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Programmable force vector �elds can be used to control a variety of 
exible planar
parts feeders such as massively-parallel micro actuator arrays or transversely vibrating
(macroscopic) plates. These new automation designs promise great 
exibility, speed, and
dexterity|they may be employed to position, orient, singulate, sort, feed, and assemble
parts.

A wealth of geometric and algorithmic problems arise in the control and programming
of manipulation systems with many independent actuators. The theory of programmable
force �elds represents the �rst systematic attack on massively-parallel distributed manipu-
lation based on geometric and physical reasoning. We show how to develop combinatorially
precise planning algorithms that synthesize force �eld strategies for controlling a very large
number of distributed actuators in a principled, geometric, task-level fashion.

When a part is placed on our devices, the programmed force �eld induces a force and
moment upon it. Over time, the part may come to rest in a dynamic equilibrium state.
By chaining together sequences of force �elds, the equilibrium states of a part in the �eld
may be cascaded to obtain a desired �nal state. The resulting strategies require no sensing
and enjoy e�cient planning algorithms.

This thesis introduces new experimental devices that can implement programmable
force �elds. In particular, we describe the M-Chip (Manipulation Chip), a massively-
parallel array of programmable micro-motion pixels. Both the M-Chip, as well as macro-
scopic devices such as transversely vibrating plates, may be programmed with force �elds,
and their behavior predicted and controlled using our equilibrium analysis. We demon-
strate lower bounds (i.e., impossibility results) on what the devices cannot do, and results
on a classi�cation of control strategies yielding design criteria by which well-behaved ma-
nipulation strategies may be developed. We de�ne composition operators to build complex
strategies from simple ones, and show the resulting �elds are also well-behaved.

Finally, we consider parts feeders that can only implement a very limited \vocabulary"
of force �elds. We show how to plan and execute parts-posing and orienting strategies for
these devices, but with a signi�cant increase in planning complexity and some sacri�ce
in completeness guarantees. We discuss the tradeo� between mechanical complexity and
planning complexity.
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Chapter 1

Introduction

Programmable force �elds o�er a fundamentally new approach to automated parts ma-
nipulation. Instead of handling a part directly (e.g. with a robot gripper), a force �eld
surrounding the part causes it to move. Programmable force �elds promise great 
exibil-
ity, speed, and dexterity for a wide variety of tasks such as parts orienting, positioning,
singulating, sorting, feeding, and assembly. Recently, several devices have been invented
that can implement programmable force �elds: in particular, actuator arrays fabricated
with micro electro mechanical system (MEMS) technology, as well as macroscopic vibrat-
ing plates. These new automation designs permit distributed, parallel, non-prehensile,
sensorless manipulation tasks that make them particularly attractive for handling batch
microfabricated parts, whose small dimensions and large numbers would prohibit conven-
tional pick-and-place operations.

A wealth of geometric and algorithmic problems arise in the control and programming
of manipulation systems with many independent actuators. The theory of programmable
force �elds represents the �rst systematic, computational attack on massively-parallel dis-
tributed manipulation based on geometric and physical reasoning. The goal of this thesis
is to develop a science base for manipulation using programmable force �elds, and to
demonstrate experiments with prototype devices that support this theory. We present
combinatorially precise planning algorithms that synthesize strategies for controlling and
coordinating a very large number of distributed actuators in a principled, task-level fashion.

When a part is placed on such a device, the programmed vector �eld induces a force
and moment upon it. Over time, the part may come to rest in a dynamic equilibrium state.
In principle, we have tremendous 
exibility in choosing the vector �eld, since using e.g.
MEMS array technologies, the force �eld may be programmed pixel-wise. Hence, we have
a lot of control over the resulting equilibrium states. By chaining together sequences of
vector �elds, the equilibria may be cascaded to obtain a desired �nal state | for example,
this state may represent a unique orientation or pose of the part. A system with such a
behavior exhibits the feeding property [AHLM95]:

A system has the feeding property over a set of parts P and a set of initial
con�gurations I if, given any part P 2 P, there is some output con�guration
q such that the system can move P to q from any location in I.

Our work on programmable vector �elds is related to nonprehensile manipulation [DJR95,
ZE96,EM96,Erd96]: in both cases, parts are manipulated without form or force closure.

This thesis describes our experimental devices, a technique for analyzing them called
equilibrium analysis, lower bounds (i.e., impossibility results) on what the devices cannot

1
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(a)

(c)

(b)

Figure 1.1: Sensorless sorting using force vector �elds: parts of di�erent sizes are �rst
centered and subsequently separated depending on their size.

do, and results on a classi�cation of control strategies yielding design criteria for useful
manipulation strategies. Then we describe new manipulation algorithms using these tools.
In particular, we improve earlier planning algorithms by a quadratic factor, show how to
simultaneously orient and pose a part, and we relax dynamic and mechanical assumptions
to obtain more robust and 
exible strategies.

One corollary of our results is a method for coordinating the actions of a large dis-
tributed actuation system. The method is applicable to any controllable array capable of
generating force vector �elds. Such systems comprise arrays with up to tens of thousands
of independently-servoable actuator cells, which we call motion pixels. We show how these
systems can be programmed in a �ne-grained, SIMD (Single Instruction Multiple Data)
fashion to exert force �elds on the manipulated object, thereby accomplishing massively-
parallel distributed manipulation. Moreover, the theory of programmable force �elds gives
a method for controlling a very large number of distributed actuators in a principled,
geometric, task-level fashion. Whereas many control theories for multiple independent
actuators break down as the number of actuators becomes very large, our systems should
only become more robust as the actuators become denser and more numerous.

We pose the question Which force �elds are suitable for manipulation strategies? In
particular, we ask whether the �elds may be classi�ed. That is: can we characterize all
those force �elds in which every part has stable equilibria? While this question has been
well-studied for a point mass in a �eld, the issue is more subtle when lifted to a body with
�nite area, due to the moment covector. To answer, we �rst demonstrate impossibility
results, in the form of \lower bounds:" there exist perfectly plausible �elds which induce
no stable equilibrium in very simple parts.

Fortunately, there is also good news. We present conditions for �elds to induce well-
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behaved equilibria when lifted, by exploiting the theory of potential �elds. While potential
�elds have been widely used in robot control [Kha86,KR88,RK92,RW95], micro-actuator
arrays present us with the ability to explicitly program the applied force at every point
in a vector �eld. Whereas previous work has developed control strategies with arti�cial
potential �elds, our �elds are non-arti�cial (i.e., physical). Arti�cial potential �elds require
a tight feedback loop, in which, at each clock tick, the robot senses its state and looks up
a control (i.e., a vector) using a state-indexed navigation function (i.e., a vector �eld). In
contrast, physical potential �elds employ no sensing, and the motion of the manipulated
object evolves open-loop (for example, like a particle in a gravity �eld). This alone makes
our application of potential �eld theory to micro-devices unique and novel. Moreover, such
�elds can be composed using addition, sequential composition, \parallel" composition by
superposition of controls, or by a new kind of \morphing" of control signals which we will
de�ne.

Previous results on array manipulation strategies may be formalized using equilibrium
analysis. In [BDMM94a] we proposed a family of control strategies called squeeze patterns
and a planning algorithm for parts-orientation. This �rst result proved an O(n2) upper
bound on the number E of orientation equilibria of a non-pathological (see Section 2.2)
planar part with n vertices. This yields an O(E2) = O(n4) planning algorithm to uniquely
orient a part, under certain geometric, dynamic and mechanical assumptions. In this thesis,
we argue that this bound on equilibria appears tight. This results in a high planning and
execution complexity.

Using our equilibrium analysis, we introduce radial �elds, which satisfy our stability
property. Radial �elds can then be combined with squeeze �elds. We show this has several
bene�ts:

1. The number of equilibria drops to E = O(n).
2. The planning complexity drops to O(E2) = O(n2).
3. Throughout the strategy execution, every part rotates about one �xed, unique point

(after the �rst step).
4. This means that we can dispense with one critical assumption (called 2Phase

in [BDMM94a]): We no longer need to assume that the transitional and rotational
motions induced by the array interact in a \quasi-static" and \sequential" manner.

We motivate our results by beginning with a description of the experimental devices we
are interested in programming. In particular, we describe our progress in building the
M-Chip (Manipulation Chip), a massively parallel array of programmable micro-motion
pixels. As proof of concept, we demonstrate a prototype M-Chip containing up to 15,000
silicon actuators in one square inch. Our strategies are also applicable to macroscopic
parts-feeders. We describe a planar, vibratory orienting and manipulation device which
also uses our novel strategies.

Both of these devices foreground several key practical issues. First, the strategies em-
ployed by our improved algorithms and analysis require signi�cant mechanical and control
complexity | even though they require no sensing. While we believe such mechanisms
are feasible to build using the silicon MEMS (Micro Electro Mechanical System) technolo-
gies we advocate, it is undeniable that no such device exists yet (the M-Chips will have
pixel-wise programmability, but the �rst generation does not have su�cient directional
resolution to implement highly accurate radial strategies). For this reason, we introduce
and analyze strategies composed of �eld sequences that we know are implementable using
current (microscopic or macroscopic) technology. Each strategy is a sequence of pairs of
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squeezes satisfying certain \orthogonality" properties. Under these assumptions, we can
ensure
(a) equilibrium stability,
(b) relaxed mechanical and dynamical assumptions (the same as (4), above), and
(c) complexity and completeness guarantees.
The framework is quite general, and applies to any set of primitive operations satisfying

certain \�nite equilibrium" properties (which we de�ne) | hence it has broad applicability
to a wide range of devices. In particular, we view the restricted class of �elds as a vocabulary
and their rules of composition as a grammar , resulting in a \language" of manipulation
strategies. Under our grammar, the resulting strategies are guaranteed to be well-behaved.

Finally, both our radial strategies and our �nite manipulation grammar have the fol-
lowing advantage over previous manipulation algorithms for programmable vector �elds:
previous algorithms such as those described in [BDMM94a,BDM96b] guarantee to uniquely
orient a part, but the translational position of the part is unknown at the strategy's ter-
mination. Both of our new algorithms guarantee to position the part uniquely (up to part
symmetry) in translation as well as orientation space. Like the algorithms in [BDMM94a,
BDM96b], the new algorithms require no sensing, and work from any initial con�guration
to uniquely pose the part. In particular, the initial con�guration is never known to the
(sensorless) execution system, which functions open-loop.

The complexity and completeness guarantees we obtain for manipulation grammars
are considerably weaker than for the ideal radial strategies. For radial strategies, we show
that any non-pathological planar part with �nite area contact can be placed in a unique
pose in O(E) = O(n) steps. Under the simpli�ed manipulation grammar, our planner is
guaranteed to �nd a strategy if one exists (if one does not exist, the planner will signal
this). However, it is not known whether there exists a strategy for every part. This lack
of completeness of manipulation grammar strategies stands in contrast to the complete
general squeeze and radial algorithms for which a guaranteed strategy exists for all parts.
Moreover, the planning algorithm is worst-case exponential instead of merely quadratic.

Table 1.1 summarizes the various force �elds discussed in this thesis, and lists their
corresponding manipulation tasks as well as planning and execution complexities. These
results illustrate a tradeo� between mechanical complexity (the density and force resolution
of �eld elements) and planning complexity (the computational di�culty of synthesizing a
strategy). If one is willing to build a device capable of radial �elds, then one reaps great
bene�ts in planning and execution speed. On the other hand, we can still plan for simpler
devices, but the plan synthesis is more expensive (worst-case exponential in the number
of equilibria), and we lose some completeness properties.

Finally, the desire to implement complicated �elds raises the question of control uncer-
tainty. We close by describing how families of potential functions can be used to represent
control uncertainty, and analyzed for their impact on equilibria, and we will give an outlook
on still open problems and future work.

1.1 Parts Feeders

It is often extremely costly to maintain part order throughout the manufacture cycle. For
example, instead of keeping parts in pallets, they are often delivered in bags or boxes,
whence they must be picked out and sorted. A parts feeder is a machine that orients
such parts before they are fed to an assembly station. Currently, the design of parts
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Table 1.1: Summary of programmable force �elds, and their corresponding manipulation
tasks for polygonal parts (with n vertices and k combinatorially distinct bisectors).

Task Field(s) Complexity
Fields Planning Plans

Translate Constant Constant magnitude
and direction

- 1

Center Radial Constant magnitude,
continuous directions

- 1

Orthogonal
squeezes

Piecewise constant
magnitudes and
directions

O(1) O(1)

Orient
uniquely (up
to symmetry)

Sequence of
squeezes

Piecewise constant
magnitudes and
directions

O(k2n4) O(kn2)

Inertial Smooth magnitude,
piecewise constant
direction

O(1) O(1)

Pose uniquely
(up to
symmetry)

Manipulation
grammar

m simple, arbitrary
�elds with at most E
stable equilibria

O(m22E) O(m2E)
(not
complete)

Sequence of
radial +
squeeze

Piecewise continuous
magnitude and
direction

O(k2n2) O(kn)

Elliptic Smooth magnitude and
direction

O(1) O(1)

Universal
(conjecture)

Continuous magnitude
and direction

- 1
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feeders is a black art that is responsible for up to 30% of the cost and 50% of workcell
failures [NW78,BPM82,FD86,Sch87,SS87]. \The real problem is not part transfer but part
orientation.", Frank Riley, Bodine Corporation [Ril83, p.316, his italics]. Thus although
part feeding accounts for a large portion of assembly cost, there is not much scienti�c basis
for automating the process.

The most common type of parts feeder is the vibratory bowl feeder, where parts in
a bowl are vibrated using a rotary motion, so that they climb a helical track. As they
climb, a sequence of ba�es and cutouts in the track create a mechanical \�lter" that
causes parts in all but one orientation to fall back into the bowl for another attempt at
running the gauntlet [BPM82,Ril83,San91]. To improve feed rate, it is sometimes possible
to design the track so as to mechanically rotate parts into a desired orientation (this is
called conversion). Related methods use centrifugal forces [FD86], reciprocating forks, or
belts to move parts through the �lter [RL86].

Sony's APOS parts feeder [Hit88] uses an array of nests (silhouette traps) cut into a
vibrating plate. The nests and the vibratory motion are designed so that the part will
remain in the nest only in one particular orientation. By tilting the plate and letting parts

ow across it, the nests eventually �ll up with parts in the desired orientation. Although the
vibratory motion is under software control, specialized mechanical nests must be designed
for each part [MJU91].

The reason for the success of vibratory bowl feeders and the Sony APOS system is the
underlying principle of sensorless manipulation [EM88] that allows parts positioning and
orienting without sensor feedback. This principle is even more important at small scales,
because sensor data will be less accurate and more di�cult to obtain. The APOS system
or bowl feeders are unlikely to work in the micro domain: instead novel device designs
for micro manipulation tasks are required. The theory of sensorless manipulation is the
science base for developing and controlling such devices.

Reducing the amount of required sensing is an example ofminimalism [CG94,BBD+95],
which pursues the following agenda: For a given robot task, �nd the minimal con�guration
of resources required to solve the task. Minimalism is interesting because doing task A
without resource B proves that B is somehow inessential to the information structure of
the task. In robotics, minimalism has become increasingly in
uential. Raibert [RHPR93]
showed that walking and running machines could be built without static stability. Erd-
mann and Mason [EM88] showed how to do dexterous manipulation without sensing.
McGeer [McG90] built a biped, kneed walker without sensors, computers, or actuators.
Canny and Goldberg [CG94] argue that minimalism has a long tradition in industrial man-
ufacturing, and developed geometric algorithms for orienting parts using simple grippers
and accurate, low cost light beams. Brooks [Bro86] has developed online algorithms that
rely less extensively on planning and world models. Donald et al. [DJR95,BBD+95] have
built distributed teams of mobile robots that cooperate in manipulation without explicit
communication. We intend to use these results for our experiments in micro manipulation,
and to examine how they relate to our theoretical proofs of minimalist systems.

1.1.1 Microfabricated Actuator Arrays

A wide variety of micromechanical structures (devices with features in the �m range) has
been built recently by using processing techniques known from VLSI industry (see for
example [Gab95,MAA+95,Mac96b,Mac96a]). Various microsensors and microactuators



7

Figure 1.2: A large unidirectional actuator array (scanning electron microscopy). Each
actuator is 180�240�m2 in size. Detail from a 1 in2 array with more than 15,000 actuators.

have been shown to perform successfully. E.g. a single-chip air-bag sensor is commercially
available [Ana91]; video projections using an integrated, monolithic mirror array have been
demonstrated recently [Sam93]. A fully integrated scanning tunneling microscope (STM)
has been developed in our group [XMM95,MAA+95]. However, the fabrication, control,
and programming of micro-devices that can interact and actively change their environment
remains challenging. Problems arise from

1. unknown material properties and the lack of adequate models for mechanisms at very
small scales,

2. the limited range of motion and force that can be generated with microactuators,
3. the lack of su�cient sensor information with regard to manipulation tasks, and
4. design limitations and geometric tolerances due to the fabrication process.
MEMS manipulator arrays have been proposed by several researchers, among others

Pister et al. [PFH90], Fujita et al. [Fuj93], Storment et al. [SBW+94], Will et al. [LW95],
Jacobson et al. [JGJB+95], or Suh et al. [SGD+96]. For an overview see Table 1.2,
or [LW95,BDMM94b,BDMM94a]. Our arrays (Figure 1.2) are fabricated using a SCREAM
(Single-Crystal Silicon Reactive Etching and Metallization) process developed at the Cor-
nell Nanofabrication Facility [ZM92,SZM93]. The SCREAM process is low-temperature,
and does not interfere with traditional VLSI [SM96]. Hence it opens the door to building
monolithic micro electro mechanical systems with integrated microactuators and control
circuitry on the same wafer.

Our design is based on microfabricated torsional resonators [MZSM93,MM96]. Each
unit device consists of a rectangular grid etched out of single-crystal silicon suspended by
two rods that act as torsional springs (Figure 6.1). The grid is about 200�m long and
extends 120�m on each side of the rod. The rods are 150�m long. The current asymmetric
design has 5�m high protruding tips on one side of the grid that make contact with an
object lying on top of the actuator (Figure 1.3). The other side of the actuator consists of a
denser grid above an aluminum electrode. If a voltage is applied between silicon substrate
and electrode, the dense grid above the electrode is pulled downward by the resulting
electrostatic force. Simultaneously the other side of the device (with the tips) is de
ected
out of the plane by several �m. Hence an object can be lifted and pushed sideways by the
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Figure 1.3: M-Chip microactuator consisting of a single-crystal silicon grid with 5�m
high tips. There is a 5 � 10�m clearance between the released actuator and the silicon
substrate.

Table 1.2: Devices that can implement programmable force �elds.

Devices in this thesis Principle of Actuation

SCREAM M-Chip (Section 6.1) Electrostatic torsional micro
oscillators

Polyimide cilia array (Section 6.2) Thermobimoph and electrostatic
micro actuators with CMOS circuits
(built at Stanford [SGD+96])

Transversely vibrating plate
(Section 6.3)

Attraction to vibratory nodal lines

Other devices (selection)
Planar MEMS actuator system
[PFH90]

Air levitation with micro nozzles,
electrostatic actuation

Biomimetic micro motion system
[AOF93]

Thermobinorph micro actuators

Distributed micro motion system
[KF93b]

Air levitation and actuation with
micro nozzles

Intelligent motion surface [LTW+95] Magnetic actuators on CMOS

Virtual vehicle [LM97,LMC97] Array of servoed roller wheels

Longitudinally vibrating plate
[RCG97]

Nonlinearity between velocity and
friction
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Parts

Node

Figure 1.4: Vibratory plate parts feeder: an aluminum plate (size 50 cm � 40 cm) exhibits
a vibratory minimum. Parts are attracted to this nodal line and reach stable equilibrium
there.

actuator.
Because of its low inertia (resonance in the high kHz range) the device can be driven in a

wide frequency range from DC to several 100 kHz AC. Our actuators need not be operated
at resonance: They can also be servoed to periodically \hit" an object on top, hence
applying both lateral and vertical forces. Our calculations, simulations and experiments
have shown that the force generated with a torsional actuator is approximately 10�N ,
which corresponds to a force-per-area ratio of 100�N=mm2, large enough to levitate e.g.
a piece of paper (1�N=mm2) or a silicon wafer (10�N=mm2).

Each actuator can generate motion in one speci�c direction if it is activated; otherwise it
acts as a passive frictional contact. Figure 1.2 shows a small section of such a unidirectional
actuator array, which consists of more than 15,000 individual actuators. The combination
and selective activation of several actuators with di�erent motion bias allows us to generate
various motions in discrete directions, spanning the plane (Figure 6.3).

The fabrication process and mechanism analysis are described in more detail in Sec-
tion 6.1, and in [BDMM94b,BDMM94a,BDM96a]. A di�erent micro array design based on
polyimide cilia with thermobimoph actuation is discussed in Section 6.2 and in [SGD+96].

1.1.2 Macroscopic Vibratory Parts Feeders

B�ohringer et al. [BBG95] have presented a device that uses the force �eld created by
transverse vibrations of a plate to position and align parts. The device consists of an
aluminum plate that is attached to a commercially available electrodynamic vibration
generator,1 with a linear travel of 0:02m, and capable of producing a force of up to 500N
(Figure 1.4). The input signal, specifying the waveform corresponding to the desired
oscillations, is fed to a single coil armature, which moves in a constant �eld produced by
a ceramic permanent magnet in a center gap con�guration.

