y) € S. This means that P isin some pose z = (X, y,0)€
S. We now show that the COM of P cannot leave S when
initially placed inside S. We know that 9§ separates i S from
€ —S§. Hence every path from z to some z*€ € =S8 must
intersect 35 at some point z €3S. Now consider part P in
pose Z. Under first-order dynamics, its velocity must be in
the direction of Fp(z"). Because Fp is inward-directed, the
velocity of P must be toward iS. In particular, this means
that the COM will moveinto i S;hence P cannot leave S, and
that there is no equilibrium on aS.

Because of Proposition 7, £, and hence Fp, have potential
U and Up, respectively. Therefore limit-cycles with energy
gain are not possible. Furthermore, Up(S) is the continuous
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image of a compact set, S. Therefore the image Up (S) isa
compact subset of R, which has a minimum value attained by
some point s€S. Since f is inward-directed, s must lie in
i S. Thisminimum is a stable equilibrium of P in £, as shown
in Corollary 4.

Because of Lemma 4, the use of potentia fields is invalu-
able for the analysis of effective and efficient manipulation
strategies, as discussed in the following section. In particular,
it is useful for proving the completeness of a manipulation
planner.

6. New and Improved Manipulation Algorithms

The part-alignment strategies in Section 3.3 have sw itch

points in time where the vector field changes discontinu-
ously (Fig. 12). We can denote such a sw itched strategy by
fixfoax...x f;,wherethe f;are vector fields. In Section 3.3,
we showed that a general squeeze strategy to align a (noncon-
vex) polygonal part with n vertices may need up to O (kn?)
switches, and require 0 (k2a*)time in planning (k is the max-
imum number of polygon edges that a bisector can cross).
To improve these bounds, we now consider a broader class
of vector fields including simple squeeze patterns, radial, and
combined fields, as described in Section 5.

In Section 6.1 we show how, by using radial and combined
vector fields, we can significantly reduce the complexity of
the strategies from that of Section 3. In Section 6.2 we de-
scribe a genera planning algorithm that works with alimited
“grammar” of vector fields (and yields, correspondingly, less-
favorable complexity bounds).

6.1. Radiall Stratgies

Consider apart Pinaforcefield F. Some force fields exhibit
rotational symmetry properties that can be used to generate
efficient manipulation strategies:

Property I: There exists a unique pivotpointvof P such
that P isin trandation equilibrium if and only if v coincides
with 0.

Property 2: There exists a unique pivotpointvof P such
that P is in (neutrally stable) orientation equilibrium if and
only if v coincides with 0.

We typically think of the pivot point v being a point of P;
however, in generality, just like the center of mass of P,v
does not need to lie within P, but instead is some fixed point
relative to the reference frame of P. Now consider the part
P in an ideal unit radial force-vector field R as described in
Section 5.

ProposiTion 13.  Inaunit radial field R, Properties 1 and 2

hold.

Proof. First, we fix the part P a an arbitrary orientation 6,
and show that at this orientation P has a unique translation
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equilibrium v(6). That is, placing v(@) at the origin is nec-
essary and sufficient for P to be in translation equilibrium at
orientation 8. Second, we show that for any two distinct ori-
entations 4 and 8’, v(#) = v(#’). We call this unique point v,
dropping the orientation €. Finally, we argue that whenever
Pis in trandation equilibrium (i.e., v is at the origin), Pis
neutrally stable with respect to orientation. This follows by
the radial symmetry of R.

Consider the translational forces (but not the moments)
acting on P in the radia field R. To do this, let us sepa-
rate R into its x- and y-components, Ry, and Ry, such that
R = (R, Ry). Assume for now that the orientation of P
is fixed. If P is placed at a position zo € R?, whose x-
coordinate is sufficiently negative, the total force induced by
R, on P will point in the positive x-direction. Symmetri-
caly, placing P at a sufficiently large positive x-coordinate
will cause a force in the negative x-direction. We claim that
by trandating P rigidly with an increasing x-coordinate, this
force decreases continuously and strictly monotonically, and
hence has a unique root.

To verify this claim, consider a small area patch & of
P. A uniform trandation ¢t of £ in the x-direction can be
described as £(1) = £y @ (zo + tx) (with zo the initial po-
sition of the patch, £ the unit vector in the x-direction, and
@ the Minkowski sum). The total force on £(t) in the x-
direction is f Py RxdA. This force decreases continuously
and strictly monotonically with ¢, because Ry is strictly mono-
tone and continuous everywhere except on the x-axis, which
has measure zero in R2. A similar argument applies for the
y-direction, and because of the radial symmetry of R, for any
direction.