For low amplitudes and frequencies, the plate moves longitudinally with no perceptible
transverse vibrations. However, as the frequency of oscillations is increased, transverse

1Model VT-100G, Vibration Test Systems, Akron, OH, USA.
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vibrations of the plate become more pronounced. The resulting motion is similar to the
forced transverse vibration of a rectangular plate, clamped on one edge and free along
the other three sides. This vibratory motion creates a force �eld in which particles are
attracted to locations with minimal vibration, called the nodal lines. This �eld can be
programmed by changing the frequency, or by employing clamps as programmable �xtures
that create various vibratory nodes.

Figure 1.4 shows two parts, shaped like a triangle and a trapezoid, after they have
reached their stable poses. To better illustrate the orienting e�ect, the curve showing
the nodal line has been drawn by hand. Nota bene: This device can only use the �nite
manipulation grammar described in Section 5.2 since it can only generate a constrained
set of vibratory patterns, and cannot implement general squeeze and radial strategies.

Section 6.3 gives more details on our manipulation experiments with transversely vi-
brating plates.



Chapter 2

Equilibrium Analysis For

Programmable Vector Fields

For the generation of manipulation strategies with programmable vector �elds it is essential
to be able to predict the motion of a part in the �eld. Particularly important is determining
the stable equilibrium poses a part can reach in which all forces and moments are balanced.
This equilibrium analysis was introduced in our short conference paper [BDMM94a], where
we presented a theory of manipulation for programmable vector �elds, and an algorithm
that generates manipulation strategies to orient polygonal parts without sensor feedback
using a sequence of squeeze �elds. We now review the algorithm in [BDMM94a] and
give a detailed proof of its complexity bounds. The tools developed here are essential to
understanding our new and improved results, and will be used throughout this thesis to
develop complexity bounds for our distributed manipulation algorithms.

We will in general assume that the dynamics of a part moving in the force �eld is
governed by �rst-order dynamics. This assumption is based on extensive experimentation
with the devices presented in Section 6. In a �rst-order system, the velocity of a part
is directly proportional to the force acting on it. Basically, it is a rigid body dynamical
system that is heavily damped.

2.1 Squeeze Fields and Equilibria

In [BDMM94a] we proposed a family of control strategies called squeeze �elds and a plan-
ning algorithm for parts-orientation.

De�nition 1 [BDM96b] Assume l is a straight line through the origin. A squeeze �eld
f is a two-dimensional force vector �eld de�ned as follows:

1. If z 2 R 2 lies on l then f(z) = 0.
2. If z does not lie on l then f(z) is the unit vector normal to l and pointing towards
l.

We refer to the line l as the squeeze line, because l lies in the center of the squeeze
�eld. See Figure 2.1 for examples of squeeze �elds.

Assuming quasi-static motion, an object will move perpendicularly towards the line l
and come to rest there. We are interested in the motion of an arbitrarily shaped (not
necessarily small) part P . Let us call P1, P2 the regions of P that lie to the left and to the

11
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Figure 2.1: Sensorless parts orienting using force vector �elds: The part reaches unique ori-
entation after two subsequent squeezes. There exist such orientating strategies for all polyg-
onal parts. See URL http://www.cs.cornell.edu/home/karl/MicroManipulation for
an animated simulation.

right of l, respectively, and c1, c2 their centers of area. In a rest position both translational
and rotational forces must be in equilibrium. We obtain the following two conditions:

I: The areas P1 and P2 must be equal.
II: The vector c2 � c1 must be normal to l.

P has a translational motion component normal to l if I does not hold. P has a rotational
motion component if II does not hold (see Figures 2.2, 2.3, and 2.4)This assumes a uniform
force distribution over the surface of P , which is a reasonable assumption for a 
at part
that is in contact with a large number of elastic actuators.

De�nition 2 A part P is in translational equilibrium if the forces acting on P are bal-
anced. P is in orientational equilibrium if the moments acting on P are balanced. Total
equilibrium is simultaneous translational and orientational equilibrium.

Let (x0; y0; �0) be an equilibrium pose of P . (x0; y0) is the corresponding translation
equilibrium, and �0 is the corresponding orientation equilibrium.

Note that conditions I and II do not imply that in equilibrium, the center of area of P
has to coincide with the squeeze line l. For example, consider a large and a small square
connected by a long rod of negligible width (Figure 2.5). If the rod is long enough, the
center of area will lie outside of the large square. However, in equilibrium the squeeze line
l will always intersect the large square.
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P1

P2

c1

squeeze line

c2

l

Figure 2.2: Equilibrium condition: To balance force and moment acting on P in a unit
squeeze �eld, the two areas P1 and P2 must be equal (i.e., l must be a bisector), and the
line connecting the centers of area c1 and c2 must be perpendicular to the node line.

2.2 Polygon Bisectors and Complexity

Consider a polygonal part P in a unit squeeze �eld as described in Section 2.1. In this
section we describe how to determine the orientations �i in which P achieves equilibrium.
This construction will show that equilibria always exist as long as the contact areas have
�nite size, and that for connected parts the orientation equilibria are discrete. More pre-
cisely, if a connected part is in equilibrium in a squeeze �eld, there are discrete values for its
orientation, and its o�set from the center of the squeeze line. The equilibrium is of course
independent of its position along the squeeze line. Hence, in the remainder of Section 2,
when using the term discrete equilibria, we mean that the orientation and o�set of the part
is discrete. We will derive upper bounds on the number of these discrete equilibria.

De�nition 3 A bisector of a polygon P is a line that cuts P into two regions of equal
area.

Proposition 4 [BDM96b] Let P be a polygon whose interior is connected. There exist
O(k n2) bisectors such that P is in equilibrium when placed in a squeeze �eld such that the
bisector coincides with the squeeze line. n is the part complexity measured as the number
of polygon vertices. k denotes the maximum number of polygon edges that a bisector can
cross.

If P is convex, then the number of bisectors is bounded by O(n).

For most part geometries, k is a small constant.1 However in the worst-case, patholog-
ical parts can reach k = O(n). A (e.g. rectilinear) spiral-shaped part would be an example
for such a pathological case, because every bisector intersects O(n) polygon edges.

Lemma 5 Given a polygon P and a line l : y = mx + c. Let n be the number of vertices
of P .

1In particular, in [BDMM94a] we assumed that k = O(1).



14

Figure 2.3: Part in a unit squeeze �eld. The resulting forces for the left and the right
region of the part are shown acting at the respective centers of mass: the part experiences
a translational force and a moment.

Figure 2.4: Part in equilibrium: The resulting forces for the left and the right region of
the part are of equal magnitude and opposite direction, and the resulting moment is zero.
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COM

l

Figure 2.5: Part consisting of two squares connected by a long, thin rod. The part is in
total equilibrium, but its COM does not coincide with the squeeze line l.

1. There exist O(n2) combinatorially di�erent ways how a line l can intersect P .
2. Let a and b be the intersections of bisector l with the convex hull of P . As m varies
from �1 to +1, a and b progress monotonically counterclockwise about the convex
hull of P .
3. If the interior of P is connected, then there exists a unique bisector of P for every
m 2 R .

Combinatorially equivalent intersections of polygon P are all those placements of the
intersecting line l such that the sets of left and right polygon vertices are �xed. A necessary
condition for combinatorial equivalence is that l intersects the same ordered set of polygon
edges.
Proof:

1. There are O(n2) di�erent placements for l such that it coincides with more than
one vertex of P . Hence all placements of l fall into one of O(n2) combinatorially
equivalent classes.

2. See [DO90, Lemma 3.1].
3. Assume l is a bisector of P with a �xed slopem. Since P is connected, the intersection

between l and P must be a line segment of non-zero length. Hence a translation of l
e.g. towards the left will cause a strictly monotonous decrease of the left area segment
of P , and vice versa. Therefore the bisector placement of l for a given slope m is
unique.

2

Consider the bisector l of polygon P for changing m values, as described in Lemma 5.
The intersections of l with the convex hull of P , a and b, progress monotonically about the
convex hull. In general, this progression corresponds to a rotation and a translation of l.

In the following proof for Proposition 4, we investigate the relationship between the
location of the bisector, and the corresponding left and right areas of P and its respective
centers of mass. This will allow us to show that for combinatorially equivalent bisector
placements there are only a �nite number of possible equilibria, and that this number is
bounded by O(k).
Proof: [Proposition 4] Consider two combinatorially equivalent placements of bisector
l on polygon P . We will show that the number of equilibria for this bisector placement is
bounded by O(k). Since there are O(n2) such placements for P (see Lemma 5), the total
number of equilibria will be O(k n2).
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Figure 2.6: Two non-parallel lines l and l0 in combinatorially equivalent intersection with
polygon P .

Rotating the Bisector. Consider the line l and a point s that lies on l (Figure 2.6). The
direction of l is given by a vector r. Assume for now that the line l intersects two edges
of the polygon P in the points r1 and r2. Also assume that these edges have directions a1
and a2. Now consider another line l0 with direction r0 that intersects l in s. Assume that l
and l0 have combinatorially equivalent intersections with polygon P , and that l0 intersects
the polygon edges in r01 and r02. Let us write ri = s + �ir and r0i = s + �0ir

0. Then the
polygon area between l and l0 is:

A =
1

2
(�02r

0 � �2r � �01r
0 � �1r)

=
1

2
(�02�2 � �01�1)(r

0 � r)

In the general case where l and l0 intersect multiple edges of some arbitrary polygon P at
points r1; r2; : : : ; rk and r01; r

0
2; : : : ; r

0
k (k even), the polygon area between l and l0 is:

A =
1

2

kX
i=1

(�1)iAi

=
1

2
(r0 � r)

kX
i=1

(�1)i�0i�i

W.l.o.g. let �k 6= 0. Then r0 can be written as r0 = r+�ak for some � 2 R , and the above
equation becomes:

=
1

2
((r + �ak)� r)

kX
i=1

(�1)i�0i�i

=
�

2
(ak � r)

kX
i=1

(�1)i�0i�i (2.1)
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Figure 2.7: Two parallel lines l0 and l00 in combinatorially equivalent intersection with
polygon P .

From the two vector equations r0i = s+�0ir
0 and r0i = s+�ir+�ai, � 2 R , we can determine

�0i as:

�0i =
�i(ai � r)

(ai � r) + �(ai � ak)
(2.2)

If we also choose the edge direction vectors ai such that (ai� r) = 1, then Equations (2.2)
and (2.1) simplify to the following rational functions in �:

�0i =
�i

1 + �(ai � ak)
(2.3)

A =
�

2

kX
i=1

(�1)i �2i
1 + �(ai � ak)

(2.4)

Let us look at the denominator di(�) = 1 + �(ai � ak) in more detail. This is important
because we shall see that in all formulas we will obtain, the denominators consist only of
di(�). For an arbitrary polygon, di is a linear function of �. If all ai are parallel then
di = 1. If the polygon is rectilinear, i.e. all ai are either parallel or perpendicular, then
di(�) = 1 if ai k ak, and di(�) = 1 + �a? if ai ? ak, where a? is constant. So in this case
there are only two di�erent denominators, one of which is 1.

Translating the Bisector. We now consider the case where l0 shifts parallel (Figure 2.7).
Analogously to the previous paragraph, let r0i = s0 + �0ir

0, and r00i = s00 + �00i r
0. Also let the

vector between s0 and s00 be s00 � s0 = �a2. Then the polygon area between l0 and l00 is:

B = �a2 � 1

2
((r02 + r002)� (r01 + r001))

=
�

2
(�02 + �002 � �01 � �001)(a2 � (r + �a2))

=
�

2
(�02 + �002 � �01 � �001) (2.5)
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In the general case l0 and l00 intersect multiple edges of some arbitrary polygon P at
points r01; r

0
2; : : : ; r

0
k and r001 ; r

00
2 ; : : : ; r

00
k. Now the �00i can be determined from the two vector

equations r00i = r0i + �ai, � 2 R , and r00i = s00 + �00i r
0:

�00i = �0i � �
ai � ak
ai � r0

= �0i � �
ai � ak

1 + �(ai � ak)

=
�i � �(ai � ak)

1 + �(ai � ak)
(2.6)

Then the polygon area between l0 and l00 is:

B =
�

2

kX
i=1

(�1)i(�0i + �00i )

=
�

2

kX
i=1

(�1)i2�i � �(ai � ak)

1 + �(ai � ak)
(2.7)

This is a quadratic polynomial in � (unless all ai are parallel, in which case it simpli�es to
the linear equation B = �

Pk
i=1(�1)i�i ).

Maintaining the Bisector Property. From the above two paragraphs we see that if the
bisector l is rotated to l0, then the left and right areas are changed by a value A (6= 0
in general) as described in Equation (2.4). Hence a subsequent shift of l0 is necessary to
restore the bisector property, by changing the areas by a value B, as described in Equation
(2.7).

This implies the condition A + B = 0, with A and B given by Equations (2.4) and
(2.7):

A+B =
1

2

kX
i=1

(�1)i��
2
i + 2��i � �2(ai � ak)

1 + �(ai � ak)

= 0 (2.8)

This equation ensures that l is a bisector of P . It is a necessary and su�cient condition
for translational equilibrium in a unit squeeze �eld. Equation (2.8) is a rational function
in �, and a quadratic polynomial in �. Hence for all combinatorially equivalent bisectors,
we can obtain an explicit formula to describe � as a function of �. In case that all ai are
parallel, Equation (2.8) simpli�es to a linear equation:

Pk
i=1(�1)i

�
� �i

2
+ �

�
�i = 0.

In general, Equation (2.8) is equivalent to a polynomial in � and � whose degree
depends on the number k of polygon edges intersected by the bisectors l, l0, or l00. The
degree of this polynomial is limited by k for �, and by 2 for �. In the rectilinear case the
degrees for � and � are limited by 2.

Zero Moment. After rotating (parameter �, obtain l0) and translating (parameter �,
obtain l00) the bisector l, its intersections with the polygon edges move from ri to

r00i = s+ �00i r
0 + �ak

= s+
�i � �(ai � ak)

1 + �(ai � ak)
(r + �ak) + �ak (2.9)
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If all ai are parallel, this simpli�es to r00i = s+ �ir + (��i + �) ak.
Suppose that cl and cr are the left and the right centers of area of P , and Al and Ar are

the respective area sections, so Al+Ar = A. We are interested in how these points change
when the bisector changes. Note that always c = 1

A
(Alcl +Arcr), and if P is bisected (i.e.

Al = Ar =
1
2
A) then c = 1

2
(cl + cr).

We consider the area between l and l00, which can be written as a sum of quadrangles
(ri; rk; r

00
k; r

00
i ). The weighted center of mass of this area can be determined as:

C =
kX

i=1

(�1)i1
6
((ri + rk)(ri � rk) + (rk + r00k)(rk � r00k)

+(r00k + r00i )(r
00
k � r00i ) + (r00i + ri)(r

00
i � ri)) (2.10)

For the left areas the following relationship holds:

A00
l c

00
l = Alcl + C

c00l =
Al

A00
l

cl +
1

A00
l

C

and similarly, for the right areas:

c00r =
Ar

A00
r

cr � 2

A00
l

C

Hence

c00l � c00r =
Al

A00
l

cl � Ar

A00
r

cr +

 
1

A00
l

+
1

A00
r

!
C

Both l and l00 are bisectors, so Al = Ar = A00
l = A00

r =
A
2
, and

c00l � c00r = cl � cr +
4

A
C

For orientational equilibrium we require that the line connecting the centers of mass, c00r�c00l ,
and the direction of the bisector r0 are perpendicular:

(c00l � c00r) � r0 = (cl � cr +
4

A
C) � r0

= 0 (2.11)

The value of C can be determined by using Equations (2.10) and (2.9), and r0 = r + �ak.
Equation (2.11) is a necessary and su�cient condition for orientational equilibrium.

By using the expressions derived in Equations 2.1 to 2.10, both Equations (2.8, for
translational equilibrium) and (2.11, for orientational equilibrium) can be expressed as
rational functions in � and � whose numerator / denominator degrees are O(k) = O(1) for
� and O(1) for �. Hence we can obtain two polynomial functions of degree O(k) for � and
O(1) for �. There are at most O(k) solutions to these two equations. 2
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2.3 Planning of Manipulation Strategies

In this section we present an algorithm for sensorless parts alignment with squeeze
�elds [BDMM94a,BDM96b]. Recall from Section 2.2 that in squeeze �elds, the equilibria
for connected polygons are discrete (modulo a neutrally stable translation parallel to the
squeeze line which we will disregard for the remainder of Section 2).

To model our actuator arrays and vibratory devices, we made the following assump-
tions:
Density: The generated forces can be described by a vector �eld, i.e., the individual mi-

croactuators are dense compared to the size of the moving part.
2Phase: The motion of a part has two phases: (1) Pure translation towards l until the

part is in translational equilibrium. (2) Motion in translational equilibrium until
orientational equilibrium is reached.

Note that due to the elasticity and oscillation of the actuator surfaces, we can assume
continuous area contact, and not just contact in three or a few points. If a part moves
while in translational equilibrium, in general the motion is not a pure rotation, but also
has a translational component.

De�nition 6 [BDM96b] Let � be the orientation of a connected polygon P in a squeeze
�eld, and let us assume that condition I holds. The turn function t : � ! f�1; 0; 1g
describes the instantaneous rotational motion of P :

t(�) =

8><>:
1 if P will turn counterclockwise

�1 if P will turn clockwise
0 if P is in total equilibrium (Fig. 2.8).

See Figure 2.8 for an illustration. The turn function t(�) can be obtained e.g. by taking
the sign of the lifted moment MP (z) for poses z = (x; y; �) in which the lifted force fP (z)
is zero.

De�nition 6 immediately implies the following lemma:

Lemma 7 [BDM96b] Let P be a polygon with orientation � in a squeeze �eld such that
condition I holds. P is stable if t(�) = 0, t(�+) � 0, and t(��) � 0. Otherwise P is
unstable.

Proof: Assume the part P is in a pose (x; y; �) such that condition I is satis�ed. This
implies that the translational forces acting on P balance out. If in addition t(�) = 0,
then the e�ective moment is zero, and P is in total equilibrium. Now consider a small
perturbation �� > 0 of the orientation � of P while condition I is still satis�ed. For a stable
equilibrium, the moment resulting from the perturbation �� must not aggravate but rather
counteract the perturbation. This is true if and only if t(� + ��) � 0 and t(� � ��) � 0. 2

Using this lemma we can identify all stable orientations, which allows us to construct the
squeeze function [Gol93] of P (see Figure 2.8c), i.e. the mapping from an initial orientation
of P to the stable equilibrium orientation that it will reach in the squeeze �eld:

Lemma 8 [BDM96b] Let P be a polygonal part on an actuator array A such that as-
sumptions Density and 2Phase hold. Given the turn function t of P , its corresponding
squeeze function s : S1 ! S

1 is constructed as follows:
1. All stable equilibrium orientations � map identically to �.
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(c) (d)

(a)

π

2π

Figure 2.8: (a) Polygonal part. Stable (thick line) and unstable (thin line) bisectors are
also shown. (b) Turn function, which predicts the orientations of the stable and unstable
bisectors. (c) Squeeze function, constructed from the turn function. (d) Alignment strat-
egy for two arbitrary initial con�gurations. See URL http://www.cs.cornell.edu/home

/karl/Cinema for an animated simulation.

2. All unstable equilibrium orientations map (by convention) to the nearest counter-
clockwise stable orientation.
3. All orientations � with t(�) = 1 (�1) map to the nearest counterclockwise (clock-
wise) stable orientation.

Then s describes the orientation transition of P induced by A.
Proof: Assume that part P initially is in pose (x; y; �) in array A. Because of 2Phase,
we can assume that P translates towards the center line l until condition I is satis�ed
without changing its orientation �. P will change its orientation until the moment is zero,
i.e. t = 0: A positive moment (t > 0) causes counterclockwise motion, and a negative
moment (t < 0) causes clockwise motion until the next root of t is reached. 2

We conclude that any connected polygonal part, when put in a squeeze �eld, reaches
one of a �nite number of possible orientation equilibria [BDMM94a,BDM96b]. The motion
of the part and, in particular, the mapping between initial orientation and equilibrium
orientation is described by the squeeze function, which is derived from the turn function
as described in Lemma 8. Note that all squeeze functions derived from turn functions are
monotone step-shaped functions.

Goldberg [Gol93] has given an algorithm that automatically synthesizes a manipulation
strategy to uniquely orient a part, given its squeeze function. While Goldberg's algorithm
was designed for squeezes with a robotic parallel-jaw gripper, in fact, it is more general,
and can be used for arbitrary monotone step-shaped squeeze functions. The output of
Goldberg's algorithm is a sequence of angles that specify the required directions of the
squeezes. Hence these angles specify the direction of the squeeze line in our force vector
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unstable

stable unstable

(a) Parallel-Jaw Gripper

stable

(b) Squeeze Field

Figure 2.9: Equilibrium con�gurations for a square-shaped part using (a) a frictionless
parallel-jaw gripper and (b) a MEMS squeeze �eld. In this example, stable and unstable
equilibria are reversed.

�elds (for example the two-step strategies in Figures 2.1 and 2.8d).
It is important to note that the equilibria obtained by a MEMS squeeze �eld and

by a parallel-jaw gripper will typically be di�erent, even when the squeeze directions are
identical. For example, to see this, consider squeezing a square-shaped part (Figure 2.9).
Stable and unstable equilibria are reversed. This shows that our mechanical analysis of
equilibrium is di�erent from that of the parallel-jaw gripper. Let us summarize these
results:

Theorem 9 [BDM96b] Let P be a polygon whose interior is connected. There exists an
alignment strategy consisting of a sequence of squeeze �elds that uniquely orients P up to
symmetries.

Since the strategies of Theorem 9 consist of �elds with squeeze lines at arbitrary angles
through the origin, we call them general S1 squeeze strategies, or henceforth general squeeze
strategies.

Corollary 10 [BDM96b] The alignment strategies of Theorem 9 have O(k n2) steps, and
they may be computed in time O(k2 n4), where k is the maximum number of edges that a
bisector of P can cross. In the case where P is convex, the alignment strategy has O(n)
steps and can be computed in time O(n2).

Proof: Proposition 4 states that a polygon with n vertices has E = O(k n2) stable ori-
entation equilibria in a squeeze �eld (O(n) if P is convex). This means that the image
of its corresponding squeeze function is a set of E discrete values. Given such a squeeze
function, Goldberg's algorithm [Gol93] constructs alignment strategies with O(E) steps.
Planning complexity is O(E2). 2

Goldberg's strategies [Gol93] have the same complexity bounds for convex and non-
convex parts, because when using squeeze grasps with a parallel-jaw gripper, only the
convex hull of the part need be considered. This is not the case for programmable vector
�elds, where manipulation strategies for non-convex parts are more expensive. As described
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a10 a20 a30

R10 R20 R30 b

Figure 2.10: Sample rectangles R10, R20, and R30. Edge a is 10, 20, and 30% longer than
edge b, respectively.

in Section 2.2, there could exist parts that have E = 
(k n2) orientation equilibria in
a squeeze �eld, which would imply alignment strategies of length 
(k n2) and planning
complexity 
(k2 n4).

Note that the turn and squeeze functions have a period of � due to the symmetry of
the squeeze �eld; rotating the �eld by an angle of � produces an identical vector �eld.
Rotational symmetry in the part also introduces periodicity into these functions. Hence,
general squeeze strategies (see Theorem 9) orient a part up to symmetry, that is, up to
symmetry in the part and in the squeeze �eld. Similarly, the grasp plans based on squeeze
functions in [Gol93] can orient a part with a macroscopic gripper only modulo symmetry in
the part and in the gripper.2 Since we reduce to the squeeze function algorithm in [Gol93],
it is not surprising that this phenomenon is also manifested for squeeze vector �elds as
well. For a detailed discussion of parts orientation modulo symmetry see [Gol93].

In Section 5.1 we will present new and improved manipulation algorithms that reduce
the number of equilibria to E = O(k n).

This scheme may be generalized to the case where l is slightly curved, as in the \node"
of the vibrating plate in Figure 1.4. See [BBG95] for details. The remaining sections of
this paper investigate using more exotic �elds (not simple squeeze patterns) to

1. allow disconnected polygons,
2. relax assumption 2Phase,
3. reduce the planning complexity,
4. reduce the number of equilibria,
5. reduce the execution complexity (strategy length), and
6. determine feasibility results and limitations for manipulation with general force �elds.

2.4 Example: Uniquely Orienting Rectangular Parts

To demonstrate the equilibrium analysis from Section 2.1 and the alignment algorithm
from Section 2.3, we will generate plans for uniquely orienting several planar polygonal
parts (up to part symmetry). In particular, here we will consider the simple case of three
rectangles R10, R20, and R30, which have sides a and b such that a is 10, 20, and 30 percent
longer than b, respectively (Figure 2.10).

Our algorithm �rst determines stable and unstable equilibria of the parts, which corre-
spond to the negative and positive steps in the turn function, respectively (see Lemma 7).

2Parallel-jaw gripper symmetry is also modulo �.
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l

a=2

R

c1

c2

x

y

(a=2; �)

b=2

c0

�

Figure 2.11: Analytically determining the moment function for a rectangular part R with
sides of length a and b. c0 is the center of mass of the segment below the x-axis. c1 and c2
are the centers of the triangular segments between x-axis and line l.

Table 2.1: Equilibria of rectangular parts R10, R20, and R30 in a unit squeeze �eld with
vertical squeeze line.

Part Equilibrium orientations �
stable unstable

R10 0:97; 2:18; 4:11; 5:32 0; �=2; �; 3�=2
R20 1:29; 1:85; 4:43; 4:99 0; �=2; �; 3=pi=2
R30 �=2; 3�=2 0; �

The turn function can be obtained as the sign of the moment function, which, for polyg-
onal parts, is a piecewise rational function, and can be derived automatically from the
part geometry. For example, consider the rectangle R in Figure 2.11: A line l through the
origin bisects R. If l is placed such that it intersects the right edge of R at (a=2; �) with
�b=2 � � � b=2, then the COM of the segment below l is

c� =

 
ab

2
c0 +

a�

4
(c1 � c2)

!
2

ab

= c0 +
�

2b
2c1

= (
a�

3b
;� b

4
+
�2

3b
)

The moment function is the inner product between the vector c�, and the direction of
the line l. For balanced moment, this product must be zero, which gives us the following
condition for equilibrium:

0 = (
a�

3b
;� b

4
+
�2

3b
) � (a

2
; �)

=
a2�

6b
� b�

4
+
�3

3b
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Figure 2.12: Stable (dark) and unstable (white) equilibria of three rectangular parts in a
unit squeeze �eld with vertical squeeze line: (a) R10, edge ratio 1.1; (b) R20, edge ratio 1.2;
(c) R30, edge ratio 1.3. R10 and R20 exhibit two stable equilibria, R30 exhibits only one.

=
�

12b
(2a2 � 3b2 + 4�2)

So � = 0

or � = �1

2

p
3b2 � 2a2

= � b

2

p
3� 2c2 for a = cb

This means that for rectangles with edge ratio c �
q
3=2 � 1:22 (such as R10 and R20),

there exist equilibrium orientations at angles � = arctan(�
q
3=c2 � 2). For rectangles

with larger edge ratio c (such as R30), an equilibrium exists only at � = 0. A similar
analysis can be performed for all other placements of the line l, see [BDM96b] for more
details. Equilibrium orientations as determined by our planner are shown in Figure 2.12
and Table 2.1. Since all of our parts are symmetric with respect to rotation by �, for the
remainder of this example we will consider all angles modulo �.

From the equilibrium orientations in Table 2.1 the algorithm generates the squeeze
function, according to Lemma 8. Note that steps in the squeeze function occur at angles
corresponding to unstable equilibria, while the image of the squeeze function is the set of
all stable equilibrium orientations (see Figure 2.13).

Finally, the squeeze function is used as input for Goldberg's planning algorithm [Gol93],
which returns as output a sequence of squeeze angles. A sequence of two squeeze �elds, with
a relative angle of �=2, is su�cient to uniquely orient both R10 and R20. See Figure 2.14
for a sample execution of this plan for two arbitrary initial poses. R30 requires only one
squeeze �eld at an arbitrary angle.

It was shown in [BDM96b] that this algorithm can uniquely orient arbitrary polygons
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Figure 2.13: Moment function, turn function, and squeeze function for three rectangular
parts: (a) R10, edge ratio 1.1; (b) R20, edge ratio 1.2; (c) R30, edge ratio 1.3. R10 and R20

exhibit two stable equilibria for � in the range [0 : : : �], R30 exhibits only one.
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Step 1

# #

Step 2

Figure 2.14: Two-step alignment plan for rectangle R20. After two steps, R20 reaches a
unique orientation � independent of its initial pose. However, the position (x; y) is not
unique.

from any initial con�guration (up to part symmetry). However, recall that for this al-
gorithm to work we have made several important assumptions that idealize the practical
vibratory feeding devices presented in Section 6.3.

1. 2Phase assumption, which states that translational and rotational motion of the
part is decoupled, implying that the turn function is independent of the initial o�set
of the part from the squeeze line; see also Section 2.5.

2. Depending on the part shape, the algorithm may generate alignment plans with unit
squeeze �elds at arbitrary angles. Due to mechanical design limitations, usually not
all of these �elds will be feasible to implement on most vibratory device setups.

3. The resulting plans uniquely orient a part, but the �nal translational position can
not be predicted.

In the remainder of this thesis, we will investigate new manipulation strategies that ad-
dress these key issues. In particular, in Section 5.2 we will develop algorithms for devices
with a limited \vocabulary" of available force �elds, which will result in a \manipulation
grammar" for unique, sensorless posing strategies for arbitrary planar, polygonal parts.

2.5 Relaxing the 2Phase Assumption

In Section 2.3, assumption 2Phase allowed us to determine successive equilibrium po-
sitions in a sequence of squeezes, by a quasi-static analysis that decouples translational
and rotational motion of the moving part. For any part, this obtains a unique orientation
equilibrium (after several steps). If 2Phase is relaxed, we obtain a dynamic manipulation
problem, in which we must determine the equilibria (x; �) given by the part orientation �
and the o�set x of its center of mass from the squeeze line. A stable equilibrium is a (xi; �i)



28

pair in R �S1 that acts as an attractor (the x o�set in an equilibrium is, surprisingly, usu-
ally not 0, see Figure 2.5). Again, we can compute these (xi; �i) equilibrium pairs exactly,
as outlined in Section 2.2.

Considering (xi; �i) equilibrium pairs has another advantage. We can show that, even
without 2Phase, after two successive, orthogonal squeezes, the set of stable poses of any
part can be reduced from C = R

2 � S
1 to a �nite subset of C (the con�guration space

of part P ); see Claim 39 (Section 5.2.1). Subsequent squeezes will preserve the �niteness
of the state space. This will signi�cantly reduce the complexity of a task-level motion
planner. Hence if assumption 2Phase is relaxed, this idea still enables us to simplify the
general motion planning problem (as formulated e.g. by Lozano-P�erez, Mason, and Taylor
in [LPMT84]) to that of Erdmann and Mason [EM88]. Conversely, relaxing assumption
2Phase raises the complexity from the \linear" planning scheme of Goldberg [Gol93] to
the forward-chaining searches of Erdmann and Mason [EM88], or Donald [Don90].



Chapter 3

Lower Bounds: What Programmable

Vector Fields Cannot Do

We now present \lower bounds" | constituting vector �elds and parts with pathological
behavior, making them unusable for manipulation. These counterexamples show that we
must be careful in choosing programmable vector �elds, and that, a priori , it is not obvious
when a �eld is well-behaved.

3.1 Unstable Fields

In Section 2 we saw that in a vector �eld with a simple squeeze pattern (see again Fig-
ure 2.1), polygonal parts reach certain equilibrium poses. This raises the question of a
general classi�cation of all those vector �elds in which every part has stable equilibria.
There exist vector �elds that do not have this property even though they are very similar
to a simple squeeze.

De�nition 11 A skewed �eld fS is a vector �eld given by fS(x; y) = �sign(x)(1; �), where
0 6= � 2 R .
Proposition 12 A skewed �eld induces no stable equilibrium on a disk-shaped part.

Proof: Consider Figure 3.1, which shows a skewed �eld with � = �2
3
: Only when the

center of the disk coincides with the center of the squeeze pattern do the translational
forces acting on the disk balance. But it will still experience a positive moment that will
cause rotation. 2

Proposition 13 A diagonally skewed �eld (� = �1) induces no stable equilibrium on a
square-shaped part.

Proof: To reach equilibrium in a diagonally skewed �eld, the squeeze line has to bisect the
part such that the connector between the left and the right centers of area is diagonal (i.e.,
parallel to the force vectors). An analysis similar to the proof of Proposition 4 (Section 2.2)
or Figure 2.11 (Section 2.4) shows that for a square, no bisector placement can achieve an
angle with the connector of less than 83�. 2

29
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Figure 3.1: Unstable part in the skewed squeeze �eld (� = �2
3
). The disk with center on

the squeeze line will keep rotating. Moreover, it has no stable equilibrium in this �eld.

Figure 3.2: S-shaped part PS with four rigidly connected point-contact \feet" in unstable
total equilibrium (forces and moments balance). There exists no stable equilibrium position
for this part in a vector �eld with a simple squeeze pattern. For an animation see URL
http://www.cs.cornell.edu/home/karl/MicroManipulation/Patho.

3.2 Unstable Parts

Similarly we would like to identify the class of all those parts that always reach stable
equilibria in particular vector �elds. From Section 2 we know that connected polygons in
simple squeeze �elds satisfy this condition. This property relies on �nite area contacts: it
does not hold for point contacts. As a counterexample consider the part PS in Figure 3.2.
Proposition 14 There exist parts that do not have stable equilibria in a simple squeeze
�eld.

Proof: The S-shaped part in Figure 3.2 has four rigidly connected \feet" with small
contact surfaces. As the area of each of these four feet approaches zero, the part has no
stable equilibrium in a simple squeeze �eld. There is only one orientation for the part in
which both force and moment balances out, and this orientation is unstable. 2

In Section 4.2 we will discuss this phenomenon in greater detail, after the tools necessary
for a complete mathematical analysis have been developed.

Finally, the number of stable equilibria of a given part in
uences both the planning
complexity and the plan length of an alignment strategy. It also a�ects the resolution of
the vector �eld that is necessary to perform a strategy accurately. Even though all parts we
have considered exhibit only one or two orientation equilibria, there exist no tight bounds
on the maximum number of orientation equilibria in a unit squeeze �eld.
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Proposition 15 Let n be the number of vertices of a polygon P , and let k be the maximum
number of edges that a bisector of P can cross:

A. Regular polygons have n stable orientation equilibria in a squeeze �eld.
B. Every connected polygon has O(k n2) stable orientation equilibria in a squeeze �eld.

Proof:
A. Because of their part symmetry, regular polygons have 2n equilibria. Half of them

are stable, the other n are unstable.
B. See Section 2.2.

2

As described in Section 2.2, there exist simple polygons with n vertices that can be
bisected by a straight line in up to O(k n2) topologically di�erent ways [BDH97]. This
suggests that there could be parts that have 
(k n2) orientation equilibria in a squeeze
�eld, which would imply alignment strategies of length 
(k n2) and planning complexity

(k2 n4).

While the counterexample in Figure 3.2 may be plausibly avoided by prohibiting parts
with \point contacts," the other examples (Figure 3.1 and Proposition 15B) are more prob-
lematic. In Section 4, we show how to choose programmable vector �elds that exclude some
of these pathological behaviors, by using the theory of potential �elds to describe a class of
force vector �elds for which all polygonal parts have stable equilibria. In Section 5.1, we
show how to combine these �elds to obtain new �elds in which all parts have only O(k n)
equilibria.

We believe parts with point contact (not having �nite area contact) will behave badly
in all vector �elds. We can model a point contact with delta functions, such that e.g. for

a point contact P0 at (x0; y0):
Z
P0

f dA =
Z
f �(x0; y0) dA = f(x0; y0). This model is

frequently used in mechanics (see e.g. [Erd94]). Point contact permits rapid, discontinuous
changes in force and moment. Hence, bodies with point contact will tend to exhibit
instabilities, as opposed to 
at parts that are in contact with a large number of (elastic)
actuators. Finally, we believe that as the area contact|the size of the \feet" of a part|
approaches zero, the part may become unstable. This represents a design constraint on
parts which are to be manipulated using programmable planar parts feeders.

The lower bounds we demonstrate are indications of the pathologies that can arise
when �elds without potential or parts with point contact are permitted. Each of our
counterexamples (Figures 3.1 and 3.2) is \generic" in that it can be generalized to a very
large class of similar examples. However, these lower bounds are just a �rst step, and one
wishes for examples that delineate the capabilities of programmable vector �elds for planar
parts manipulation even more precisely.

The separating �eld shown in Figure 1.1c is not a potential �eld, and there exist parts
that will spin forever, without equilibrium, in this �eld (this follows by generalizing the
construction in Figure 3.1). However, for speci�c parts, such as those shown in Figure 1.1,
this �eld is useful if we can pose the parts appropriately �rst (e.g., using the potential �eld
shown in Figure 1.1b).

Finally, we may \surround" non-potential �elds with potential �elds to obtain reason-
able behavior in some cases. Figure 1.1 shows how to \surround" a non-potential �eld in
time by potential �elds, to eliminate pathologies. Similarly, we can surround non-potential
�elds spatially . For example, if �eld 1.1c could be surrounded by a larger potential �eld,
then after separation, parts can reach a stable equilibrium.
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Non-potential �elds can be used safely with the following methodology: Let H � C =
R

2�S1 be the undesirable limit set. For example, H could be a limit cycle where the part
spins forever. Let bPV (H) be the weak pre-image [LPMT84,Don89] of H under the �eld V .
If we can ensure that the part starts in a con�guration z 62 bPV (H), it will not reach the
unwanted limit cycle. For example, in Figure 1.1 the centering step (b) ensures that the
part does not end up on the border between the two separating �elds, where it would spin
forever in step (c).



Chapter 4

Completeness: Classi�cation Using

Potential Fields

We are interested in a general classi�cation of all those vector �elds in which every part
has stable equilibria. As motivation, recall that a skewed vector �eld, even though very
similar to a regular squeeze �eld (see again Figure 2.1), induces no stable equilibrium in a
disk-shaped part (Figure 3.1). In this section we give a family of vector �elds that will be
useful for manipulation tasks. These �elds belong to a speci�c class of vector �elds: the
class of �elds that have a potential.

We believe that �elds without potential will often induce pathological behavior in many
parts. Fields without potential admit paths along which a particle (point mass) will gain
energy. Since mechanical parts are rigid aggregations of particles, this may induce unstable
behavior in larger bodies. However, there are some cases where non-potential �elds may
be useful. For example, see Figure 1.1c, which is not a potential �eld. Such �elds may
be employed to separate but not to stabilize, pose, or orient parts. This strong statement
devolves to our proof that �elds like Figure 3.1 do not have well-behaved equilibria. Hence,
they should only be employed when we want to induce an unstable system that will cast
parts away from equilibrium, e.g. in order to sort or separate them.

Consider the class of vector �elds on R
2 that have a potential, i.e. �elds f in which

the work is independent of the path, or equivalently, the work on any closed path is zero,I
f �ds = 0. In a potential �eld each point (x; y) is assigned a real value U(x; y) that can be

interpreted as its potential energy. When U is smooth, then the vector �eld f associated
with U is the gradient �rU . In general, U(x; y) is given, up to an additive constant, by

the path integral
Z
�
f � ds (when it exists and it is unique), where � is an arbitrary path

from a �xed reference point (x0; y0) to (x; y). Assuming �rst-order dynamics, When U is
smooth, an ideal point object is in stable equilibrium when it is at a local minimum of U .

De�nition 16 Let f be a force vector �eld on R 2, and let p be a point that is o�set from
a �xed reference point q by a vector r(p) = p � q. We de�ne the generalized force F as
the force and moment induced by f at point p:

F (p) = (f(p) ; r(p)� f(p)) (4.1)

Let P be a part of arbitrary shape, and let Pz denote the part P in pose z = (x; y; �) 2 C.

33



34

lif
tin

g:
 a

re
a 

in
te

gr
al

potential: path integral

FP UP

Uf

Z
P Z

�

Z
� Z

P

Figure 4.1: Determining the potential, and lifting are commutative operations on force
vector �elds.

We de�ne the lifted force �eld fP as the area integral of the force induced by f over Pz:

fP (z) =
Z
Pz
f dA (4.2)

The lifted generalized force �eld FP is de�ned as the area integral of the force and moment
induced by f over P in con�guration z:

FP (z) =
Z
Pz
F dA

=
�Z

Pz
f dA ;

Z
Pz
r� f dA

�
(4.3)

Hence, FP is a vector �eld on C. Finally, we de�ne the lifted potential UP : C ! R . UP

is the area integral of the potential U over P in con�guration z:

UP (z) =
Z
Pz
U dA (4.4)

We now show that the category of potential �elds is closed under the operation of lifting,
and that UP is the potential of FP (see Figure 4.1). Note that U need not be smooth.

Let g : X ! Y and h : Y ! Z. Let k : X ! Z be the function which is the composition
of g and h, de�ned by k(x) = h(g(x)). In the following proposition, we use the notation
h(g) to denote k, the function composition of g and h.

Proposition 17 Let f be a force �eld on R
2 with potential U , and let P be a part of

arbitrary shape. For the lifted generalized force �eld FP and the lifted potential UP the

following equality holds: UP =
Z
P
U dA =

Z
�
FP � dz+ c, where � is an arbitrary path in C

from a �xed reference point, and c is a constant.

Proof: Given a force �eld f with potential U , and a part P . We de�ne P � as the set
f(r; �) j (r cos �; r sin �) 2 Pg � R � S

1. P � is a representation of P in polar coordinates:
p = (r cos �; r sin �) 2 P if and only if (r; �) 2 P �.

We write Pz to denote P in pose z = (xz; yz; �z). If P is moved into pose z, then the
point p moves to pz = (xz+r cos(�z+�) ; yz+r sin(�z+�)) = (xz; yz)+rz. Let us assume
that for a given P , the COM of P is at 0; this implies that the COM of Pz lies at (xz; yz).
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We de�ne three families of functions �, �, and � as follows:
�r;� : [0; 1] ! R

2

such that �r;� is a smooth path in R 2 with �r;�(0) = 0 and �r;�(1) = p0 = (r cos �; r sin �).
�z : [0; 1] ! R

2 � S
1

such that �z is a smooth path in R 2 � S
1 with �z(0) = 0 and �z(1) = z = (xz; yz; �z).

�r;� : R
2 � S

1 ! R
2

(x; y; �) 7! (x+ r cos(� + �) ;
y + r sin(� + �))

So �z is an arbitrary smooth path from 0 to z in C, and �r;�(�z) is a smooth path in
R

2 from p0 = (r cos �; r sin �) to pz = (xz + r cos(�z + �) ; yz + r sin(�z + �)). Recall that
�r;�(�z) is the function composition of �z and �r;�.