If we choose the set S as a sufficiently large disk-shaped
region around the origin, and recall that R has a potential, we
can apply Lemma 4 to conclude that there must exist at least
one total equilibrium for P. Now assume that there exist two
distinct equilibria ey =(x1,¥1, 61), and e2 = (x2, y2, 62) for
Pin R We write “P(e;)” to denote that P is in configuration
e;. Because of the radial symmetry of R, we can reorient
P(ez) to P(e}) such that its orientation is equal to P(e1) :
e = (x}, ¥5,61), where (’y‘é) =M (’;;), and M isarotation
matrix with angle 61— 6, (ZFig. 21). This reorientation does
not affect the equilibrium. Note that P can be moved from e
to ¢/, by a pure trandation. From above, we know that such a
tranglation of P corresponds to a strictly monotone change in
the translational forces acting on P. Hence we conclude that
P(e1) and P(e3) cannot both be in translation equilibrium
unless ey and e} are equal. Thisimplies that e; and e2 cannot
both be equilibria of P in R unless they both have the same
pivot point v. U

Definition 7 assumes that the center of aradial field lies at
the origin. This definition can be generalized to radial fields
with arbitrary centers (x,, yc). Then Properties 1 and 2 hold
when the pivot point v coincides with (x,, y.). Surprisingly,

Fig. 21. Rotating a part about the center of a unit radial field.
The force and torque on the part remain constant with respect
to its reference frame.

v need not be the center of area P: for example, consider
again the part in Figure 9, which consists of a large and a
small square connected by a long rod of negligible width.
The pivot point of this part will lie inside the larger square.
But if the rod is long enough, the center of area will lie outside
of the larger square. However, the following corollary holds:

CoroLLARY 5. For apart Pin a continuous radial force field
R’ given by R (2) = —z, the pivot point of P coincides with
the center of area of P.

Proof. The force actingon Pin R isgiven by F = [, -zdA,
which is also the formula for the (negated) center of area. O

Now suppose that R is combined with a unit squeeze pat-
tern S, which is scaled by a factor § > 0, resultingin R+ 4.
The squeeze component §S of this field will cause the part
to align with the squeeze, similarly to the strategies in Sec-
tion 3.3. But note that the radial component R keeps the part
centered in the force field. Hence, by keeping R sufficiently
large (or § small), we can assume that the pivot point of P
remains within an e-ball of the center of R. This implies that
assumption 2Phase (see Section 3.3) is no longer necessary.
Moreover, € can be made arbitrarily small by an appropriate
choiceof 8.

ProposiTion 14. Let P be apolygonal part with n vertices,
and let k be the maximum number of edges that a bisector of
P can cross. Let us assume that v, the pivot point of P, isin
general position. There are at most O (kn) stable equilibria
in afield of the foom R+ 45 if § is sufficiently small and
positive.

Proof. For apart in equilibrium in a pure radial field R (i.e.,
with § = 0), the pivot point v is essentially fixed at the origin.
Thisisimplied by Property 1. It is easy to see that Property 1
is not true in general for arbitrary fields of the form R+ SS.
Property 1 holds if § = 0, because then any orientation is an
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equilibrium when v is at the center of R. However, Property
2 does not hold if § > 0, because in genera there does not
exist a unique pivot point in squeeze fields (see Section 3.3).

We conduct the combinatorial analysis of the orientation
equilibria under the assumptions that (1) § > 0, and (2) that v
isfixed at the origin. Then we relax the latter assumption, and
show that Property 1 holds, approxim ate ¥/, evenin R+34S, for
asufficiently small 6 > 0. That is, we show that a sufficiently
small § can be chosen so that the combinatorial analysis is
unaffected when assumption (2) is relaxed.

First, we show that when § is small but positive, and with
v fixed a the center of R, there are only a linear number
of orientation equilibria (i.e., we constrain the pivot point v
to remain fixed at the origin until further notice). So let us
assume that we are in a combined radial and small squeeze
fieldR + SS.