We are interested in the potential of U at pz.

U(pz) =
Z
�
f � ds

where � is some path from 0 to pz. The integral is path-
independent because f has potential U . Since we can choose
any path, we choose a path � that consists of two parts: (1) a
path from 0 to the point p0, and (2) a path from p0 to pz.

=
Z
�r;�

f � ds +
Z
�r;�(�z)

f � ds
Note that the path �r;�(�z), given by the composition of �z and
�r;�, depends on z as well as on r and �, but �r;� is independent
of z. The left integral is the potential di�erence between p0 and
0. W.l.o.g. let us choose U(0) = 0.

= U(p0) +
Z
�z
f(�r;�) � (J dz)

where J is the Jacobian

J =

 
@�x
@x

@�x
@y

@�x
@�

@�y
@x

@�y
@y

@�y
@�

!
=
�
1 0 �r sin(�+�)
0 1 r cos(�+�)

�
which is the derivative of �r;�. f(�r;�) is the function composi-
tion of �r;� and f . Also note that dz = (dx; dy; d�).

= U(p0) +
Z
�z

�
fx(�r;�) ; fy(�r;�) ;

r cos(� + �)fy(�r;�)� r sin(� + �)fx(�r;�)) � dz

= U(p0) +
Z
�z
F (�r;�) � dz (4.5)

Equation 4.5 states that the potential at a point pz = (xz+r cos(�z+�) ; yz+r sin(�z+
�)) can be determined as the sum of two integrals: The �rst integrates the force f over
a path from 0 to p0 = (r cos �; r sin �). If we choose U(0) = 0, then the �rst integral is
the potential at point p0. The right part of the expression can be understood as the path
integral of the generalized force from p0 to pz.

With this result, we can now consider the lifted potential UP at a point z =
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(xz; yz; �z) 2 C.

UP (z) =
Z
Pz
U(p) dA

=
ZZ
P �

U(pz) r dr d�

where pz = (xz + r cos(�z + �) ; yz + r sin(�z + �)) such that
(r; �) 2 P �.

=
ZZ
P �

�
U(p0) +

Z
�z
F (�r;�) � dz

�
r dr d�

by using Equation 4.5. Again, F (�r;�) denotes the function com-
position of �r;� and F .

=
ZZ
P �

U(p0) r dr d� +
ZZ
P �

�Z
�z
F (�r;�) � dz

�
r dr r�

The �rst expression is the area integral of U over P . From
De�nition 16 it follows that this expression is equal to UP (0)
(note that UP (0) is a constant which does not depend on z).

= UP (0) +
ZZ
P �

�Z 1

0
F (�r;�(�z(t))) � � 0z(t) dt

�
r dr r�

where � 0z is the derivative of �z. The dot product yields a scalar
value. We can now switch the integrals.

=
Z 1

0

�ZZ
P �

F (�r;�(�z(t))) � � 0z(t) r dr d�
�
dt+ UP (0)

� 0z is constant with respect to the integration parameters r and
�. Hence we can move � 0z outside of the area integral.

=
Z 1

0

�ZZ
P �

F (�r;�(�z(t))) r dr d�
�
� � 0z(t) dt+ UP (0)

=
Z 1

0

�ZZ
P �

F (�z;x(t) + r cos(�z;�(t) + �) ;

�z;y(t) + r sin(�z;�(t) + �)) r dr d�
�
� � 0z(t) dt+ UP (0)

where �z = (�z;x ; �z;y ; �z;�).

=
Z 1

0

 ZZ
P �

�z(t)

F (r cos �; r sin �) r dr d�

!
� � 0z(t) dt+ UP (0)

where P �
�z(t)

= f(r; �) j (r cos �; r sin �) 2 P�z(t)g.

=
Z 1

0

 Z
P�z(t)

F dA

!
� � 0z(t) dt+ UP (0)

=
Z 1

0
FP (�z(t)) � � 0z(t) dt+ UP (0)

by de�nition of the lifted force FP .

=
Z
�z
FP � dz+ UP (0)

Hence UP is indeed the potential of FP . 2
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Figure 4.2: Two triangles Pz and Pz0 with reference points z and z0 whose symmetric
di�erence is less than �.

We believe that a shorter proof is possible by using di�erential forms for the case that
both f and U are smooth. However, since the �elds in consideration are usually not smooth
(e.g. unit squeeze or radial �elds) we give the longer general proof here.

Corollary 18 Let f be a force �eld on R 2 with potential U , and let P be a part of arbitrary
shape. For the lifted generalized force FP and the lifted potential UP the following equality
holds if UP is di�erentiable: rUP = �FP .

Proof: Follows directly from Proposition 17. 2

So again, UP (x; y; �) can be interpreted as the potential energy of part P in con�g-
uration (x; y; �). Therefore we obtain a lifted potential �eld UP whose local minima are
the stable equilibrium con�gurations in C for part P . Furthermore, potential �elds are
closed under addition and scaling. We can thus create and analyze more complex �elds by
looking at their components. In general, the theory of potential �elds allows us to classify
manipulation strategies with vector �elds, o�ering new insights into equilibrium analysis
and providing the means to determine strategies with stable equilibria. For example, it
allows us to show that orientation equilibrium in a simple squeeze �eld is equivalent to the
stability of a homogeneous boat 
oating in water, provided its density is � = 1

2
�water (for

references on boat stability see e.g. [Gil56, pp. 42�] or [New77, pp. 290�]).

4.1 Properties of Lifted Force and Potential Fields

In this section we show that for a polygonal part P , the lifted force �eld is always contin-
uous, and the lifted potential is always smooth.

Proposition 19 Consider a polygon P at two con�gurations z = (x; y; �) and z0 =
(x0; y0; �0), z; z0 2 C = R

2 � S
1. For all � > 0 there exists a � > 0 such that if z0 lies

within a �-ball around z, z0 2 B�(z), then �(Pz4Pz0) < � (�(�) denotes the size of an area,
and 4 is the symmetric di�erence of two sets).

Proof: First we will create a region S around Pz such that for any perturbed triangle
Pz0 � S, the non-overlapping regions of Pz and Pz0 are less than a given � in size. Then
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we will show that there always exists a region B�(z) around z such that if z0 2 B�(z) then
Pz0 lies in S.

For now let us assume that Pz is a triangle in con�guration z, and let a be the length
of its longest side. Consider the set S = Pz � B�(0), for some � > 0 (Figure 4.2). The
area of S � Pz is �(S � Pz) < 3�(a + 2�). Let us choose � < 1

9
min(1; �; �=a). Then if

� < 1, �(S � Pz) <
1
3
(�+ 2�2) < �. If � � 1, �(S � Pz) <

1
3
(� + 2) < �. So in both cases, if

Pz0 � S, then the area of the symmetric di�erence Pz 4 Pz0 is at most �.
We are interested in the distance between a point p 2 Pz, and the corresponding

perturbed point p0 2 Pz0 . We can describe the points p and p0 as p = (x+r cos(�+�); y+
r sin(� + �)) and p0 = (x0 + r cos(�+ �0); y0 + r sin(� + �0)), where r and � are the length
and the angle of a line from the reference point of P to the point p. The distance between
the x-coordinates is

jxp � xp0 j = jx+ r cos(�+ �)� x0 � r cos(�+ �0)j
� jx� x0j+ j2r sin 2�+ � + �0

2
sin

� � �0

2
j

� jx� x0j+ rj� � �0j

If we choose � = �
4max(1;r)

, we obtain

jxp � xp0 j � �=4 + �=4

= �=2

Similarly, jyp � yp0j < �=2, and hence jp � p0j < �. We conclude that p0 2 S whenever
z0 2 B�(z). Hence we can always �nd a �-ball around z such that the areas of Pz and Pz0

di�er by at most � (by choosing � < �
4max(1;r)

, i.e. � < min(1;�;�=a)
36max(1;r)

).

This proof generalizes to arbitrary polygons (e.g. by using triangulations). 2

Proposition 20 Let P be a polygonal part in a force �eld f with potential U . The lifted
force �eld fP (z), and the lifted generalized force �eld FP (z), with z = (x; y; �) 2 C = R

2�S1,
are continuous functions in x, y, and �.

Proof: For a given 
 > 0, we want to determine an upper bound on the di�erence between
F (z) and F (z0) for an arbitrary z0 2 B
(z).

jF (z)� F (z0)j =

�����
Z
Pz
f dA�

Z
P
z
0

f dA

�����
�

�����
Z
Pz�Pz0

f dA

�����+
�����
Z
P
z
0�Pz

f dA

�����
� bf  Z

Pz�Pz0
dA+

Z
P
z
0�Pz

dA

!
= bf jPz4 Pz0 j

where bf = supS(jf(x; y)j) with S = fs 2 Pz0 j z0 2 B
(z)g. This supremum exists
whenever f is integrable, i.e. if fP exists.

From Proposition 19 we know that we can make the area of Pz4Pz0 arbitrarily small,
by choosing an appropriate �-ball around z. In particular, we can force it to be less than
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1= bf . Hence we can ensure that jF (z)� F (z0)j < � for any z0 2 B�(z), and any � > 0. This
implies that F is continuous in z = (x; y; �).

An analogous argument holds for the lifted generalized force FP . 2

Corollary 21 For a polygonal part P , the lifted potential �eld UP (z) =
Z
Pz
U dA is C1.

Moreover, rUP (z) = �FP (z), where FP is the lifted generalized force acting on P .

Proof: Because of Proposition 17, UP (z) =
Z
�
FP � dz + c for some constant c. From

Proposition 20 we know that the lifted generalized force FP is continuous, hence the path
integral of FP must be C1. rUP (z) = �FP (z) because of Corollary 18. 2

4.2 Examples: Classi�cation of Force Fields

Example: Radial �elds. A radial �eld is a vector �eld whose forces are directed towards
a speci�c center point. It can be used to center a part in the plane. The �eld in Figure 1.1b
can be understood as a radial �eld with a rather coarse discretization using only four
di�erent force directions. Note that this �eld has a potential.

De�nition 22 [BDM96b] A unit radial �eld R is a two-dimensional force vector �eld
such that R(z) = �z=jzj if z = 0, and R(0) = 0.

Note that R has a discontinuity at the origin. A smooth radial �eld can be de�ned, for
example, by R0(z) = �z.
Proposition 23 [BDM96b] Given the radial �elds R and R0. The corresponding poten-
tial �elds are U(z) = jjzjj, and U 0(z) = 1

2
jjzjj2, respectively.

Note that U is continuous (but not smooth), while U 0 is smooth.

Counterexample: Skewed squeeze �elds. Consider again the skewed squeeze �eld in
Figure 3.1. Note that for example the integral on a cyclic path along the boundary of the
disk is non-zero. This explains why the disk-shaped part has no equilibrium:

Proposition 24 No skewed squeeze �eld has a potential.

Counterexample: Parts with point contacts. Consider again the globally unstable
S-shaped part PS from Section 3 (Figure 3.2). At �rst glance, this example may seem
counterintuitive. It can be shown (see Proposition 32) that there must exist a pose zmin

in which PS achieves minimal potential, so why is PS not stable in pose zmin? To better
understand this problem, we investigate S-shaped parts with �nite area contacts, and the
transition as their contact areas are decreased towards 0.

Let us consider an S-shaped part with four square \feet." We choose the reference
point at the COM, such that two of the feet are centered at �(rA; 0), and the other two
feet are at �(rB cos�; rB sin�), with � constrained to ��=2 < � < �=2 (Figure 4.3). For
the following discussion it will be su�cient to investigate the behavior in a squeeze �eld
with its reference point �xed at (0; 0).
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Figure 4.3: S-shaped part with four rigidly connected square \feet."
rA = 12; rB = 4; � = 60�.

Figure 4.5a shows the moment functionMPS and the potential UPS of an S-shaped part,
where rA = 12, rB = 4, � = 60�, and the feet have area size 10. Notice that in poses with
�-angles corresponding to minima in the potential, the moment has a root with negative
slope, which indicates a stable (orientational) equilibrium. Figures 4.5b and 4.5c show the
(normalized) moments and potentials for parts with feet sizes 5 and 1, respectively. We
observe that with decreasing contact areas, these functions become \less smooth," and the
slope at the moment root increases. Figure 4.5d depicts moment and potential for a part
with in�nitesimally small feet. In this case, the moment function does not have a root
at the minimum of the potential. Rather it exhibits a discontinuity at this orientation.
This has the consequence that the part is not stable in this pose. In fact, for the moment
function in Figure 4.5d there exist no roots with negative slope, hence there exists no stable
equilibrium.

This observation can be made mathematically precise. The exact equations for the
lifted potential and the moment of PS are

UPS = 2 rA j cos �j+ 2 rB j cos(� + �)j (4.6)

MPS = 2 rA S(�) + 2 rB S(� + �) (4.7)

with S(�) =

8><>:
sin � if 0 � � < �=2 or 3=2 � < � < 2�

� sin � if �=2 < � < 3=2 �
0 if � = �=2 or � = 3=2 �

The potential minimum is reached at � = �=2 or � = 3=2 �. However, we see that for
exampleMPS(�=2) = �2 rB S(�=2+�) = �2 rB cos� 6= 0. Furthermore,MPS(�=2�) > 0,
and M(�=2+) < 0. This implies that the part PS will oscillate about � = �=2. Under
�rst-order dynamics, this oscillation will be in�nitesimally small, because any in�nitesimal
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(a) (b)

Figure 4.4: Total equilibria of an S-shaped part with area contacts in a squeeze �eld.
(a) Maximum potential, zmax = (0; 0; �max) such that rA sin �max = �rB sin(�max + �);
�max � �0:24. (b) Minimum potential, zmin = (0; 0; �min); �min � �=2.

angular de
ection of PS results in a restoring moment with opposed orientation. Under
second-order dynamics, the part may have a �nite oscillation amplitude because of the
inertia of the part. However, damping will reduce this amplitude over time.

We conclude that parts with point contacts can exhibit pathological behavior even in
very simple and otherwise well-behaved potential �elds: This example shows that, for such
parts, it is possible that the generalized force is not zero in a pose that minimizes the
potential of the part.

This pathology can not occur when only parts with �nite area contact are allowed:
From Corollary 21 we know that the (lifted) potential of a part with area contact is C1,
hence its gradient exists everywhere. In particular, the gradient is zero at the minimum
of the potential. This means that in a pose with minimum potential the generalized force
must be zero. Let us summarize these results:

Corollary 25 Let P be a part with �nite area contact in a force vector �eld f with potential
U . In a con�guration z0 that corresponds to a local extremum of the lifted potential UP ,
the lifted generalized force FP (z0) is zero.

In other words, for a �rst-order dynamical system and a part P with �nite area contact,
a local minimum (maximum) of UP corresponds to a stable (unstable) equilibrium of P in
f .

Example: Morphing and combining vector �elds. Our strategies from Section 2
have switch points in time where the vector �eld changes discontinuously (Figure 2.1).
This is because after one squeeze, for every part, the orientation equilibria form a �nite set
of possible con�gurations, but in general there exists no unique equilibrium (as shown in
Section 2.3). Hence subsequent squeezes are needed to disambiguate the part orientation.
Therefore these switches are necessary for strategies with squeeze patterns.

One may ask whether, using another class of potential �eld strategies, unique equilibria
may be obtained without discrete switching. We believe that continuously varying vector
�elds of the form (1� t)f + t g, where t 2 [0; 1] represents time, and f and g are squeezes,
may lead to vector �elds that have this property. Here \+" denotes point-wise addition
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Figure 4.5: Moment function MPS (thin line) and potential UPS (thick line) for S-shaped
parts: (a) feet have contacts of area size 10; (b) size = 5; (c) size = 1; (d) point contacts.
Note how a discontinuity is created in the moment function when the contact area is
decreased towards 0.
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of vector �elds, and we will write \f ; g" for the resulting continuously varying �eld.
By restricting f and g to be �elds with potentials U and V , we know that U + V and
(1 � t)U + tV are potential �elds, and hence we can guarantee that f + g and f; g are
well-behaved strategies. These form the basis of our new algorithms in Section 5.

Let us formalize the previous paragraphs. If f is a vector �eld (in this case a squeeze
pattern) that is applied to move part P , we de�ne the equilibrium set EP (f) as the subset
of the con�guration space C for which P is in equilibrium. Let us write f � g for a strategy
that �rst applies vector �eld f , and then vector �eld g to move part P . f + g can be
understood as applying f and g simultaneously. We have shown that in general EP (f) is
not �nite, but for two orthogonal squeezes f and g, the discrete switching strategy f � g
yields a �nite equilibrium set EP (f �g) (see Section 5.2, Claim 39). Furthermore, for some
parts the equilibrium is unique up to symmetry.

We wish to explore the relationship between equilibria in simple vector �elds EP (f) or
EP (g), combined �elds EP (f + g), discretely-switched �elds EP (f � g), and continuously
varying �elds EP (f;g). For example, one may ask whether there exists a strategy with
combined vector �elds, or continuously varying �elds, that, in just one step, reaches the
same equilibrium as a discretely switched strategy requiring multiple steps. Finally, let
f1 � f2 � � � � � fs be a sequence of squeeze �elds guaranteed to uniquely orient a part P
under assumption 2Phase. We wish to investigate how continuously varying strategies
such as f1; f2; � � �; fs can be employed to dynamically achieve the same equilibria
even when 2Phase is relaxed. The distributed actuation strategy F �G is distributed in
space, but not in time. The strategy F +G is parallel with respect to space and time, since
F and G are simultaneously \run." Research in this area could lead to a theory of parallel
distributed manipulation that describes spatially distributed manipulation tasks that can
be parallelized over time and space by superposition of controls.

4.3 Upward-Shaped Potential Fields

So far we have presented speci�c force �elds that always (e.g. squeeze and radial �elds) or
never (e.g. skewed squeeze �elds) induce stable equilibria on certain classes of parts. We
conclude this section with a criterion that provides a su�cient condition on force �elds
such that all parts of a certain size reach a stable equilibrium.

We have observed in Section 3 that a priori it is not obvious when a force �eld induces
stable equilibria. Our Equilibrium Criterion will be based on two important properties:

1. The �eld has a potential. Potential �elds do not allow closed paths (technically, limit
cycles) along which the work is positive, which could induce in�nite motion of a part.

2. The force �eld is \inward-directed," which implies that (assuming �rst-order dy-
namics) parts can never leave a certain region R. This useful property is a direct
consequence of the de�nition of inward-directedness. An inward-directed force �eld
corresponds to an \upward-shaped" potential, in which all paths that leave region R
have an ascending slope.

We will require Property (1.) to hold for the entire force �eld, while Property (2.)
devolves to a boundary condition.

4.3.1 Elementary De�nitions

De�nition 26 Let z 2 R
n. The �-ball around z, denoted B�(z), is the set fr 2 R

n j
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jr� zj < �g of all points within a distance � of z.

De�nition 27 (Lozano-P�erez [LP83]) Let A, B be sets in R
n. The Minkowski sum

A� B of two sets A and B is de�ned as the set fa + b j a 2 A;b 2 Bg.
From these de�nitions it follows that for a region R with boundary @R, the set @R �

Bd(0) = fr + z j r 2 @R; and jzj � dg comprises all points that are within a distance d
from the boundary of R.

De�nition 28 Given a region R � R
n, de�ne the set CI(R; d) = R� (@R�Bd(0)) which

is the region R shrunk by distance d. Note that CI(R; d) is based upon the con�guration
space interior [LP83] of R for Bd(0). Abusing terminology slightly, we call CI(R; d) the
con�guration space interior of R in this thesis.

De�nition 29 The radius rP of a part P is the maximum distance between an arbitrary
point of P and the center of mass (COM) of P .

4.3.2 Equilibrium Criterion

We are now able to state a general criterion for a force �eld f to induce stable equilibria
on all parts in a region S. As mentioned at the beginning of Section 4.3, this criterion is
based on two main conditions: (1) if f has a potential, limit cycles with positive energy
gain are avoided inside S. (2) if f is \inward-directed" (see the de�nition below), parts
cannot leave the region S.

In the following we give a general de�nition of inward-directed vector �elds on a man-
ifold Z. We then specialize the de�nition to the special instances of Z = C = R

2 � S
1

(the con�guration space) and Z = R
2, and give a su�cient, practical condition for inward-

directed vector �elds. We conclude with the presentation of the Equilibrium Criterion.
De�nition 30 (Inward-Directed Force Fields) 1 Let Z be an arbitrary smooth man-
ifold, and let Y � Z be a compact and smooth submanifold with boundary of Z. Assume
that @Y has codimension 1 in Z, and that the boundary of Y is orientable. Let q 2 @Y be
a point on the boundary of Y , and Vq 2 TqZ be a tangent vector to Z at q.

We say Vq is inward-directed to @Y at q if there exists a su�ciently small � > 0 such
that q + �Vq 2 Y .

Let V be a vector �eld on Z. We say V is inward-directed to @Y if V (q) is inward-
directed to @Y at q for all q 2 @Y .

Assume the set S � R
2 is compact and smooth. Consider the part P when it is placed

into the force �eld f such that its COM lies in S. The set of all such poses is a subset
of the con�guration space C = R

2 � S
1 which we call eS = S � S

1. The boundary of eS
is @ eS = @S � S

1. Note that @ eS separates the interior i eS = eS � @ eS from the exterior
C � eS = (R 2 � S)� S

1, and that @ eS is isomorphic to a torus S1 � S
1.