Consider a ray w(0) emanating from v. Assume without
loss of generality that v is not a vertex of P, and that w(0)
intersects the edges S(0) ={e1,. .., e} of Pin genera po-
sition, 1 <k < n. Parameterize the ray w(-) by its angle ¢
to obtain w(g). As ¢ sweeps from 0 to 27, each edge of P
will enter and leave the crossing structure S(¢) exactly once.
S(¢) is updated at criticallang bs where w(¢) intersects a
vertex of P. Since there are n vertices, there are O (n) criti-
cal angles, and hence O(n) changes to S(¢) overall. Hence,
since between critical angles S(¢) is constant, we see that
S(¢) takeson O (n) distinct values. Now place the squeeze
line 1 to coincide with w(¢). For a given crossing structure
S(®)U S(¢ + m), satisfying conditions 1 and 2 as defined
in Section 3.3 devolves to solving two equations. The first
equation provides the condition for trandation equilibrium,
while the second equation implements the condition for ori-
entation equilibrium. The latter equation is called the m om ent
function M (¢), because it describes the moment acting on P
as afunction of ¢. (But note that M is different from the mo-
ment function defined in Section 3.3, because here the part
rotates about a fixed pivot point.) In analogy to Section 3.3,
it can be shown that these equations are algebraic and of de-
greek , wherek is the maximum number of edges intersected
by the squeeze line as described in Section 3.2. This implies
that between any two adjacent critical values there are only
0 (k) orientations of I (given by w(¢)) that satisfy conditions
1 and 2. Hence, the overal number of orientations satisfying
conditions1and 2is O (k, n).

If §> 0, the part P will be perturbed, so that Property
1 is only approximately satisfied. (That is, we can relax the
assumption that v is constrained to be at the origin). However,
we can ensure that v lies within an e-ball around the origin (the
center of theradial field). To seethis, first consider P at some
arbitrary configuration z in the squeeze field 8S. The tota
squeeze force on Py is given by the area integral 8Sp(z) =
[p,8SdA. (Recdll that Sp denotes the lifted force field of S
see Definition 6, eg. (13).) Now éSp is bounded above by
16Sp| < 8A, where A is the area of P (note that S is a unit
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squeeze field).

Pisin equilibrium with respect to the radial fieldR ifvis
at the origin. Now consider the lifted force R p when the pivot
point of Pis not at the origin. More specifically, let v, be the
pivot point of P, and let us define aset Rp(d) ={IRp (2)I
such that | vz | = d} We aso define a function Rp (d) = min
{Rp(d)}. This function is well defined, because Rp(d) is
the continuous image of a compact set; hence the minimum
exists. Rp (d) is the minimum magnitude of the lifted force
acting on P, when its pivot point vz is at distance d from the
origin.

By decomposing R p into its x- and y-components, we can
write |Rp|as /R3 . + R} . Because of the radial symmetry
of R, let us assume without loss of generdlity that vz = (d, 0).
From the proof of Proposition 13, we know that for any given
orientation of P,, the magnitude of Rp , increases continu-
ously and strictly monotonically with increasing d = 0. Fur-
thermore, Rp,y is continuousin d, and Rp,y(0) = 0, so R%‘y
is continuous and monotonically increasing for all d less than
some sufficiently small dy > 0. Hence for any fixed orien-
tation of P, Rp is a continuous and strictly monotonically
increasing function for alld € [0, do]

Now suppose that R p(d) is not strictly monotone, i.e.,
that there exist di, d> with 0 <d; <dj, but Rp(dy) >
Rp(dy). Then there must exist zjy,2p with |vg, |=4d; and
|vg,| = da, and |Rp(z1)| = Rp(d1) = Rp(d2) = |Rp(22)|.
Let us define z; such that zj4 = 226 and vy, = CUg,
for some c €R, i.e, v, and vz, lie on a Imé through
the origin. If we choose 0 <c < 1, then |Rp (z)| <
| Rp(z3)|, because | Rp | is monotone, as shown in the pre-
vious paragraph. In particular, if we choose ¢ = di/da,
then |Rp(z;)| < |Rp(z2)| < |Rp(z1)l = Rp(di), and
|v,:2|=|v,1|. This is a contradiction to trje definition of
Rp (d1)=min{Rp (d)} We conclude that Rp is continuous
and strictly monotone for sufficiently small d > 0.

Now consider P, in the combined field R+4S, and again let
d denote the distance between pivot point v, and the origin.
In equilibrium, the lifted forces Rp, and 8Sp, balance out;
hence Rp(d) <|Rp,| = |6Sp,| < 8A, with A the area of
P. Since Rp is continuous and strictly monotone in d for
sufficiently small d,w e can ensure that d isless than a given
€, by choosing an appropriately small 6. This implies that v,
must lie within an e-ball of the center of the radia field. In
particular, we can make this e-ball small enough so that the
crossing structure S(¢) is not affected.

Finaly, we have to ensure that the stable equilibria, as
predicted by the moment function M, are approximated arbi-
trarily closely. This means that the disturbance in the moment
function, caused by pivot point vz not exactly coinciding with
the center of the radial field, can be made arbitrarily small.
To seethis, first consider the original (unperturbed) moment
function M, which describes the moment acting on the part
Pif its pivot point coincides with the origin. In this case, the
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moment is caused solely by the squeeze field 85, while Pis
in equilibrium with respect to the radial field R.

Now consider the disturbance in M if the pivot point vz is
not exactly at the origin, but somewhere in an e-ball around it.
Let us cal this disturbance AM, and note that AM has two
components: AM;s, which is the change in moment caused
by the squeeze field 45, and A Mk, the disturbance caused by
the radial field R.

For a part P at a given orientation, any c-displacement
of vz can change the force in a squeeze field 8§ by at most
|AF;s| < éedp, where dp is the maximum diameter of P.
Hence AM;ss =r X A Fsgisproportional to the product of the
disturbance in location €, and the magnitude of the squeeze
field 8 (r is the fixed distance between pivot point and COM
of P), i.e, |[AM;sl=0(8¢).

Since the force caused by the radia field R balances the
force generated by the squeeze field S, we obtain the same
bounds for AMgr. We see that AM = AMss + AMg =
O (é¢). Recall that € decreases strictly monotonically with
6; hence AM decreases asymptotically faster than 6. This
ensures that we can find a sufficiently small § such that the
moment function M is approximated arbitrarily closely, and
the equilibria of the squeeze field 85 are not affected.

We conclude that the number of equilibriain a field R+ 8S
is bounded by O (kn), for sufficiently small é. Cl

In analogy to Section 3.3, we define the turn function
t:S! - SI, which describes how the part will turn un-
der a squeeze pattern, and hence yields the stable equilibrium
configurations. Given the turn function t, w e can construct
the corresponding squeeze function s as described in Sec-
tion 3.3. With s as the input for the alignment planner de-
scribed by Goldberg (1993), we obtain strategies for unique
part alignment (and positioning) of length O(kn). They can
be computed in time O (k?n2).

The result is a strategy for parts positioning of the form
(R+68S51) *...%(R+ 8Sokn)). Compared to the genera
sgueeze agorithm in Section 3.3, it improves the plan length
by afactor of n, and the planning complexity is reduced by a
factor of n% . The planner is complete: for any polygonal part,
there exists a strategy of the form *; (R + 8 Si )- Moreover, the
algorithm is guaranteed to find a strategy for any input part.
By appending a step that is merely the radial field R without a
sgueeze component, we are guaranteed that the part P will be
uniquely posed (v is at the origin) as well as uniquely oriented.
We can also show that the continuously varying “ morphing”
strategy (R + 8S1)~ ...~ (R+ 8Soxn)) ~ Rworks in
the same fashion to achieve the same unique equilibrium.

6.2. Manipulation Grammars

The development of devices that generate programmable vec-
tor fields is still in its infancy. The existing prototype devices
exhibit only a limited range of programmability. For example,
the prototype MEMS arrays described in Section 2.1 currently
have actuators in only four different directions, and the actu-
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ators are only row-wise controllable. Arrays with individu-
ally addressable actuators at various orientations are possible
(Bohringer et d. 1994a, 1994b; Liu and Will 1995; B&ringer,
Donald, and MacDonald 1996b; Suh et al. 1996) but require
significant development effort. There are also limitations on
the resolution of the devices given by fabrication constraints.
For the vibrating-plate device from Section 2.2, the fields are
even more constrained by the vibrational modes of the plate.

We are interested in the capabilities of such constrained
systems. In this section, we give an agorithm that decides
whether a part can be uniquely positioned using a given set of
vector fields, and it synthesizes an optimal-length strategy if
one exists. Furthermore, in Section 6.2, the vector fields we
consider may be arbitrary, and in particular can vary in magni-
tude (as opposed to unit-squeeze fields). If we think of these
vector fields as a vocabulary, we obtain a language of manipu-
lation strategies. We are interested in those expressions in the
language that corresponds to a strategy for uniquely posing
the part.

We define two basic operations on vector fields. Consider
two vector fields ¥ and g : f+ g denotes point-wise addition,
and Fx g denotes sequential execution of ¥ and then g.

DeriniTioN 13, Let P be an arbitrary planar part. A finite
fie Bl operator is a sequence of vector fields that brings P from
an arbitrary initial pose into afinite set of equilibrium poses.