Now let z = (x; y; �) 2 @ eS, and let Fz 2 TzC represent the lifted generalized force
acting on part P in pose z. Fz is inward-directed (with respect to @ eS) if Fz points into
the interior of eS. Note that this condition is equivalent to saying that the projection of Fz

onto the tangent space at (x; y) to R 2 points into S, because the rotational component of

1In this de�nition, for convenience we assume that Z is embedded in R
m

for some m. This condition
may be relaxed.
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Fz is tangential to @ eS. So for example, if z = (x; y; �) 2 @ eS, then z0 = (x; y; �0) 2 @ eS for
any �0.

The following proposition gives a simple condition on a force �eld f that tells us if, for
a given part P , its lifted generalized force �eld FP is inward-directed:

Proposition 31 Let P be a part with radius r whose COM is the reference point used to
de�ne its con�guration space C = R

2�S
1. Let f be a force vector �eld de�ned on a region

R � R
2, with FP the corresponding lifted generalized force �eld. Let S � R

2 be a convex,
compact, and smooth subset of the con�guration space interior of R, and S � CI(R; r).

Consider a point q 2 @S with outward normal nq, and a ball Br(q) with radius r about
q. If for every point q 2 @S, and for every point s in the corresponding ball Br(q), the
dot product g(s) = f(s) � nq is less than 0, then the lifted generalized force �eld FP is
inward-directed to @ eS (note: ( � ) is the standard inner product).

Proof: Consider the part P in pose z = (x; y; �) 2 @ eS such that q = (x; y). P has radius
r, hence it lies completely inside the ball Br(q), independent of its orientation �. As we
know that g(p) = f(p) � nq < 0 for all p 2 Br(q), we can conclude that the integral of g(p)

over P is also less than 0:
Z
P
g(p) dA =

Z
P
f(p) �nq dA = fP �nq < 0. This implies that for

fP , which is the translational component of FP (see De�nition 16), the vector q + � fP (z)
lies inside S, if � is positive and su�ciently small. As mentioned on page 44 above, this
su�ces to ensure that the vector z + � FP (z) lies inside eS. 2

Lemma 32 (Equilibrium Criterion) Let P be a polygonal part with radius r, let f be
a force �eld with potential U de�ned on a region R � R

2, and let S � R as speci�ed in
Proposition 31. Let us also assume that the motion of part P is governed by �rst-order
dynamics.

If the lifted force vector �eld FP is inward-directed to @ eS, then the part P will reach a
stable equilibrium under f in i eS whenever its COM is initially placed in S.

Proof: Assume that the COM of part P is placed at a point (x; y) 2 S. This means that
P is in some pose z = (x; y; �) 2 eS. We now show that the COM of P cannot leave S
when initially placed inside S. We know that @ eS separates i eS from C � eS. Hence every
path from z to some z� 2 C � eS must intersect @ eS at some point z0 2 @ eS. Now consider
part P in pose z0. Under �rst-order dynamics, its velocity must be in direction of FP (z

0).
Because FP is inward-directed, the velocity of P must be towards i eS. In particular, this
means that the COM will move into iS, hence P cannot leave S, and that there is no
equilibrium on @S.

f , and hence (because of Proposition 17) FP have potential U and UP , respectively.
Therefore limit cycles with energy gain are not possible. Furthermore, UP ( eS) is the con-
tinuous image of a compact set, eS. Therefore the image UP ( eS) is a compact subset of R ,
hence has a minimum value attained by some point s 2 eS. Since f is inward-directed, s
must lie in i eS. This minimum is a stable equilibrium of P in f , as shown in Corollary 25.
2

Because of Lemma 32, the use of potential �elds is invaluable for the analysis of e�ective
and e�cient manipulation strategies, as discussed in the following section. In particular,
it is useful for proving the completeness of a manipulation planner.



Chapter 5

New and Improved Manipulation

Algorithms

The part alignment strategies in Section 2.3 have switch points in time where the vector
�eld changes discontinuously (Figure 2.8). We can denote such a switched strategy by
f1 � f2 � � � � � fs, where the fi are vector �elds. In Section 2.3 we showed that a general
squeeze strategy to align a (non-convex) polygonal part with n vertices may need up to
O(k n2) switches, and require O(k2 n4) time in planning (k is the maximum number of
polygon edges that a bisector can cross). To improve these bounds, we now consider a
broader class of vector �elds including simple squeeze patterns, radial, and combined �elds
as described in Section 4.

In Section 5.1 we show how, by using radial and combined vector �elds, we can sig-
ni�cantly reduce the complexity of the strategies from that of Section 2. In Section 5.2
we describe a general planning algorithm that works with a limited \grammar" of vector
�elds (and yields, correspondingly, less favorable complexity bounds).

5.1 Radial Strategies

Consider a part P in a force �eld f . Some force �elds exhibit rotational symmetry prop-
erties that can be used to generate e�cient manipulation strategies:

Property 33 There exists a unique pivot point v of P such that P is in translational
equilibrium if and only if v coincides with 0.

Property 34 There exists a unique pivot point v of P such that P is in (neutrally stable)
orientational equilibrium if and only if v coincides with 0.

We typically think of the pivot point v being a point of P ; however, in generality, just like
the center of mass of P , v does not need to lie within P , but instead is some �xed point
relative to the reference frame of P . Now consider the part P in an ideal unit radial force
vector �eld R as described in Section 4.

Proposition 35 In a unit radial �eld R, Properties 33 and 34 hold.
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Figure 5.1: Rotating a part about the center of a unit radial �eld. The force and torque
on the part remain constant with respect to its reference frame.

Proof: We �x the part P at an arbitrary orientation �, and show that at this orientation
P has a unique translational equilibrium v(�). That is, placing v(�) at the origin is
necessary and su�cient for P to be in translational equilibrium at orientation �. Second,
we show that for any two distinct orientations � and �0, v(�) = v(�0). We call this unique
point v, dropping the orientation �. Finally, we argue that whenever P is in translational
equilibrium (i.e., v is at the origin), that P is neutrally stable with respect to orientation.
This follows by the radial symmetry of R.

Consider the translational forces (but not the moments) acting on P in the radial �eld
R. To do this, let us separate R into its x and y components, Rx and Ry, such that
R = (Rx; Ry). Assume for now that the orientation of P is �xed. If P is placed at a
position z0 2 R

2, whose x-coordinate is su�ciently negative, the total force induced by
Rx on P will point in the positive x direction. Symmetrically, placing P at a su�ciently
large positive x coordinate will cause a force in the negative x direction. We claim that, by
translating P rigidly with increasing x coordinate, this force decreases continuously and
strictly monotonically, and hence has a unique root.

To verify this claim, consider a small area patch }0 of P . A uniform translation t of }0

in x direction can be described as }(t) = }0 � (z0 + tx̂) (with z0 the initial position of the
patch, x̂ the unit vector in x direction, and � the Minkowski sum). The total force on }(t)

in x direction is
Z
}(t)
Rx dA . This force decreases continuously and strictly monotonically

with t, because Rx is strictly monotone and continuous everywhere except on the x-axis,
which has measure zero in R 2. A similar argument applies for the y direction, and, because
of the radial symmetry of R, for any direction.

If we choose the set S as a su�ciently large disk-shaped region around the origin and
recall that R has a potential, we can apply Lemma 32 to conclude that there must exist
at least one total equilibrium for P . Now assume that there exist two distinct equilibria
e1 = (x1; y1; �1) and e2 = (x2; y2; �2) for P in R. We write \P (ei)" to denote that P is
in con�guration ei. Because of the radial symmetry of R, we can reorient P (e2) to P (e

0
2)

such that its orientation is equal to P (e1): e
0
2 = (x02; y

0
2; �1), where

�
x02
y02

�
= M

�
x2
y2

�
, and M

is a rotation matrix with angle �1 � �2 (Figure 5.1). This reorientation does not a�ect the
equilibrium. Note that P can be moved from e1 to e

0
2 by a pure translation. From above

we know that such a translation of P corresponds to a strictly monotone change in the



48

translational forces acting on P . Hence we conclude that P (e1) and P (e02) cannot both be
in translational equilibrium unless e1 and e02 are equal. This implies that e1 and e2 cannot
both be equilibria of P in R unless they both have the same pivot point v. 2

Surprisingly, v need not be the center of area of P . For example, consider again the
part in Figure 2.5, which consists of a large and a small square connected by a long rod of
negligible width. The pivot point of this part will lie inside the larger square. But if the
rod is long enough, the center of area will lie outside of the larger square. However, the
following corollary holds:

Corollary 36 For a part P in a continuous radial force �eld R0 given by R0(z) = �z, the
pivot point of P coincides with the center of area of P .

Proof: The force acting on P in R0 is given by F =
Z
P
� z dA, which is also the formula

for the (negated) center of area. 2

Now suppose that R is combined with a unit squeeze pattern S, which is scaled by a
factor � > 0, resulting in R + �S. The squeeze component �S of this �eld will cause the
part to align with the squeeze, similarly to the strategies in Section 2.3. But note that
the radial component R keeps the part centered in the force �eld. Hence, by keeping R
su�ciently large (or � small), we can assume that the pivot point of P remains within an
�-ball of the center of R. This implies that assumption 2Phase (see Section 2.3) is no
longer necessary. Moreover, � can be made arbitrarily small by an appropriate choice of �.

Proposition 37 Let P be a polygonal part with n vertices, and let k be the maximum
number of edges that a bisector of P can cross. Let us assume that v, the pivot point of
P , is in general position. There are at most O(k n) stable equilibria in a �eld of the form
R + �S if � is su�ciently small and positive.

Proof: For a part in equilibrium in a pure radial �eld R (i.e., with � = 0), the pivot point
v is essentially �xed at the origin. This is implied by Property 33. It is easy to see that
Property 33 is not true in general for arbitrary �elds of the form R + �S. Property 33
holds if � = 0, because then any orientation is an equilibrium when v is at the center of
R. However, Property 34 does not hold if � > 0, because in general there does not exist a
unique pivot point in squeeze �elds (see Section 2.3).

We will conduct the combinatorial analysis of the orientation equilibria under the as-
sumptions that (i) � > 0 and (ii) that v is �xed at the origin. Then we will relax the latter
assumption (ii), and show that Property 33 holds, approximately, even in R + �S, for a
su�ciently small � > 0. That is, we show that a su�ciently small � can be chosen so that
the combinatorial analysis is una�ected when assumption (ii) is relaxed.

First, we show that when � is small but positive, and with v �xed at the center of R,
there are only a linear number of orientation equilibria. (I.e., we constrain the pivot point
v to remain �xed at the origin until further notice.) So let us assume that we are in a
combined radial and small squeeze �eld R + �S.

Consider a ray w(0) emanating from v. Assume w.l.o.g. that v is not a vertex of P ,
and that w(0) intersects the edges S(0) = fe1; � � � ; ekg of P in general position, 1 � k � n.
Parameterize the ray w(�) by its angle � to obtain w(�). As � sweeps from 0 to 2�, each
edge of P will enter and leave the crossing structure S(�) exactly once. S(�) is updated
at critical angles where w(�) intersects a vertex of P . Since there are n vertices, there are
O(n) critical angles, and hence O(n) changes to S(�) overall. Hence, since between critical
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angles S(�) is constant, we see that S(�) takes on O(n) distinct values. Now place the
squeeze line l to coincide with w(�). For a given crossing structure S(�)[S(�+�), satisfying
conditions I and II as de�ned in Section 2.3 devolves to solving two equations. The �rst
equation provides the condition for translational equilibrium, while the second equation
implements the condition for orientational equilibrium. The latter equation is called the
moment function M(�), because it describes the moment acting on P as a function of �.
(But note that M is di�erent from the moment function de�ned in Section 2.3, because
here the part rotates about a �xed pivot point.) In analogy to Section 2.3 it can be shown
that these equations are algebraic and of degree k, where k is the maximum number of
edges intersected by the squeeze line as described in Section 2.2. This implies that between
any two adjacent critical values there are only O(k) orientations of l (given by w(�)) that
satisfy conditions I and II. Hence, the overall number of orientations satisfying I and II
is O(k n).

If � > 0 the part P will be perturbed, so that Property 33 is only approximately
satis�ed. (That is, we now relax the assumption that v is constrained to be at the origin).
However, we can ensure that v lies within an �-ball around the origin (the center of the
radial �eld). To see this, �rst consider P at some arbitrary con�guration z in the squeeze

�eld �S. The total squeeze force on Pz is given by the area integral �SP (z) =
Z
Pz
�S dA.

(Recall that SP denotes the lifted force �eld of S; see De�nition 16, Equation (4.2).) Now,
�SP is bounded above by j�SP j � �A, where A is the area of P (note that S is a unit
squeeze �eld).

P is in equilibrium with respect to the radial �eld R if v is at the origin. Now consider
the lifted force RP when the pivot point of P is not at the origin. More speci�cally, let
vz be the pivot point of Pz, and let us de�ne a set RP (d) = fjRP (z)j such that jvzj = dg.
We also de�ne a function bRP (d) = minfRP (d)g. This function is well-de�ned, because
RP (d) is the continuous image of a compact set, hence the minimum exists. bRP (d) is the
minimum magnitude of the lifted force acting on Pz when its pivot point vz is at distance
d from the origin.

By decomposing RP into its x- and y-components, we can write jRP j as
q
R2
P;x +R2

P;y.

Because of the radial symmetry of R let us assume w.l.o.g. that vz = (d; 0). From the proof
of Proposition 35 we know that, for any given orientation of Pz, the magnitude of RP;x

increases continuously and strictly monotonically with increasing d � 0. Furthermore, RP;y

is continuous in d, and RP;y(0) = 0, so R2
P;y is continuous and monotonically increasing for

all d less than some su�ciently small d0 > 0. Hence for any �xed orientation of Pz, RP is
a continuous and strictly monotonically increasing function for all d 2 [0; d0].

Now suppose that bRP (d) is not strictly monotone, i.e. that there exist d1; d2 with
0 � d1 < d2, but bRP (d1) � bRP (d2). Then there must exist z1; z2 with jvz1 j = d1 and
jvz2 j = d2, and jRP (z1)j = bRP (d1) � bRP (d2) = jRP (z2)j. Let us de�ne z02 such that
z02;� = z2;� and vz02 = c vz2 for some c 2 R , i.e., vz2 and vz02 lie on a line through the
origin. If we choose 0 � c < 1 then jRP (z

0
2)j < jRP (z2)j because jRP j is monotone, as

shown in the previous paragraph. In particular, if we choose c = d1=d2, then jRP (z
0
2)j <

jRP (z2)j � jRP (z1)j = bRP (d1), and jvz02 j = jvz1 j. This is a contradiction to the de�nition

of bRP (d1) = minfRP (d)g. We conclude that bRP is continuous and strictly monotone for
su�ciently small d � 0.

Now consider Pz in the combined �eld R + �S, and again let d denote the distance
between pivot point vz and the origin. In equilibrium the lifted forces RPz and �SPz
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balance out, hence bRP (d) � jRPzj = j�SPzj � �A, with A the area of P . Since bRP is
continuous and strictly monotone in d for su�ciently small d, we can ensure that d is less
than a given �, by chosing an appropriately small �. This implies that vz must lie within an
�-ball of the center of the radial �eld. In particular, we can make this �-ball small enough
so that the crossing structure S(�) is not a�ected.

Finally we have to ensure that the stable equilibria, as predicted by the moment function
M , are approximated arbitrarily closely. This means that the disturbance in the moment
function, caused by pivot point vz not exactly coinciding with the center of the radial
�eld, can be made arbitrarily small. To see this, �rst consider the original (unperturbed)
moment function M which describes the moment acting on the part P if its pivot point
coincides with the origin. In this case, the moment is caused solely by the squeeze �eld
�S, while P is in equilibrium with respect to the radial �eld R.

Now consider the disturbance in M if the pivot point vz is not exactly at the origin,
but somewhere in an �-ball around it. Let us call this disturbance �M , and note that �M
has two components: �M�S , which is the change in moment caused by the squeeze �eld
�S, and �MR, the disturbance caused by the radial �eld R.

For a part P at a given orientation, any �-displacement of vz can change the force in
a squeeze �eld �S by at most j�F�S j � � � dP , where dP is the maximum diameter of P .
Hence �M�S = r � �F�S is proportional to the product of the disturbance in location �
and the magnitude of the squeeze �eld � (r is the �xed distance between pivot point and
COM of P ), i.e. j�M�S j = O(� �).

Since the force caused by the radial �eld R balances the force generated by the squeeze
�eld �S, we obtain the same bounds for �MR. We see that �M = �M�S+�MR = O(� �).
Recall that � decreases strictly monotonically with �, hence �M decreases asymptotically
faster than �. This ensures that we can �nd a su�ciently small � such that the moment
function M is approximated arbitrarily closely, and the equilibria of the squeeze �eld �S
are not a�ected.

We conclude that the number of equilibria in a �eld R+ �S is bounded by O(k n), for
su�ciently small �. 2

In analogy to Section 2.3 we de�ne the turn function t : S1 ! S
1, which describes

how the part will turn under a squeeze pattern, and hence yields the stable equilibrium
con�gurations. Given the turn function t we can construct the corresponding squeeze
function s as described in Section 2.3. With s as the input for Goldberg's alignment
planner [Gol93], we obtain strategies for unique part alignment (and positioning) of length
O(k n). They can be computed in time O(k2 n2).

The result is a strategy for parts positioning of the form (R+ �S1) � � � �� (R+ �S
O(kn)

).
Compared to the general squeeze algorithm in Section 2.3, it improves the plan length by a
factor of n, and the planning complexity is reduced by a factor of n2. The planner is com-
plete: For any polygonal part, there exists a strategy of the form �i(R+�Si). Moreover, the
algorithm is guaranteed to �nd a strategy for any input part. By appending a step which
is merely the radial �eld R without a squeeze component, we are guaranteed that the part
P will be uniquely posed (v is at the origin) as well as uniquely oriented. We can also show
that the continuously varying \morphing" strategy (R+ �S1) ; � � �; (R+ �S

O(kn)
) ; R

works in the same fashion to achieve the same unique equilibrium.
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Step 1

Step 2

Figure 5.2: Manipulation vocabulary for a triangular part on a vibrating plate, consisting
of two consecutive force �elds with slightly curved nodal lines (attractors) which bring the
part into (approximately) the same equilibria.

5.2 Manipulation Grammars

The development of devices that generate programmable vector �elds is still in its in-
fancy. The existing prototype devices exhibit only a limited range of programmability.
For example, the prototype MEMS arrays described in Sections 6.1 and 6.2 currently have
actuators in only four di�erent directions, and the actuators are only row-wise control-
lable. Arrays with individually addressable actuators at various orientations are possible
(see [BDMM94b,BDMM94a,LW95,BDM96a,SGD+96]) but require signi�cant development
e�ort. There are also limitations on the resolution of the devices given by fabrication con-
straints. For the vibrating plate device from Section 6.3 the �elds are even more constrained
by the vibrational modes of the plate.

We are interested in the capabilities of such constrained systems. In this section we
give an algorithm that decides whether a part can be uniquely positioned using a given set
of vector �elds, and it synthesizes an optimal-length strategy if one exists. Furthermore,
in Chapter 5.2, the vector �elds we consider may be arbitrary, and in particular can vary
in magnitude (as opposed to unit squeeze �elds). If we think of these vector �elds as a
vocabulary, we obtain a language of manipulation strategies. We are interested in those
expressions in the language that correspond to a strategy for uniquely posing the part.

5.2.1 Finite Field Operators

We de�ne two basic operations on vector �elds. Consider two vector �elds f and g. f + g
denotes point-wise addition, f � g denotes sequential execution of f , and then g.

De�nition 38 Let P be an arbitrary planar part. A �nite �eld operator is a sequence of
vector �elds that brings P from an arbitrary initial pose into a �nite set of equilibrium
poses.
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A �eld operator comes with the following guarantee: No matter where in R 2�S
1 the part

starts o�, it will always come to rest in one of E di�erent total equilibria (Figure 5.2).
That is: for any polygonal part P , either of these �eld operators is always guaranteed to
reduce P to a �nite set of equilibria in its con�guration space C = R

2 � S
1.

From Section 5.1 we know that combined radial-squeeze patterns R + �S have this
property. However, there are other simple �eld operators that also have this �niteness
property:

Claim 39 [BDM96b] Let f and f? be unit squeeze �elds such that f? is orthogonal to f .
Then the �elds f � f? and f + f? induce a �nite number of equilibria on every connected
polygon P , hence f � f? and f + f? are �nite �eld operators.

Proof: First consider the �eld f � f?, and w.l.o.g. assume that f(x; y) = (�sign(x); 0).
Also assume that the COM of P is the reference point used to de�ne its con�guration space
C = R

2 � S
1. As discussed in Sections 2.2 and 2.3, P will reach one of a �nite number of

orientation equilibria when placed in f or f?. More speci�cally, when P is placed in f ,
there exists a �nite set of equilibria Ef = f(xi; �i)g, where xi is the o�set from f 's squeeze
line, and �i is the orientation of P (see Section 2.5). Similarly for f?(x; y) = (0;�sign(y)),
there exists a �nite set of equilibria Ef? = f(yj; �j)g. Since the x-component of f? is zero,
the x-coordinate of the reference point of P (the COM) remains constant while P is in f?.
Hence P will �nally come to rest in a pose (xk; yk; �k), where xk 2 �1(Ef), (yk; �k) 2 Ef?,
and �1 is the canonical projection such that �1(x; �) = x. Since Ef is �nite, so is �1(Ef ).
E(f?) is also �nite, therefore there exists only a �nite number of such total equilibrium
poses for f � f?.

If P is placed into the �eld f+f?, there exists a unique translational equilibrium (x; y)
for every given, �xed orientation �. In each of these translational equilibria, the squeeze
lines of f and f? are both bisectors of P . Now consider the moment acting on P when P is
in translational equilibrium as a function of �. Since there are O(n2) topological placements
for a single bisector, therefore there exist also only O(n2) topological placements for two
simultaneous, orthogonal bisectors. In analogy to Proposition 4 in Section 2.2 we can show
that for any topological placement of the bisectors, this moment function has at most O(k)
roots, where k is the maximum number of edges a bisector of P can cross. This implies
that there exist only O(k n2) distinct total equilibria for f + f?. 2

Corollary 40 Let f be a �nite �eld operator for a part P , and let g be an arbitrary vector
�eld. Then the sequence g � f is a �nite �eld operator.

Proof: By de�nition of a �nite �eld operator, f brings the part P into a �nite set of
equilibrium poses from arbitrary initial poses, in particular from the poses that are the
result of �eld g. 2

Thus by pre-pending an arbitrary sequence of �elds to a �nite �eld operator, one can
always create a new �nite �eld operator (possibly with a smaller set of discrete equilibria).
In the remainder of this section, however, we will only consider �nite �eld operators of
minimal length, i.e. �eld sequences from which no �eld can be removed without losing the
�niteness property (De�nition 38).

We have seen in Sections 2 and 4 that for simple force �elds such as e.g. squeeze or
radial �elds, we can predict the motion and the equilibria of a part with exact analytical
methods. However, for arbitrary �elds (e.g. the force �elds described in Section 6.3 which
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are induced by vibrating plates), such algorithms are not known. Instead we can employ
approximate methods to predict the behavior of the part in the force �eld. These methods
are typically numerical computations that involve simulating the part from a speci�c initial
pose, until it reaches equilibrium.1 We call the cost for such a computation the simulation
complexity s(n). We write s(n) because the simulation complexity will usually depend on
the complexity of the part, i.e., its number of vertices n (for more details also see [DX95]).

Proposition 41 [BDM96b] Consider a polygonal part P , and m �nite �eld operators
fFig, 1 � i � m, each with at most E distinct equilibria in the con�guration space C for P .
There is an algorithm that generates an optimal-length strategy of the form F1 �F2 � � � ��Fl

to uniquely pose P up to symmetries, if such a strategy exists. This algorithm runs in
O(m2E (s(n) + 2E)) time, where s(n) is the simulation complexity of P in Fi. If no such
strategy exists, the algorithm will signal failure.

Proof: Construct a transition table T of size m2E that describes how the part P moves
from an equilibrium of Fi to an equilibrium of Fj. This table can be constructed either by
a dynamic analysis similar to Section 2.1, or by dynamic simulation. The time to construct
this table is O(m2E s(n)), where s(n) is the simulation complexity, which will typically
depend on the complexity of the part.

Using the table T , we can search for a strategy as follows: De�ne the state of the
system as the set of possible equilibria a part is in, for a particular �nite �eld operator Fi.
There are O(E) equilibria for each �nite �eld operator, hence there are O(m 2E) distinct
states. For each state there are m possible successor states as given by table T , and they
can each be determined in O(E) operations, which results in a graph with O(m 2E) nodes,
O(m22E) edges, and O(m2E 2E) operations for its construction. Finding a strategy, or
deciding that it exists, then devolves to �nding a path whose goal node is a state with a
unique equilibrium. The total running time of this algorithm is O(m2E (s(n) + 2E)). 2

Hence, as in [EM88], for any part we can decide whether a part can be uniquely
posed using the vocabulary of �eld operators fFig but (a) the planning time is worst-
case exponential and (b) we do not know how to characterize the class of parts that can
be oriented by a speci�c family of operators fFig. However, the resulting strategies are
optimal in length.

This result illustrates a tradeo� between mechanical complexity (the dexterity and
controllability of �eld elements) and planning complexity (the computational di�culty of
synthesizing a strategy). If one is willing to build a device capable of radial �elds, then one
reaps great bene�ts in planning and execution speed. On the other hand, we can still plan
for simpler devices (see Figures 1.4 and 5.2), but the plan synthesis is more expensive, and
we lose some completeness properties.

5.2.2 Example: Uniquely Posing Planar Parts

In this section we will show how to accomplish tasks with manipulation grammars as
developed in Section 5.2.1. Recall from Section 2.3 that we say a manipulation strategy
orients (respectively, poses) a part uniquely if from any initial con�guration, the part
can be brought into a unique �nal orientation (respectively, pose). We will show how
the synthesized plans uniquely pose parts from any initial con�guration. As an example,

1See for example URL http://www.cs.cornell.edu/home/karl/Cinema.
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Figure 5.3: Manipulation vocabulary, consisting of 4 unit squeeze �elds.

suppose our vibratory plate feeder can generate only a very limited vocabulary of four
force vector �elds, which are also not exactly centered on the plate. For simplicity we
assume that the vocabulary consists of unit squeeze �elds with squeeze lines at angles of
0, 90, 60 and 150 degrees. We call these �elds A, B, C, and D, respectively. The squeeze
line of �eld A is o�set by 2 units from the origin, the squeeze line of B is o�set by 3 units,
and the squeeze lines of C and D intersect at the origin (see Figure 5.3).

The sequence A � B is a �nite �eld operator, since the squeeze lines of A and B are
orthogonal (see Claim 39). In the remainder of this section, we will abbreviate \A � B"
and simply write \AB." Other �nite �eld operators besides AB are BA, CD, and DC, so
that we obtain a vocabulary of m = 4 operators.

Note that using unit squeeze �elds in this example is not essential; any �elds that yield
�nite sets of equilibria could be used as well. However, for this \didactic" example it is
advantageous to use unit squeeze �elds because (a) it is easy to determine equilibria for
unit squeeze �elds, and (b) we can compare the result obtained here with the manipulation
plans generated by the planner in Sections 2.3 and 2.4.

Uniquely Posing Rectangles

In this example we will attempt to generate plans for uniquely posing several rectangular
parts with the manipulation vocabulary A, B, C, and D (up to part symmetry). As in
Section 2.4, we consider three rectangles R10, R20, and R30 that have sides a and b such
that a is 10, 20, and 30 percent longer than b, respectively (Figure 2.10). The stable
equilibria of R10, R20, and R30 in a unit squeeze �eld were shown in Table 2.1. Modulo
part symmetry, each squeeze �eld induces only two stable orientation equilibria for R10

and R20, and only one stable orientation for R30. Also note that in stable equilibrium,
the COM of a rectangle lies on the squeeze line. This gives us a total of mE = 4 � 2 = 8
discrete equilibria for R10 and R20, when using the �nite �eld operators AB, BA, CD,
and DC. All equilibria are shown in Table 5.1 (compare with Table 2.1 and Figure 2.12).
Finally, any one of the operators AB, BA, CD, and DC uniquely orients R30, yielding
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Table 5.1: Stable equilibria of rectangular parts R10 and R20 for the manipulation vocab-
ulary AB, BA, CD, and DC.

Operator Equilibrium R10 R20

(x; y; �) (x; y; �)

AB 1 (3,2,0.97) (3,2,1.29)
2 (3,2,2.18) (3,2,1.85)

BA 3 (3,2,2.54) (3,2,2.86)
4 (3,2,0.61) (3,2,0.28)

CD 5 (0,0,2.01) (0,0,2.34)
6 (0,0,0.08) (0,0,2.90)

DC 7 (0,0,0.44) (0,0,0.77)
8 (0,0,1.65) (0,0,1.33)

Table 5.2: Transition table for equilibria of the rectangles R10 and R20, with �nite �eld
operators AB, BA, CD, and DC. For both rectangles, there exist a total of E = 8
equilibria, and m = 4 �nite �eld operators.

R10 R20

to to
AB BA CD DC AB BA CD DC

from AB 1 1 4 6 7 1 4 5 8
2 2 3 5 8 2 3 5 8

BA 3 2 3 5 8 2 3 6 7
4 1 4 6 7 1 4 6 7

CD 5 2 3 5 8 2 3 5 8
6 1 4 6 7 2 3 6 7

DC 7 1 4 6 7 1 4 6 7
8 2 3 5 8 1 4 5 8

trivial one-step plans to uniquely pose R30. Hence we will omit R30 for the remainder of
this example.

Given the discrete equilibria, the algorithm based on the constructive proof of Propo-
sition 41 generates a transition table T that describes the mapping between initial equi-
librium pose and �nal equilibrium pose of a part when one �nite �eld operator is applied.
This table has mE rows and m columns. Table 5.2 shows the transitions for parts R10

and R20. Each entry in T can be determined either by dynamic analysis, or by simulation.
The values in Table 5.2 were generated by our planner using simulation. Figure 5.4 shows
a trace of such a simulation: The initial pose of part R20 is equilibrium e3 = (3; 2; 2:86).
In �eld C, R20 moves left and up until it reaches an equilibrium on the squeeze line of C.
Subsequently, after �eld D is applied, R20 comes to rest in equilibrium e6 = (0; 0; 2:90).
In this case, using Claim 39, the equilibria (but not the transitions) can be calculated
analytically.

Recall from Section 5.2.1 that this system has a state space of size O(m 2E), because
for each of the m �nite �eld operators, there are O(E) discrete equilibria in which the
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Figure 5.4: Simulation of part R20 from equilibrium 3 by using �nite �eld operator CD,
reaching equilibrium 6: (a) applying �eld C; (b) applying �eld D.

part could be. For example, a state could be \the part is in equilibrium 1, 2, or 4." We
can represent such a state as a binary string, \11010000." Hence the transition table T
can be used to de�ne a transition graph whose nodes are the O(m 2E) states, and whose
O(m2E 2E) edges are derived from the mE transitions in T . A simple breadth-�rst search
of this graph, starting from the state in which all equilibria are possible, will yield optimal-
length plans to reach any reachable state.2 This algorithm will also decide which states
are unreachable. Hence it can signal success when the shortest plan to reach a state with
a unique equilibrium is found, or signal failure if no such plan exists. Figure 5.5 shows
transition graphs for parts R10 and R20 with all reachable states, and the shortest paths
to reach them from the initial \generic" state, in which the part has an arbitrary pose.
Notice that there exists a two-step plan for uniquely posing R20, but no such plan exists
for R10.

In summary, we observe that with our �nite �eld operators AB, BA, CD, and DC, R30

can be uniquely posed in one step, R20 requires two steps, while there exists no strategy for
R10. Recall that the general squeeze algorithm in Section 2.4 found an alignment strategy
for all three rectangles R10, R20 as well as R30. However, the algorithm required two
squeeze �elds at a relative angle of approximately 45�; for R10, it would fail for squeeze
lines at a relative angle of 60�. Apparently, parts that are closer to rotational symmetry
(i.e., in this case, closer to square-shaped) are more di�cult to pose uniquely than more
asymmetric (i.e., long rectangular-shaped) parts.

Uniquely Posing and Feeding Arbitrary Parts

In this section we will demonstrate the manipulation grammar algorithm for a more realistic
part (see Figure 5.6a), and for two di�erent manipulation vocabularies. All strategies in this
section (and Section 5.2.2) were computed using an automatic planner we implemented,
using the techniques of Section 5.2.1. We will �rst extend our manipulation grammar
by adding a �eld F that has a vertical squeeze line at x = �3 (Figure 5.7 left), which
yields two new �nite �eld operators, AF and FA. Analysis of the part shows that it has

2We could also imagine using A�-search to improve performance.
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Figure 5.5: Minimum spanning trees of the state transition graphs for rectangles (a) R10,
and (b) R20. All reachable states are shown, as well as the shortest paths to reach each of
them. Non-spanning edges (e.g. an edge CD from 11000000 to 00001100) are omitted for
simplicity.
(a) No state with unique equilibrium can be reached for R10.
(b) There exist several two-step plans for R20 that reach states with unique equilibrium.
(Graphs were generated automatically by our planner software.)
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Figure 5.6: Sample part: (a) nonconvex shape with holes; (b) its four stable equilibria in
a unit squeeze �eld.
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Figure 5.7: Extensions to the manipulation vocabulary, consisting of 2 unit squeeze �elds.

4 stable orientation equilibria in a unit squeeze �eld (Figure 5.6b). It is not di�cult to
see that, after any two orthogonal squeezes, the part can be in E = 8 di�erent poses. We
obtain a transition table of size m2E = 228, which results in a state transition graph with
m 2E = 1536 nodes (states) and m22E = 9216 edges (transitions). The algorithm �nds
the following strategy: CD BA AF FA, which is equivalent to CDBAFA. Two sample
executions of this strategy are shown in Figure 5.8, from di�erent initial poses. A close
look at the strategy reveals that operator CD approximately centers the part, such that B
can move the part into one of four discrete orientation equilibria below the squeeze line of
A. Then A reduces the number of orientation equilibria to two, and F to one (at a unique
x-position). Finally, A brings the part into a unique pose: e� � (�2:9; 1:9; 3:6).

It is important to note the following distinction between the general squeeze strategies
for parts orienting of Section 2.3, and the manipulation grammar strategies: As mentioned
in Section 2.3, turn and squeeze functions render planning algorithms based upon them
susceptible to �eld symmetries, thereby introducing aliasing in orientation space and ad-
mitting completeness and uniqueness proofs of orientation only modulo �eld symmetry.
Since manipulation grammars do not employ turn or squeeze functions, they are immune
to this problem, and parts without rotational symmetry can be posed uniquely. In essence,
turn and squeeze functions assume a global �eld symmetry. In manipulation grammars,
such �eld symmetries may not exist, e.g. squeeze �elds could have arbitrary angles and
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Figure 5.8: Two sample executions of the manipulation grammar strategy CD BA AF FA.
For clarity, the simulation trace has been broken up into parts: initial pose (top), mo-
tion under CD (middle), and motion under BA AF FA (bottom). Initial poses: (a)
z0 = (2; 2;�0:5), (b) z0 = (�4;�1; 2:5). Final pose e� � (�2:9; 1:9; 3:6).
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o�sets from the origin. In the �rst example of this section (Figure 5.8), the �nal pose is
indeed unique.

As a second example, we add the �eld G, which has a horizontal squeeze line at y = �2
(Figure 5.7 right), and remove the �elds C and D. This results in 8 �nite �eld opera-
tors, hence we obtain m2E = 512 entries in the transition table, m 2E = 2048 states and
m22E = 16384 transitions. We obtain the strategy GB BA AF FG, which is equivalent
to GBAFG. During execution of this strategy, the COM of the part follows a counter-
clockwise rectangular path, at each step reducing the number of possible equilibria, until,
in the lower left corner, a unique pose is reached (Figure 5.9). This opens the possibility
of pipelining the posing process, which could yield more e�cient parts feeders: as long
as we can ensure that the next part is initially placed su�ciently far to the right so not
to interfere with its predecessor, the G �eld can be used simultaneously for two parts.
Hence if the parts feeder periodically cycles through the �elds GBAF , the next part can
be introduced into the device each time before G is executed. A part is uniquely posed
after each execution of G.

5.2.3 Summary

In this section we have de�ned manipulation grammars that consist of a vocabulary of pla-
nar force vector �elds, and we presented an implemented planning algorithm that generates
strategies to uniquely position and orient parts. In comparison with the general squeeze
strategies of Section 2.3, manipulation grammars allow sets of arbitrary force vector �elds,
and are not limited to a 1-parameter family of squeeze �elds. Consequently, depending
on the available manipulation vocabulary, the resulting strategies can be more powerful or
more restricted than the orienting strategies generated by the general squeeze algorithm
of Section 2.3. In particular, parts can be uniquely posed even when only symmetric force
�elds are available. As a tradeo�, planning and execution complexity is worst-case expo-
nential instead of merely quadratic in the number of equilibria of the part, and there exist
no completeness guarantees that a strategy always exists for a given vocabulary or class of
parts. Moreover, numerical simulation was employed to predict the transitions, whereas
they may be exactly computed (Section 2.3) for simple squeezes.
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Figure 5.9: Two sample executions of strategy GB BA AF FG = GBAFG. For clarity,
the simulation trace has been broken up into parts: initial pose (top), motion under GB
(middle), and motion under AFG (bottom). Initial poses: (a) z0 = (1;�3;�0:5), (b)
z0 = (4;�1; 2:5). Final pose e� � (�2:9;�1:9; 5:9).



Chapter 6

Experimental Apparatus for

Programmable Force Fields

The theory of programmable vector �elds developed in this thesis arguably represents the
�rst systematic attack on massively-parallel distributed manipulation based on geometric
and physical reasoning. In this chapter we report on our experiments in implementing this
theory using microfabricated actuator arrays and macroscopic vibrating plates.

6.1 Microfabricated Arrays of Single-Crystal Silicon

Torsional Actuators

A wide variety of MEMS (Micro Electro Mechanical Structures) has been built recently
by using processing techniques derived from VLSI fabrication. The �rst commercially suc-
cessful MEMS structure was the Analog Devices, Inc. single-chip, bulk-fabricated air bag
sensor [Ana91]. In this section, we investigate arrays of MEMS actuators that can perform
manipulation tasks. There is a large number of possible applications from macroscopic to
microscopic size scales, such as bulk-fabricated (cheap), ultra-thin transport mechanisms,
e.g. for paper in copy machines or printers. At the other end of the scale spectrum, recent
advances have brought within reach arrays equipped with tips that can probe and move
objects consisting of only a few atoms [XMM95]. Such devices, employed in a massively
parallel fashion, may yield tremendous data storage capacities.

Various actuation principles for micro actuator arrays and micro manipulation sys-
tems have been proposed in recent years. Pister et al. [PFH90] demonstrated a levitation
system consisting of microfabricated nozzles, and electrostatic actuation. Takeshima and
Fujita [TF90] introduce the concept of a distributed micro motion system that consists
of an array of cooperating actuator modules. Furuhata et al. [FHF91] have built arrays
of ultrasonic microactuators. An integrated, monolithic mirror array for video projections
has been presented by Sampsell [Sam93]. B�ohringer et al. [BDMM94b] have developed a
theory of manipulation and control for micro actuator arrays. Konishi and Fujita [KF93a]
use controlled, directed micro air valves to convey small objects. Ataka et al. [AOF93]
simulate cilia with thermal bimorph micro structures. Liu and Will [LW95] propose the
concept of intelligent motion surfaces for micro assembly tasks. Liu et al. [LTW+95,LW95]
present a micro assembly system based on magnetic actuator arrays. Electrostatic actuator
arrays are described by B�ohringer et al. [BDM96a] and Storment et al. [SBW+94]. Suh et
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(a) (b)

Figure 6.1: Torsional asymmetric actuator with electrode and tips, suspended on a tor-
sional rod: (a) CAD model, (b) scanning electron microscopy. Left: Dense grid (10�m
spacing) with aluminum electrode underneath. Right: Grid with 5�m high poles.

al. [SGD+96] present an array of thermobimorph micro cilia which are able to accurately
move and position silicon chips. The MEMS array that we present here is designed for
applications in which objects in the millimeter range are moved, e.g. for a programmable
stage of a microscope, or for automated handling and assembly of small parts.

Reznik et al. [RBC97] performed thorough tests of the proposed manipulation strategies
with a sophisticated dynamic simulator [MC95], verifying the predicted behavior of parts
by our theory of force vector �elds. Manipulation experiments that support our theory are
described by Suh et al. [SGD+96].

Compatibility with standard VLSI processes allows integration of control circuitry on
the same chip. This is of great importance if we want to employ powerful manipulation
strategies that require individual control of the actuators in the array. The SCREAM
process [ZM92,SZM93] (for Single-Crystal Silicon Reactive Etching and Metallization) is
a low temperature process that can be performed after the fabrication of circuits has
been completed [SM96]. In the following sections we will discuss design, fabrication, and
testing of a SCREAM electrostatic actuator array (see Figure 1.2), and we discuss control
strategies for massively-parallel actuator arrays.

Our goal is to generate motion plans at a high (task) level and automatically transform
them into an actuator array control strategy, in analogy to a compiler that translates high
level instructions into assembler code. We believe that such high level strategies of micro
sensors and actuators are essential for e�cient control of future complex MEMS systems.
Conversely, the availability of high level descriptions for MEMS and micro robotic tasks
may in
uence and improve the MEMS design, similarly to the concurrent design of omputer
chips and compilers.

6.1.1 Actuator Design

A torsional actuator consists of a rectangular grid etched out of single-crystal silicon sus-
pended by two rods that act as torsional springs (Figure 6.1). The design is based on
torsional resonators [MZSM93,MM96]. In our current design, the grid is 180�m long and
extends 120 � 180�m on each side of the rod. The rods are 150�m long. The current
asymmetric design has 5� 10�m high protruding tips (Figure 6.2) on one side of the grid
that make contact with an object lying on top of the actuator. The other side of the
grid consists of more densely spaced beams above an aluminum electrode. If a voltage is
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Figure 6.2: Released actuators consisting of single-crystal silicon with 5�m high tips.

Figure 6.3: Micro motion pixel consisting of actuators oriented in four di�erent directions.

applied between actuator grid and electrode, the half of the grid above the electrode is
pulled downward by the resulting electrostatic force. Simultaneously the other side of the
grid (with the tips) is de
ected out of the plane by several �m. Hence an object can be
lifted and pushed sideways by the actuator.