A field operator comes with the following guarantee: no
matter where in R? x S! the part starts off, it will always come
to rest in one of E different total equilibria (Fig. 22). That
is, for any polygonal part P, either of these field operatorsis
all ays guaranteed to reduce P to a finite set of equilibriain
its configuration space € = R?x SL.

From Section 6.1, we know that combined radial squeeze
patterns R + S have this property. However, there are other
simple field operators that aso have this finiteness property.

Ciam 1. Let T and f1 be unit-squeeze fields such that fi
isorthogonal to . Thenthefidds ¥  fLand ¥ + £ induce
a finite number of equilibria on every connected polygon P;
hence ¥ x fL and f+ £, are finite field operators.

Proof. First, consider the field ¥ * f1, and without loss
of generality assume that f (X, y) = (-sign(x), 0). Also
assume that the COM of P is the reference point used to define
its configuration space, @ =R2x S!. As discussed in Sections
3.2 and 3.3, P will reach one of afinite number of orientation
equilibria when placed in for fi. More specificaly, when
Pis placed in T, there exists a finite set of equilibria Ef =
{(xi, 8;)}, where x; is the offset fromf’s squeeze line, and
0; is the orientation of P (see Section 3.4). Similarly for
f1 (X, ¥)=(0, -sign(y)), there exists afinite set of equilibria
Ey = {(yj,0;)}). Since the x-component of f, is zero, the
x-coordinate of the reference point of P (the COM) remains
constant while Pisin £ . Hence P will finally cometo restin
a pose (xx, Yk, 0k)s where Xk € X1(Ef), (&, 6k) € Eg ,and
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Fig. 22. Manipulation vocabulary for a triangular part on a
vibrating plate, consisting of two consecutive force fields

with dlightly curved nodal lines (attractors), which bring the
part into (approximately) the same equilibria.

71 is the canonical projection such that 71 (x,8) = x. Since
Ey isfinite, so iswi(Ey). E(fL) is aso finite; therefore,
there exists only a finite number of such total equilibrium
poses for f* f).

If Pis placed into the field f + £, there exists a unique
tranglation equilibrium (x, y) for every given, fixed orienta
tion 8. In each of these trandation equilibria, the squeeze
lines of f and f1 are both bisectors of P. Now consider
the moment acting on P when P is in translation equilibrium
as a function of 9. Since there are O(n?) topological place-
ments for a single bisector, therefore there exist also only
0 (n?) topological placements for two simultaneous, orthog-
onal bisectors. In analogy to Proposition 1 in Section 3.2, we
can show that for any topological placement of the bisectors,
this moment function has at most O(k) roots, where k is the
maximum number of edges a bisector of P can cross. This
implies that there exist only O (kn?) distinct total equilibria
for f+ f1.. O

If we can assume that the 2Phase assumption holds, then
Claim 1 leads to an interesting extension of the parts-orienting
algorithm described in Section 3.3. Let f, and f, be two or-
thogonal squeeze fields with their squeeze lines coinciding
with the x-axis and the y-axis, respectively. Note that fx * fy
isafinite field operator. Let us append fx * fyto an orient-
ing strategy, s. After s has been executed, the part will be
uniquely orientated. Assuming that the 2Phase assumption
holds, fy * fy first brings the y-coordinate and then the x-
coordinate of the part to a unique value, while maintaining
unique orientation. Hence, given an arbitrary parts-orienting
strategy s, by executing s * fx * fy, we obtain unique posi-
tioning and orienting.

6. This scheme can be simplified even further: Lets, be the last squeeze of

the orienting strategys L et s;- be a squeeze field orthogonal tas, Then it
is easy to show that s * s;- uniquely positions and orients the part.

CoroLLARY 6. Let f be afinite field operator for a part P,
and let g be an arbitrary vector field. Then the sequence g * f
isafinitefield operator.

Proof. By definition of a finite field operator, f brings the
part P into a finite set of equilibrium poses from arbitrary
initial poses, in particular, from the poses that are the result
offieldg. O

Thus, by pre-pending an arbitrary sequence of fields to a
finite field operator, one can always create a new finite field
operator (possibly with a smaller set of discrete equilibria). In
the remainder of this section, however, we will only consider
finite field operators of minimal length, i.e., field sequences
from which no field can be removed without losing the finite-
ness property (Definition 13).