Because of its low inertia (resonance in the high kHz range) the device can be driven
in a wide frequency range from DC to several 100 kHz AC. Due to the asymmetry in the
actuator design, each actuator generates motion in one speci�c direction if it is activated;
otherwise it acts as a passive frictional contact. Figure 1.2 shows a small portion of such
a unidirectional actuator array, which consists of more than 15,000 individual actuators
that densely cover the substrate surface.

The layout of the array can be changed such that the actuators point in various ori-
entations. Then the combination and selective activation of several actuators in di�erent
orientations (a motion pixel, see Figure 6.3) allows us to generate various motions in dis-
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crete directions, spanning the plane.

Feasibility Calculations

To answer the question Can microscopic actuators move macroscopic parts? we investi-
gate the (vertical) levitation forces generated by the micro actuators. Section 6.1.1 will
then focus on lateral forces that induce motion on the part. Let us consider the speci�c
weight (i.e., in this case, the weight per area ratio) of a variety of objects and materials.
For example, the speci�c weight of paper is approximately 1N=m2 = 1�N =mm2. A sil-
icon wafer is about ten times heavier at 10�N =mm2. We compare these values with the
electrostatic force generated by a parallel-plate capacitor. The force per area ratio can be
computed as F=A = "0V

2=d2, where V is the applied voltage, d is the gap width between
the capacitor plates, and "0 is the permittivity of free space. For a gap width of d = 5�m
and a voltage of 60V (typical values for our actuators), we obtain a force per area ratio of
approximately 1:2mN =mm2. This result is more than two orders of magnitude higher than
e.g. the speci�c weight of a silicon wafer. Note that the force is proportional to the square
of the applied voltage V as well as the gap width d. Therefore, higher voltages and smaller
gap sizes will largely improve the e�ectiveness of our electrostatic devices. However, the
force diminishes quickly with larger gap widths, which limits the range of motion of the
current actuator design.

Due to fabrication constraints, the electrode of our torsional actuator does not consist
of a continuous plate, but rather of a grid of approximately 1�m wide beams spaced at
10�m distance. This is necessary to release the structure from the substrate, as well as
for the deposition of an Aluminum electrode underneath the actuator. To investigate the
loss in electrostatic force incurred by these design limitations, we have analyzed torsional
actuators using the �nite element simulator Coulomb [Int89]. This analysis shows that
for the given actuator geometry, the electrostatic force is reduced to about one-third of the
force generated by an ideal parallel-plate capacitor.

Finally, due to layout constraints, not all of the wafer surface can be used for actuators.
In a practical layout of a densely packed actuator array, approximately 30% of the chip
surface is covered with electrostatic capacitors. The remaining area is used for the actuator
grids that support the tips, torsional beams, and electrical connections.

Summarizing the results of the feasibility calculations in this section, we conclude that
even though the e�ective electrostatic force generated by our actuators is only about one
tenth of an ideal parallel-plate capacitor, useful manipulation tasks can be performed with
electrostatic micro actuators.

New designs with much higher performance are currently under development. Parallel-
plate capacitors can be replaced by torsional comb-drive actuators, which combine very
small gap widths with theoretically unlimited angular range of motion. Since these high
aspect ratio comb drives employ vertical side walls as capacitors, the e�ective capacitor
surface increases signi�cantly. In particular, it can be larger than the (two-dimensional)
chip area. Smaller gap sizes and larger surface areas will result in an increase in electrostatic
force by several orders of magnitude.

Design of SCS Torsional Actuators

In this section we investigate the generation of lateral motion based on a kinematic analysis
of torsional actuators, which will yield design rules to optimize actuator design. Calcula-
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Figure 6.4: Schematic cross section of torsional actuator (not to scale): Actuator width
(from torsional axis) a and b, height of tips h, gap width between actuator and electrode
d, and torsional de
ection �.

tions show that the mass of an individual actuator is less than 100 ng; by comparison, the
mass of a typical object that we want to move (paper, silicon wafer) is in the 10� 100�g
range, when considering an object of equal area size. Because of this di�erence of sev-
eral orders in magnitude, impact dynamics are negligible, hence we will focus on actuator
kinematics.

Figure 6.4 shows a schematic cross section of an actuator with tips on one edge. d is
the clearance between actuator grid and trench, i.e. the gap width of the capacitor. a is
the distance between tip and rotational axis, b the width of the other side of the oscillator,
h the height of the tips, and � the angular de
ection of the actuator.

If the actuator is inactive, the object will rest on the tips. In case it is active and the
tips are moving upward, they engage with the bottom surface of the object, pushing it up
and sideways. During the downward motion of the actuator we assume that the object
keeps its horizontal position (e.g. because of inertia, or because other actuators are holding
it), and moves straight down (e.g. because of gravity or electrostatic forces). This results
in a stepwise lateral motion with each oscillation of the actuator. We are interested in
values for the design parameters that optimize this motion.

Let �x be the horizontal component of the motion of a tip when it moves from � = 0
to maximum de
ection �max. Thus

�x = a� a cos �max + h sin �max

For small maximum de
ections �max, this equation can be simpli�ed to

�x � 1

2
a�2max + h�max

Hence the step size �x is linear in the size of the tips h and the actuator size a, and it is
also proportional to the ratio of gap width and actuator size, d=b = sin �max � �max. Also
note that we want to choose a � b: otherwise, if a� b, the force of the actuator diminishes
because the lever supporting the actuator tips is relatively longer, and the capacitor surface
is reduced; if a� b, then the out-of-plane de
ection �max, and subsequently �x, becomes
smaller.
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Scaling E�ects and Actuator E�ciency. To optimize the performance of the actu-
ators, we investigate the lateral speed of an object as it is moved by the actuator array.
Let us consider the ideal case where there is no slip between moving object and actuator
during the out-of-plane motion. In this case the speed is the product of the step size �x
and the oscillation frequency f :

v = �x f

Even though we can operate our devices at a wide range of frequencies, an upper bound
is given by its natural frequency

fn =
1

2�

q
K=I

where K is the spring constant of the torsional rod, and I is the moment of inertia of the
actuator. The spring constant can be computed as

K � x3yG=3l

for a rectangular rod of cross-sectional width x and height y with x < y, rod length l, and
shear modulus G [JM83]. The moment of inertia I of the actuator is proportional to its
mass m and the square of its extension from the torsional axis r, I / mr2.

Now consider scaling the area size of an individual actuator by a factor s, while leaving
constant the vertical dimensions, and the torsional rod cross section. The spring constant
scales as K / 1=s, while for the moment of inertia the dependency I / s4 holds. Thus
for the resonance frequency we obtain the relationship fn / s�5=2, which tells us that with
decreasing scale s, the frequency increases much faster than the corresponding decrease
in step size �x. Also note that the force per area ratio remains constant during down-
scaling (as long as the loss of area due to additional connections is not signi�cant). We
conclude that our actuators become more e�cient the more they are scaled down. For a
more thorough discussion of scaling e�ects in MEMS, see e.g. [Mac96a].

There are, however, limits to these advantageous e�ects of down-scaling.
1. Useful actuators require a certain minimum range of motion such that devices can

still make contact with rougher or not perfectly 
at objects.
2. The electrostatic force generated by an individual actuator capacitor must be su�-

cient to fully de
ect the device, but down-scaling reduces the parallel-plate capacitor
force and increases the torsional sti�ness due to shortening of the torsional beam.

3. Finally, fabrication requires a certain minimum feature size (in our case about
0:8�m).

Our current actuator design has a torsional rod length of 150�m, grid sizes of a = 180�m
and b = 140�m, tip heights of 5� 10�m, and a capacitor gap size of 5�m, which results
in a kinematic constraint for the de
ection angle at �max � 2:4�. Simple calculations show
that with these dimensions, the electrostatic force is su�cient to overcome the torsional
spring forces. We obtain a step size of �x � 500 nm. Resonance occurs in the 10�100 kHz
range, which yields a maximum lateral speed of �x fn � 5� 50mm=sec.

6.1.2 Fabrication Process

The SCREAM process [ZM92,SZM93] (for Single-Crystal Silicon Reactive Etching and
Metallization) is a reactive ion etching process for the fabrication of submicron, movable
single-crystal silicon (SCS) electromechanical structures. Recently, several process varia-
tions have been developed to create a wide variety of SCS MEMS devices, e.g. an integrated
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scanning tunneling microscope (STM) [XMM95], opto-electronic devices [MJ95], loading
devices for tribological measurements [PMT95] or micro assembly [PBM95] and actuators
that generate forces in the milli-Newton range [SM95]. For an overview see [MAA+95,
Mac96b,Mac96a]. Characteristics of the SCREAM process are high aspect ratio SCS
structures, electrostatic actuation, high vertical sti�ness, low in-plane and torsional sti�-
ness, and compatibility with regular VLSI processes [SM96]. We have developed a mod-
i�ed, two-layer SCREAM process to fabricate devices with tips on movable micro struc-
tures [BDMM94b,BDM96a]. This process requires three photolithographic masks: the
�rst de�nes the tips, the second the torsional actuators, and the third mask includes the
patterns for electrodes and bonding pads. In the remainder of this section we give a concise
summary of the fabrication process. A detailed description of all processing steps, with a
complete list of all important process parameters, can be found in Appendix A.

Photolithographic Masks. The layout of the complete devices comprising torsional
actuators with tips, electrodes, and contact pads is drawn using SYMBAD, a CAD package
for integrated circuit (IC) and MEMS devices. For each of the three layers, the fractured
CAD data is transferred to the pattern generator to create 500 Cr masks for use in a 10:1
optical stepper.

Tip Layer. On the substrate of an arsenic-doped, 0:005
cm low resistivity, n-type (100)
silicon wafer, a 3:2�m thick etch mask layer of SiO2 is deposited using plasma enhanced
chemical vapor deposition (PECVD) at 300�C , 450mT , N2O 
ow of 42 sccm and SiH4 
ow
of 12 sccm for 90 min. Photolithography is used to transfer the pattern of the tips from
the mask onto a layer of OCG 985i 50cs positive resist spun on the oxide. The minimum
feature size in our devices is 0:8�m for tips and beams. The pattern is transferred from
the resist layer to the SiO2 layer using magnetron ion etching at a pressure of 2mT with a

ow rate of 30 sccm of CHF3 at 1000W . The photoresist is removed using an O2 plasma
etch. The pattern is transferred into the silicon substrate from the SiO2 layer using Cl2
reactive ion etching at 40mT , 400V , and at a 
ow rate of 50 sccm for Cl2 and 1:3 sccm
BCl3 for 30 min to get 5:0�m deep trenches. This trench depth determines the height of
the tips (see Figure 6.5a).

Actuator Grid Layer. A 2:0�m layer of mask SiO2 is deposited, and the above steps are
repeated for patterning of the actuator grids (Figure6.5b). Exposure of the actuator grid
pattern requires careful characterization because lithography is performed on a highly non-
planar surface. Accumulation of excessive photoresist around the tips has to be avoided as
much as possible to prevent the supporting grid structure from becoming too wide, which
would complicate the subsequent release process.

Following the second Cl2 etch, an insulating layer of silicon dioxide is deposited for side
wall passivation using 15 min of PECVD at the parameter values stated above, resulting
in a 400 nm thick silicon oxide layer (Figure 6.6c). Slow CHF3 reactive ion etching is used
to remove only the 
oor oxide for subsequent substrate etches.

A short Cl2 reactive ion etch at 50 sccm Cl2 and 1:3 sccm BCl3, 40mT , and 400V for
10 min generates 2�m deep trenches in the substrate to aid in the following release etch.
All beams of thickness up to 2�m are released from the silicon substrate using an RIE
process, in which an SF6 plasma with a 
ow rate of 140 sccm at 90mT and 150W releases
the beams in 6 min. Finally, all remaining oxide is stripped in a 6:1 bu�ered HF etch.
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Figure 6.5: Device fabrication with a two-layer SCREAM process: (a) forming of tips
using an RIE chlorine etch, (b) fabrication of actuator structures consisting of SCS beams
of 1�m width.
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Figure 6.6: Device fabrication with a two-layer SCREAM process: (c) MIE/RIE trench
bottom etch and RIE release etch, (d) Aluminum electrode deposition and patterning.
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Electrode Layer. A 200 nm thin layer of dielectric PECVD silicon oxide is deposited. A
250 nm layer of Al is conformally deposited using sputtering performed at 30mT pressure,
with a beam current of 5A and an Ar 
ow rate of 30 sccm. Due to overhanging sidewalls
(see Figure 6.6d) trench and mesa are electrically isolated. Note however that, because of
the rather high degree of isotropy of the Al sputtering, the electrodes under the capacitor
grids consist of continuous Al. To pattern the Al in the trench we use lithography with
OCG 985i 50cs positive resist. The pattern is transferred using Cl2 reactive ion etching at
20mT , 400V , and 
ow rates of 20 sccm Cl2, 40 sccm BCl3, and 1:3 sccm CH4 for 1:5 min.

Finally, a 100 nm thick layer of PECVD SiO2 can be deposited on the device to avoid
shorting when the actuators make contact with the trench electrodes during operation. The
actuators consist of beams that are close to 1�m wide and 5�m high, with approximately
5�m clearance underneath. Our actuator designs have grids of 120� 240�m side length.
The fabrication can be done in less than one week in the Cornell Nanofabrication Facility
(CNF) at Cornell University.

Packaging and Testing. Chips of up to 6 cm � 2 cm with more than 3000 actuators
have been packaged and wire-bonded. Larger arrays have been tested in the probe station.
When an AC voltage (not necessarily at resonance frequency) is applied between the Al
electrodes and the Si substrate, the actuators are brought into an oscillatory motion. The
dielectric silicon oxide beween Al electrodes and Si substrate can withstand voltages of at
least 60V without breakdown.

6.1.3 Experimental Results

A wide variety of torsional resonators has been built and tested, yielding information
on the optimal design of actuators and material properties such as sti�ness, resonance
properties, internal stresses, and energy dissipation. For a thorough discussion of torsional
resonators see [MZSM93,MM96]. In preliminary manipulation experiments, we dispensed
carbon particles of up to 10�m diameter on the actuator and observed the devices in the
SEM. At resonance, the particles were quickly tossed o� the actuator.

Further manipulation experiments were performed on a prototype array with more
than 15,000 individual actuators. While the �rst generation of torsional resonators [MM96]
exhibited only small de
ections even at resonance, the current devices were designed for
larger displacements at DC voltages. This improvement was achieved by softer torsional
springs and relatively larger capacitor grids (Figure 6.1). Out-of-plane motion of up to 5�m
(the maximum kinematically possible de
ection) was measured under the SEM. The �rst
set of manipulation experiments was performed with small glass pieces (microscope cover
slips) of a fewmm2 size and close to 1mg mass (note that the mass of an individual actuator
measures less than 100 ng). We chose glass because it is 
at, rigid, and transparent,
which makes it a favorable material to test our devices. However, because of its smooth
surface, the motion generated from the actuator array may be reduced because of slip
between actuators and moving object. All manipulation experiments were performed in
air. Therefore, damping and moisture on the hydrophilic surfaces of Aluminum and glass
may also reduce the e�ciency of the arrays.

We observed lifting of the glass pieces within the motion range of the actuators (sev-
eral �m). The objects were also pushed sideways by several 100�m, by actuating the
array at about 50Hz for a few seconds, so that the actuators repeatedly struck the glass
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Figure 6.7: Micro cilia device manipulating an ADXL50 accelerometer chip [Ana91] (cour-
tesy of Dr. R. Payne, Analog Devices, Inc.); its size is 2:7mm squared. The SEM micro-
graph shows a portion of the cilia chip, which consists of an 8� 8 array of motion pixels.
The entire device includes four cilia chips that can be controlled independently to generate
complex force vector �elds. Picture reproduced from [SGD+96].

piece. Larger distances were di�cult to achieve with the current arrays because of low
yield of our prototype devices. Depending on the shape of the object as well as its position
on the actuator array, we also observed resonance between actuators and object at certain
actuation frequencies.

A second round of experiments was performed with pieces of paper. Paper is consider-
ably rougher and lighter than a glass piece of equal size. With the current actuator array
no motion could be observed. We believe that the main reason for this result is the high
surface roughness of paper which we measured as at least 10 - 100�m, which is more than
the height of our current actuator tips, and larger than their range of motion. Low yield
in the current actuator arrays also reduces their e�ectiveness.

6.2 Polyimide Micro Cilia Arrays

We performed distributed manipulation experiments using an organic ciliary array of thin-
�lm polyimide bimorph microactuators (Figure 6.7). These experiments constitute what
may be the most convincing evidence to date in support of the theory of programmable
force �elds. The arrays were designed and built at the Center for Integrated Systems
(CIS) at Stanford University by J. Suh, S. Glander, R. Darling, C. Storment, and G. Ko-
vacs [SGD+96], who generously made them available to us, and collaborated with us during
our micro manipulation experiments. The actuators employ independent thermal actua-
tion and electrostatic hold-down. Four orthogonally-oriented actuators are integrated into
a unit cell called a \motion pixel" [BDMM94b]. The motion pixels are replicated to tile
a square area, allowing for precise manipulation of small objects placed on top of the
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array. Our goal was to implement task-level, sensorless manipulation strategies for macro-
scopic objects. The tasks of parts-translation, -rotation, -orientation, and -centering were
demonstrated using small IC dice. Strategies were programmed in a �ne-grained SIMD
(Single Instruction Multiple Data) fashion by specifying planar force vector �elds. In our
experiments, we employed vector �elds with potential for parts-orientation and -posing
tasks, and the theory was used to predict the equilibrium poses of speci�c parts (Fig-
ure 6.17). The poses predicted by the equilibrium analysis (see Section 2) were observed
in our experiments (Figures 6.16-left).

Perhaps surprisingly, the theory has also predicted the existence of pathological �elds
which do not induce well-behaved equilibria. In particular, the \lower bounds" of Section 3
show that there exist perfectly plausible vector �elds which induce no stable equilibrium
in very simple parts. Although these �elds are very simple, they result in limit cycles
and quite complex behavior. We implemented such �elds on the cilia array. Vector �elds
without potential were employed to cast parts into limit cycles, e.g. \in�nite" rotation using
a skew-symmetric squeeze �eld. The predicted behavior (Figure 6.18) for such \unstable"
vector �elds was also observed (Figure 6.16-right). This shows that rather complex|
but potentially useful|behavior can be generated using very simple �elds. We believe our
experiments validate the theory and suggest the practicality of such minimalist approaches
to distributed manipulation.

The programmable vector �elds were implemented by actuating the organic cilia in a
cyclic, gait-like fashion. Motion in non-principal (e.g. diagonal) directions was e�ected by
a pairwise coupling of the cilia to implement virtual cilia and virtual gaits, (analogous to
the virtual legs employed by Raibert's hopping and running robots [RHPR93]).

These experiments suggest that MEMS actuator arrays are useful for parts-orientation,
-posing, -transfer, -singulation, and -sorting. Moreover, the theory of programmable vec-
tor �elds and virtual gaits gives a method for controlling a very large number of distributed
actuators in a principled, geometric, task-level fashion. Whereas many control theories for
multiple independent actuators break down as the number of actuators becomes very large,
our systems should only become more robust as the actuators become denser and more
numerous. This section represents a step towards testing that theory.

6.2.1 Devices and Experimental Setup

Several groups have described e�orts to apply MEMS (Micro Electro Mechanical System)
actuators to component positioning, inspection, and assembly [PFH90,AOF93,Fuj93,
BDMM94b,LW95, for example]. The Stanford cilia chip [SGD+96] employs independent
thermal actuation and electrostatic hold-down of an array of 256 thin-�lm polyimide actu-
ators (Figure 6.8) grouped together in 64 unit cells. Each cell consists of four orthogonally-
oriented actuators called a \motion pixel" [BDMM94b], because it can generate motion in
various directions, spanning the plane. The motion pixels are replicated to tile a square
area, allowing for precise manipulation of small objects placed on top of the array.

Combined Thermobimorph and Electrostatic Actuators. Surface micromachining
techniques were used to create the actuators using polyimide as the primary structural
material and aluminum as a sacri�cial layer. The fabrication process was designed to be
compatible with CMOS or BiCMOS circuits which could be pre-fabricated on a silicon
substrate.
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Figure 6.8: Portion of a polyimide cilia array (SEM micrograph). Four orthogo-
nally-oriented actuators are integrated into a motion pixel, which covers a surface area
of approximately 1:1� 1:1mm2. Picture reproduced from [SGD+96].

Each actuator cilium consists of two layers of polyimide with di�erent thermal expan-
sion coe�cients. The cilium also contains a Titanium-Tungsten (Ti:W) resistive heater
loop for thermal actuation, Aluminum electrodes for electrostatic (low-power) hold-down,
and a silicon nitride encapsulation/sti�ening layer (Figure 6.9).

Since the polyimides were cured at high temperature and the upper polyimide layer
has the larger thermal expansion coe�cient, the actuators assume an upward, out-of-plane
curvature when the process is complete (Figure 6.10). Heating by the Ti:W resistors
partially 
attens them back towards the substrate. Then, applying a voltage between cilia
and substrate electrodes allows a low-power hold-down without heating current. For a
detailed description of the fabrication process see [SGD+96].

Vertical and horizontal displacements of the cilia tips are a function of the thermal
mismatch in the actuator layers. For room temperature, these values can be calculated as
�v � 120�m and �h � 20�m [SGD+96]. Inspection under the scanning electron microscope
(SEM) has veri�ed these calculations.

The lifting capacity of an actuator can be estimated as the force required to de
ect
the actuator's tip to the substrate. The actuator load capacity has been calculated as
Fl = 76�N , which gives a force-per-area ratio of 4� 76�N =(1:1mm)2 � 250�N =mm2.