We have seen in Sections 3 and 5 that for simple force fields
such as squeeze or radid fields, we can predict the motion and
the equilibria of a part using exact analytical methods. How-
ever, for arbitrary fields (e.g., the force fields described in
Section 2.2, which are induced by vibrating plates), such a-
gorithms are not known. Instead, we can employ approximate
methods to predict the behavior of the part in the force field.
These methods are typically numerical computations that in-
volve simulating the part from a specific initial pose, until it
reaches equilibrium.” We call the cost for such a computation
the simulation complexity s(n). We write s(n), because the
simulation complexity will usualy depend on the complexity
of the part, i.e., its number of vertices n (for more details also
see the work of Donald and Xavier (1995)).

ProrosiTion 15. Consider a polygonal part P, and m finite
field operators {F;},1<i <m, each with at most E distinct
equilibria in the configuration space C for P. There exists an
algorithm that generates an optimal length strategy of the form
Fy % Fy%- .. % Fyto uniquely pose P up to symmetries, if such
a strategy exists. This algorithm runsin O (m2E (s(n) + 2£))
time, where s(n) is the simulation complexity of Pin F;. If
no such strategy exists, the algorithm will signal failure.

Proof. Construct a transition table T of size m*E that de-
scribes how the part P moves from an equilibrium of F; to an
equilibrium of F;. This table can be constructed either by a
dynamic analysis similar to that in Section 3.1, or by dynamic
simulation. The time to construct this table is O (m*Es(n)),
where s(n) is the simulation complexity, which will typically
depend on the complexity » of the part.

Using the table T, we can search for a strategy as follows:
define the state of the system as the set of possible equilibria
apartisin, for aparticular finite field operator F;. There are
0 (E) equilibriafor each finite field operator; hence, there are
0 (m2F) distinct states. For each state, there are m possible

7. See, for example, the World Wide Web aittp://www.ee. washington.edu/
faculty/karl/Researchy/.
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successor states, as given by table T, and they can each be
determined in 0 (E) operations, which results in a graph with
0 (m2F) nodes, 0 (m*2%) edges, and O (m*E2E) operations
for its construction. Finding a strategy, or deciding that one
exists, then devolves to finding a path whose goal node is a
state with a unique equilibrium. The total running time of this
algorithm is O(m?E(s(n)+ 2£)).0

Hence, as discussed by Erdmann and Mason (1988), for
any part we can decide whether a part can be uniquely posed
using the vocabulary of field operators { F;}, but (1) the plan-
ning time is worst-case exponential, and (2) we do not know
how to characterize the class of parts that can be oriented by
a specific family of operators {F;}. However, the resulting
strategies are optimal in length.

Manipulation grammars are discussed in much greater de-
tail by Bohringer and colleagues (forthcoming) in the context
of the limited manipulation vocabulary generated by vibrating
plates.

7. Conclusions and Open Problems

The following Table 1 summarizes fields and agorithms for
manipulation tasks with programmable force fields, and in-
cludes some additional recent results.

Less-difficult tasks such as transation can be achieved with
relatively simple fields and without any planning. More com-
plex tasks, such as centering or unique orienting, require in-
creasingly complex fields. However, planning complexity is,
e.g., higher for sequences of squeeze fields, and lower for the
more complex combined radial + squeeze fields. This illus-
trates a trade-off between mechanical complexity (the dexter-
ity and controllability of actuator-array elements) and compu-
tational complexity (the algorithmic difficulty of synthesizing
a strategy). For example, if one is willing to build a device
capable of radia fields, then one reaps great benefits in plan-
ning and execution speed. On the other hand, we can till plan
for simpler devices, but the plan synthesis is more expensive
(worst-case exponentia in the number of equilibria), and we
lose some completeness properties.

We believe that the rapid growth in this research area
will continue. Even though a science base for manipulation
with programmable force fields has emerged, many important
questions remain open. Some topics for future work are listed
in the following paragraphs.

. Universal feeder-orienter (UFO) devices. It was shown
in Proposition 1 that every connected polygonal part
Pwith n vertices has a finite number of stable orien-
tation equilibria when Pis placed into a squeeze field
S. Based on this property, we were able to generate
manipulation strategies for unique part alignment. We
showed in Section 6.1 that by using a combined ra-

dial and squeeze field R + 48, the number of equilibria
can be reduced to O(kn). Using dliptic force fields
f(x,y) = (ax, By) such that a # B and «, B # O, this
bound can be reduced to two (Kavraki 199.5, 1997). In
a stable equilibrium, the part’s major principa axis of
inertia lines up with the squeeze line to minimize the
second moment of inertia

Does there exist a universa field that, for every part

P, has only one unique equilibrium (up to part sym-

metry)? Such afield could be used to build a universal
parts feeder (Abell and Erdmann 1996) that uniquely

positions a part without the need of a clock, sensors, or

programming.

We propose a combined radial and “gravitational” field
R + 8G that might have this property. 8 is a small pos-
itive constant, and G is defined as G(x, y) = (0, -1).
This device design is inspired by the “universal grip-
per” described by Abell and Erdmann (1996). Such a
field could be obtained from aMEMS array that imple-
ments a unit radial force field. Instead of rectangular
actuators in a regular grid, triangular actuators could
be laid out in a polar-coordinate grid. The array could
then be tilted slightly to obtain the gravity component;
hence, such a device would be relatively easy to build.
Alternatively, a resonating speaker, or avibrating disk-
shaped plate that is fixed at the center, might be used to
create a radial force field. Extensive simulations show
that for every part we have tried, one unique total equi-
librium is aways obtained. We are working toward a
rigorous proof of this experimental observation.

Abstraction barriers. We believe that programmable
force fields can be used as an abstraction barrier be-
tween parts positioning and feeding applications and
devices implementing the requisite mechanical two-
dimensional force fields (MEMS arrays, vibratory de-
vices, or other devices). That is, applications such as
parts feeding can be formulated in terms of the force
fields required. This then serves as a specification that
the underlying device technology must deliver. Con-
versely, the capabilities of MEMS-array or vibratory-
device technology can be formulated in terms of the
force fields they can implement. This means that de-
vice designers can potentially ignore certain details of
the application process, and instead focus on match-
ing the required force-field specification. This would
free application engineers from needing to know much
about process engineering, in the same way that soft-
ware and algorithm designers often abstract away from
details of the hardware. Such an abstraction barrier
could permit hierarchica design, and allow application
designs with greater independence from the underlying
device technology.
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Table 1.
Complexity
Task Field(s) Fields Planning Plan Steps
Translate Constant Constant magnitude - 1
and direction
Center Radial Constant magnitude, - 1
continuous directions
Orthogonal squeezes Piecewise constant o) o)
magnitude and direction
Uniquely orient Sequence of squeezes Piecewise constant 0(k2n*  0(kn?)
magnitude and direction
Inertial Smooth magnitude o o)
piecewise-constant direction
Uniquely pose Manipulation grammar m arbitrary fields, om*2E)y  om2FE)
at most E stable equations (not com-
plete)
Sequence of radial + squeeze  Piecewise-continuous 0 (k%n?) O (kn)
magnitude and direction
Elliptic Smooth magnitude and direction o o)
UFO Continuous magnitude and direction - 1

Magnitude control. Consider an array in which the
m agnitude of the actuator forces cannot be controlled.
Does there exist an array with constant magnitude in
which all parts reach one unique equilibrium? Or can
one prove that, without magnitude control, the number
of distinct equilibria is always greater than one?

Geometric filters. This paper focuses mainly on sensor-
less manipulation strategies for unique positioning of
parts. Another important application of programmable
vector fields are geometric filters, which would be use-
ful for the sorting and singulation of parts. Figure 1
shows a simple filter that separates smaller and larger
parts. We are interested in the question, Given n parts,
does there exist a vector field that will separate them
into specific equivalence classes? For example, does
there exist afield that moves small and large rectangles
to the left, and triangles to the right? In particular, it
would be interesting to know whether for any two dif-
ferent parts there exists a sequence of force fields that
will separate them.

Force-field computers. In this paper, we have demon-
strated that even with a rather limited vocabulary of
simple force fields, useful and quite complex tasks such
as sensorless posing or sorting of parts can be per-
formed. It might be possible that force fields could
be used to solve certain classes of problems, by en-
coding them in particular force fields, part shapes, and
initial and goal poses, resulting in a “ force-field com-
puter” that provides a physical implementation of the
problem. Identifying the class of encodable problems

might yield deeper insights into the complexity of parts
manipulation with force-vector fields.

Performance measures. Are there performance mea-
sures for how fast (in real time) an array will orient a
part? In some sense, the actuators are fighting each
other (as we have observed experimentally) when the
part approaches equilibrium. For squeeze grasps, one
measure of “efficiency,” abeit crude, might be the in-
tegral of the magnitude of the moment function, i.e.,

02" |M(6)|d6. The issue is that if, for many poses,
|M ()| is very small, then the orientation process will
be slow. Better measures are also desirable.

Uncertainty. In practice, neither the force-vector field
nor the part geometry will be exact, and both can only be
characterized up to tolerances (Donald 1989). This is
particularly important at the microscopic scale. Within
the framework of potential fields, we can express this
uncertainty by considering not one single potential
function Up, but ratherfamilies ofpotentials that corre-
spond to different values within the uncertainty range.
Bounds on part and force tolerances will correspond to
limits on the variation within these function families.
An investigation of these limits will allow us to obtain
upper error bounds for manipulation tasks under which
a specific strategy will still achieve its goal.

A family of potentia functions is a set {Uy:C —
R}yes where J is an index set. For example, we may
start with a single potentia function U : ¢ — R and
define a family of potentia functions F (U, ¢, z) as
{Ug:C > R|||Ug(p)—U(p)||; <€} for some ¢ and
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norm z. This is analogous to defining a neighborhood in
function space, using, e.g., the compact-open topology.

When we differentiate a family of potential fields (using
the gradient), we obtain a differential inclusion instead
of adifferential equation. So if F(u) = F(u, €, z), then
V F(@u) = {VUslaes.

When considering families of potentials, the equilib-
rium may be known to lie only within a set E;, al-
though we may know that it is dways a point in E;.
If the sets E; are of a small diameter less than some
€> 0, our agorithms could be extended to handle the
e-approximations.

As a more general approach, we propose an algo-
rithm based on back - projctions: for a given part,
let Br,(G)C € =R? xS! be the back-projection
(Lozano-Perez, Mason, and Taylor 1984) of the set
G under F;, where G C @, and F; is a fam-
ily of fidds on R?. Then we wish to calcu-
late a sequence of fields Fy, F, ..., Fy, such that
Bp (BR,(-+-BF, (G)---))=C, where G is a single
point in € (cf. Lozano-Perez, Mason, and Taylor 1984;
Erdmann and Mason 1988; Brost 1988; Donald 1989;
Briggs 1992).

. Output sensitivity. We have seen in Sections 3.1, 6.1,
and 6.2 that the efficiency of planning and executing
manipulation strategies critically depends on the num-
‘ber of equilibrium configurations. Expressing the plan-
ning and execution complexity as a function of the num-
ber of equilibria E, rather than the number of vertices n,
iscaled outputsensitive analsis. In practice, we have
found that there are almost no parts with more than
two distinct (orientation) equilibria, even in squeeze
fields. This is far less than the E = O(kn®) upper
bound derived in Section 3.2. If this observation can be
supported by an exact or even statistical analysis of part
shapes, it could lead to extremely good expected bounds
on plan length and planning time, even for the less
powerful strategies employing manipulation grammars
(note that the complexity of the manipulation grammar
algorithm in Proposition 15 is output-sensitive).

. Discrete force fields. For the manipulation strategies
described in this paper, we assume that the force fields
are continuous, i.e., that the generated forces are dense
compared to the moving part (the Density assumption
in Section 3.3). When manipulating very small parts
on microactuator arrays, this condition may be only
approximately satisfied. We are interested in the limi-
tations of the continuous model, and we would like to
know the conditions under which it is necessary to em-
ploy a different, discrete model of the array that takes
into account individual actuators, as well as the gaps
between actuators. In the work of Bohringer et al.

(1994b), we propose a model for the interaction be-
tween parts and arrays of individual actuators, based
on the theory of limit surfaces (Goya and Ruina 1988;
Goya, Ruina, and Papadopoulos 1991).

» Resonance properties. Is it possible to exploit the dy-
namic resonance properties of parts to tune the control
signal of the array or plate to perform efficient dynamic
mani pul ation?

3-D force fields. It may be possible to generate 3-D
force fields by using Lorentz electromagnetic forces.
Tunable electric coils could be attached to various
points of a 3-D body, suspending the resulting object
in a strong permanent magnetic field using magnetic
levitation (the Lorentz effect) (Hollis and Salcudean
1993; Salcudean, Wong, and Hollis 1995). The tuning
(control) of the electric coils could be affected as fol-
lows: integrated control circuitry could be fabricated
and colocated with the coils, and conceivably, a power
supply. The control could be globally affected using
wireless communication, or the control of each coil
could evolve in time until the part is reoriented as de-
sired. The Lorentz forces could then be deactivated to
bring the object to rest on the ground. Planning for
such a 3-D device might reduce to that described by
Erdmann and colleagues (1993).
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