Chip Layout. The cilia array is composed of cells (motion pixels, each 1:1 � 1:1mm2)
which contain four orthogonally-oriented actuators (Figure 6.10). On the current cilia chip,
the motion pixels are arranged in an 8�8 array which occupies approximately 0:77 cm2 of a
1 cm2 die. The four actuators of each pixel are independently activated by four thermal and
four electrostatic control lines. Within each column of eight cells, the thermal elements for
a given actuator are wired in series, whereas the electrostatic elements for a given actuator
orientation are wired in parallel. The eight columns are then wired in parallel for both
the thermal and electrostatic elements. Each electrostatic control line (E1 { E4) applies a
potential to the electrodes of all 64 actuators of a given orientation. Similarly, each thermal
control line (T1 { T4) runs a current through the Ti:W heaters of all 64 actuators of a
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Figure 6.9: Organic thermal and electrostatic microactuator. Half of the upper polyimide
and silicon nitride encapsulation/sti�ening layer are shown removed along the cilium's axis
of symmetry to show details. Picture reproduced from [SGD+96].

given orientation, such that the load resistance for the overall array is the same as that of
a single element (� 1500
). A common ground bus provides a current return path for the
thermal elements, and a substrate contact provides an opposing plate for the electrostatic
elements (Figure 6.11).

Four 8� 8 chips were diced and packaged together to make a quad-shaped 16� 16 cilia
array device, with a total of 1024 cilia. The device itself is attached to a hybrid package
which is placed on a heat sink and thermo-electric cooler (Peltier e�ect module). The
total input power to the chip can exceed 4W , and without active cooling the package
can become very hot. To observe the experiments, a long working-distance microscope is
connected to a CCD camera, and a video cassette recorder is used to monitor and record
both the movements of an individual cilium and the objects conveyed by the array.

Controller. The manipulation results described below were accomplished with the cilia
array device interfaced to an IBM 486 personal computer. The PC provides speed control
via the drive pulse frequency and directional control interactively via keyboard or mouse,
or by actuator programs that can be speci�ed using the MEMSA (MEMS Array) language1

which we developed at Stanford. The control software including the MEMSA interpreter
was written in PASCAL.

An 8-bit signal (4 electrostatic control lines E1 { E4, and 4 thermal control lines T1 {
T4) is sent via the PC parallel port to D-type 
ip-
ops which activate power transistors.
Currently up to 4 cilia arrays can be controlled simultaneously by using a multiplexer with
2 address bits. (Figure 6.12).

6.2.2 Low-level Control: Actuator Gaits

To induce motion on a part that is placed on the array, the cilia are actuated in a cyclic,
gait-like fashion. In each cycle, the part is moved in a certain direction by the motion

1MEMSA (named after MENSA) is the language for smart manipulation surfaces.
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Figure 6.10: Polyimide cilia motion pixel (SEM micrograph). Four actuators in a common
center con�guration make up a motion pixel. Each cilium is 430�m long and bends up to
120�m out of the plane. Picture reproduced from [SGD+96].

of the actuators that are in contact with it. The speed of the moving part depends on
the (horizontal) displacement of the actuators per cycle as well as the frequency of cycle
repetition. It also depends on the surface properties and weight of the moving part.

Task: Translation of Parts in Principal Directions. The simplest gait is the two-
phase gait, in which all actuators of the same orientation repeatedly stroke the part while
the remaining actuators are held down. Assuming that the orthogonal cilia within a motion
pixel are oriented at the principal compass points, let us use capital letters NEWS to denote
the North, East, West, and South actuators in the up position, and lower-case letters news
to denote the actuators in the lowered position. Then the two-phase gait to e�ect motion
in the East direction would be news neWs (see Figure 6.13).

The four-phase gait consists of four di�erent actuation phases news neWs nEWs nEws

such that motion is induced during upward as well as downward strokes of the cilia (Fig-
ure 6.14, see also [AOF93]). Note that the forces exerted on the moving part depend on
the state of the motion pixel: e.g. in the transition from phase 1 to phase 2 the cilium W

moves up while the opposing cilium e remains down. We denote the lateral force exerted
on the part in this con�guration fW;e. Analogously, during transitions 2{3, 3{4, and 4{1
we observe lateral forces fE;W, fw;E, and fe;w, respectively. fW;e and fe;w are in positive x-
direction, while fE;W and fw;E are negative. Furthermore, from this analysis it follows that
jfW;ej � jfe;wj � jfE;Wj � jfw;Ej � 0. Hence we expect a relatively large motion step �xW;e
during transition 1{2, and a smaller step �xe;w during transition 4{1, while during the
other transitions the part remains at its current location. This behavior has been observed
in our experiments, where �xW;e was measured between 3�m and 10�m depending on
input power, frequency, surface properties and weight of the part. �xW;e was usually about
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Figure 6.11: Polyimide cilia chip layout (not to scale), consisting of an 8�8 array of motion
pixels with thermal and electrostatic control lines. Picture reproduced from [SGD+96].

twice as large as �xe;w.

Task: Translation of Parts in Arbitrary Directions. Motion in non-principal (e.g.
diagonal) directions is e�ected by a pairwise coupling of two cilia of each pixel, implement-
ing virtual cilia analogous to Raibert's concept of virtual legs for hopping and running
robots [RHPR93]. Hence, several cilia can be coordinated to emulate a virtual cilium,
which generates a force corresponding to the vector sum of its components. The diagonal
gait to e�ect motion in the North-East direction would be news neWS NEWS NEws where
the virtual cilia are NE and WS. Consequently, we obtain a virtual gait that moves the
part in a diagonal direction. Note that in a section view through the array looking in the
North-West direction, this gait looks virtually identical to the four-phase gait depicted in
Figure 6.14.

Motion in arbitrary directions can be induced by alternating gaits that interleave prin-
cipal (and virtual) gaits of di�erent directions. For example, a translation at 25� from the
x-axis requires motion in the y-direction and x-direction at a ratio of tan 25� � 1 : 2. Our
control software determines the exact alternating sequence analogously to the Bresenham
line scan algorithm [FVDFH96], which rasterizes lines at arbitrary angles, resulting in
di�erent �elds that are interlaced in time.

Experiments and Results. A large number of translation experiments have been per-
formed in which two-phase and four-phase gaits were used to implement principal and
virtual gaits. These experiments show that a �rst-order dynamical system models the
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Figure 6.12: Schematic of cilia chip controller: eight data lines, two address lines, and one
clock line are used from the PC parallel interface. The data lines provide the activation
pattern for the four electrostatic and the four thermal control lines of the cilia chip. One
out of four cilia arrays is selected by the address via the multiplexer. New data is stored
in the D-type 
ip-
ops at every clock signal.

device-part interaction well. Therefore, when describing and predicting the motion of parts
in force vector �elds, we have based our theory on a �rst-order system (see Section 6.2.3).

Silicon chips were moved with a motion resolution of a few �m and speeds up to
200�m=sec. Four-phase gaits proved more e�ective than two-phase gaits, because dur-
ing the downward motion in the two-phase gait, the part tends to slip backwards. The
four-phase gait avoids this e�ect, because other cilia hold the part in place during the
transition 3{4. In the subsequent downward motion in the transition 4{1, the part is also
moved forward (Figure 6.14).

The diagonal gait also has the lowest power consumption (not considering electrostatic
hold-down), due to the fact that its duty cycle for cilia hold-down is lowest (50%), com-
pared to 75% for the principal four-phase gait, and 87.5% for the two-phase gait.

As expected, diagonal (virtual) gaits induced the largest and fastest motion because all
four cilia of each pixel were activated, whereas in principal gaits only two cilia are actively
used, while the others have to be held down continuously (Figure 6.14).

6.2.3 High-level Control: Vector Fields

We believe that vector �elds can be used as an abstraction barrier between applications
requiring array micro-manipulation and MEMS devices implementing the requisite me-
chanical forces. That is, applications such as parts-feeding can be formulated in terms of
the vector �elds required. This then serves as a speci�cation which the underlying MEMS
device technology must deliver. Conversely, the capabilities of MEMS array technologies
for actuation can be formulated in terms of the vector �elds they can implement. For
example, limitations in force magnitude are naturally expressed in vector �eld terms, as
\small" vector �elds. Restrictions in directional selectivity and magnitude control can also
be manifested as restrictions on the vector �eld abstraction (resulting in discretization in
orientation or modulus). This means that MEMS designers can potentially ignore certain
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Figure 6.13: Two-phase gait. The W actuator is repeatedly switched on and o�, while the
other actuators always remain on, resulting in a news neWs sequence.

details of the application process, and instead focus on matching the required vector �eld
speci�cation. Then, once the capabilities of MEMS actuator arrays were published as
vector �elds and tolerances, an application designer could look in a catalog to choose a
device technology based on the �eld speci�cation it promises to implement. This would
free application engineers from needing to know much about process engineering, in the
same way that software and algorithm designers often abstract away from details of the
hardware. Such an abstraction barrier could permit hierarchical design, and allow appli-
cation designs with greater independence from the underlying device technology. At the
same time, abstraction barriers could allow MEMS array technologies to be designed si-
multaneously with the (abstract) vector �eld control. This development pattern could be
similar to the concurrent design of VLSI processors with their compilers, as is common in
computer architecture.

In the remainder of this section, we give brief summaries of theoretical results (see
Sections 2 { 5) and compare them to experiments that we performed with the micro cilia
array device.

6.2.4 Squeeze Fields

In Section 2 we proposed a family of control strategies called squeeze �elds and a planning
algorithm for parts-orientation (see Figures 2.1 and 2.2).
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Figure 6.15: Diagonal (virtual) gait consisting of the four-pattern sequence news neWS
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Figure 6.16: Manipulation of silicon chips in programmable vector �elds induced by a
micro cilia array (microscope video images).
Left: The chip is aligned with the vertical squeeze line of the �eld.
Right: Rotating a square-shaped chip counterclockwise in a skewed squeeze �eld. Pictures
reproduced from [SGD+96].
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Figure 6.17: Simulation of alignment task with a squeeze �eld.

De�nition 1 (Section 2.1) Assume l is a straight line through the origin. A squeeze
�eld f is a two-dimensional force vector �eld de�ned as follows:

1. If z 2 R 2 lies on l then f(z) = 0.
2. If z does not lie on l then f(z) is the unit vector normal to l and pointing towards l.

We refer to the line l as the squeeze line, because l lies in the center of the squeeze
�eld.

Assuming quasi-static motion, an object will translate and rotate to an equilibrium
con�guration, as characterized in Figures 2.2, 2.3, and 2.4. This assumes a uniform force
distribution over the surface of P , which is a reasonable assumption for a 
at part that is
in contact with a large number of elastic actuators.

De�nition 2 (Section 2.1) A part P is in translational equilibrium if the forces acting
on P are balanced. P is in orientational equilibrium if the moments acting on P are
balanced. Total equilibrium is simultaneous translational and orientational equilibrium.

Claim 42 [BDM96b] Every squeeze �eld f has potential, of the form U(z) =
Z
�
f �

ds, where � is an arbitrary path to z from a �xed reference point. If dz denotes the
perpendicular distance of z from the squeeze line, then U(dz) = jdzj.
Proof: Follows from De�nition 1 and Proposition 17, Section 4. 2

Proposition 4 (Section 2.2) Let P be a polygon whose interior is connected. There
exist O(k n2) bisectors such that P is in equilibrium when placed in a squeeze �eld such
that the bisector coincides with the squeeze line. n is the part complexity measured as
the number of polygon vertices. k denotes the maximum number of polygon edges that a
bisector can cross.

If P is convex, then the number of bisectors is bounded by O(n).

Equilibria can be calculated analytically or numerically, see Section 2.2 for details.

Theorem 9 (Section 2.3) Let P be a polygon whose interior is connected. There exists
an alignment strategy consisting of a sequence of squeeze �elds that uniquely orients P up
to symmetries.
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Figure 6.18: Unstable square-shaped part in a skewed squeeze �eld (� = �1). The square
with center on the squeeze line will rotate inde�nitely. Moreover, it has no stable equilib-
rium in this �eld.

Task: Orienting and Aligning Parts

If a part is placed in a squeeze �eld, it will translate and rotate until a stable equilibrium is
reached (Proposition 4). Parts may exhibit several equilibria, hence after one squeeze the
part orientation may be ambiguous. This ambiguity can be removed with the strategies of
Theorem 9: by executing a sequence of squeezes at particular angles, the part is uniquely
oriented (see Figure 2.1, for details see Section 2.3).

Experiments and Results. The long, thin part depicted in Figures 6.16-left and 6.17
exhibits a unique stable equilibrium (modulo 180� �eld symmetry). When placed in a
squeeze �eld, its longitudinal axis aligns with the squeeze line. This dynamical process is
predicted by simulation in Figure 6.17, and veri�ed in experiment (see Figure 6.16-left).
This part alignment experiment has also been performed with similar results for several
other small pieces of glass and silicon of a few mm length and several mg of mass.

6.2.5 Skewed Squeeze Fields

De�nition 11 (Section 3) A skewed �eld fS is a vector �eld given by fS(x; y) =
�sign(x)(1; �), where 0 6= � 2 R .

Proposition 24 (Section 4.2) No skewed squeeze �eld has a potential.

Proposition 12 (Section 3) A skewed �eld induces no stable equilibrium on a disk-
shaped part.

Proposition 13 (Section 3) A diagonally skewed �eld (� = �1) induces no stable
equilibrium on a square-shaped part.

Task: Rotating Parts

According to Propositions 12 and 13, certain parts will rotate inde�nitely in skewed squeeze
�elds (Figure 6.18). Note that even though our cilia device has more degrees of freedom,
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two areas of constant force are su�cient to implement a skewed �eld, resulting in a very
simple task-level rotation strategy. In particular, the rotation algorithm resulting from
the application of skew-symmetric squeeze �elds is considerably simpler than rotation
algorithms proposed in the MEMS literature (for example, the vortices suggested by Fu-
jita [Fuj93] or by Liu and Will [LW95]). Vortices require at least four areas of the array
to be pushing in di�erent directions. That is, vortices can be implemented using four
triangular or rectangular regions, upon each of which the vector �eld is constant. Skewed
�elds perform the same task with only two regions of constant force.

Experiments and Results. Figure 6.16-right shows video frames of a 3 � 3mm2 IC
chip rotating on the squeeze line of a skewed �eld. During the experiments, several full
rotations of the part were performed.

6.2.6 Radial Fields

De�nition 22 (Section 4.2) A unit radial �eld R is a two-dimensional force vector
�eld such that R(z) = �z=jzj if z = 0, and R(0) = 0.

Proposition 23 (Section 4.2) A unit radial �eld has a potential, U(z) = jzj.

Proposition 35 (Section 5.1) Given a polygonal part P in a radial �eld f , there exists
a unique pivot point v of P such that P is in equilibrium if and only if v coincides with
the center of the radial �eld.

Task: Centering Parts

Radial �elds can be used to center a part. With the current four-quadrant cilia device,
we have implemented an approximation of an ideal radial �eld similar to the �eld in
Figure 1.1-b. Note that this approximate radial �eld has a potential.

Experiments and Results. Small silicon and glass parts were centered using our cilia
device. In this experiment, high positioning accuracy (in the �m range) was hard to
achieve, because the center of the radial �eld coincides with the the location of the dice
edges. Manual packaging of the four cilia chips leaves small gaps and non-planarities at
these junctions. The next generation cilia device will overcome this problem, because it
will allow us to implement the radial �eld with a single chip. Furthermore, because of its
full pixel-wise programmability, the new chip will allow us to closely approximate ideal
radial �elds.

6.2.7 Conclusions

Small parts (sizes in the mm range) were successfully manipulated using an organic MEMS
cilia array. The experiments demonstrated parts-translation, -rotation, -orientation, and
-centering of IC dice, and other small pieces of silicon and glass, as predicted by the theory
of programmable vector �elds. With this theory, force vector �elds can be cascaded into
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Figure 6.19: Schematic of experimental setup 1: A 50 cm�40 cm aluminum plate is forced
to oscillate horizontally by the shaker armature. The forced oscillation causes a transverse
vibration of the plate.

multi-step strategies. It has been shown that these open-loop strategies can sort as well as
uniquely position and orient parts without sensor feedback.

Based on our experiments, a new, improved array is currently being fabricated. Bene�ts
of the new, fully programmable cilia array will include among others the implementation
of sequences of squeeze �elds, nearly-ideal radial �elds, and sensorless sorting strategies.
The new design will also overcome current problems due to manual packaging.

6.3 Vibratory Plate Parts Feeders

In this section, we explore how controlled vibration can be used for a new device setup
to systematically feed planar parts. The idea is to generate and change dynamic modes
in a plate by varying applied frequencies. Depending on the frequency of vibration and
the boundary conditions, nodes of di�erent shapes are formed (this was experimentally
studied by Chladni [Chl87]). If planar parts are put on this vibrating plate, they move to
the node, and end up in a stable orientation [BBG95].

6.3.1 Setup and Calibration

Figures 6.19 and 6.20 are schematics of the experimental setup, which consists of an alu-
minum plate forced to oscillate in two di�erent con�gurations. The shaker is a commer-
cially available2 electrodynamic vibration generator, with a linear travel of 0:02m, and
capable of producing a force of up to 500N . The input signal, specifying the waveform
corresponding to the desired oscillations, is fed to a single coil armature, which moves in
a constant �eld produced by a ceramic permanent magnet in a center gap con�guration.

In the �rst con�guration (Figure 6.19), the plate is attached to the shaker armature such
that it is forced to vibrate in the longitudinal direction. For low amplitudes and frequen-
cies, the plate moves longitudinally with no perceptible transverse vibrations. However,
as the frequency of oscillations is increased, transverse vibrations of the plate become
more pronounced. The resulting motion is similar to the forced transverse vibration of a
rectangular plate, clamped on one edge and free along the other three sides.

2Model VT-100G, Vibration Test Systems, Akron, OH, USA.
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Figure 6.20: Schematic of experimental setup 2: The aluminum plate is hinged and can
oscillate about an axis in its middle.

The nodes for these transverse oscillations can either be obtained theoretically
(Rayleigh [Ray45], Timoshenko [Tim40]), or experimentally using the technique originally
pioneered by Chladni [Chl87]. By sprinkling small sized particles3 on a vibrating surface,
the nodes can be experimentally identi�ed as the regions where the particles tend to col-
lect. The dynamics of \collecting" at the nodes is important in determining the e�ective
force �eld that leads to the orienting and localization e�ect of our device, and is discussed
in more detail in Section 6.3.3.

For the con�guration in Figure 6.19, the location and shape of the node depends on
the frequency of vibration. Figure 6.21 shows the experimental determination of the nodes
for frequencies of 60Hz and 100Hz .

The second con�guration (Figure 6.20) forces the plate to undergo transverse vibrations
such that the resulting shape of the node, and its location, are independent of the forcing
frequency. The plate is hinged about an axis situated midway between, and parallel to,
two of its sides. A rod connected to the armature of the shaker forces the plate to an
oscillatory motion about the hinged axis. As expected, experimental determination shows
that except for a slight distortion due to the e�ect of clamping at the rod, the node lines
up with the hinge axis (Figure 6.22).

The second setup is run at lower frequencies, to ensure that only the mode where
the plate oscillates about the hinge axis is excited. If we increase the operating frequency,
modes corresponding to transverse vibration of a plate, clamped at the point of attachment
to the rod and the hinged ends, become dominant, and the node shape gets complicated.
This e�ect can be seen at 20Hz (Figure 6.22), where the node shows a tendency to get
\pulled" towards the point where the plate is clamped to the rod.

6.3.2 Behavior of Planar Parts

3Chladni used sand, we use Urad lentils to get a better contrast on video.
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Figure 6.21: Experimentally determined nodes at (a) 60Hz and (b) 100Hz , for experi-
mental setup 1 (see Figure 6.19). After vibrating the plate for a short time, the particles
form Chladni �gures, which indicate the location of the vibrational nodes.

Node @
10 Hz

Rod

(a)

Node @
20 Hz

(b)

Figure 6.22: Experimentally determined vibrational nodes at (a) 10Hz and (b) 20Hz , for
experimental setup 2 (see Figure 6.20).

If we put planar parts on the vibrating surface, there is a marked tendency for them to
move towards the node and end up in one of a �nite number of stable orientations. We
observe the following features over a wide range of frequencies in both the experimental
setups:

� From all initial positions on the plate, the objects move towards the node. They end
up in a stable position around some point on the node, which depends on the initial
position of the object.

� As the object approaches the node (as we show later, after some portion of it crosses
the node), there is a tendency for it to rotate until it reaches one of a �nite number
of stable orientations.

Figure 6.23 shows two planar shapes, a triangle and a trapezoid, after they have reached
their stable position and orientation for the setup in Figure 6.19. To better illustrate the
orienting e�ect, the curve showing the node has been drawn by hand. Figure 6.24, similarly
shows the stable position of the planar parts for the second setup (Figure 6.24).

Over the large number of experimental runs performed, there are a couple of quali-
tative observations describing the ease and speed with which the parts get into a stable
con�guration:
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Figure 6.23: Stable position of planar parts in experimental setup 1, at a frequency of
60Hz . The node is marked according to Figure 6.21.

Node

Figure 6.24: Stable position of planar parts in experimental setup 2, at a frequency of
20Hz . The node is marked according to Figure 6.22.

� At higher frequencies of oscillation, both the velocity of the part towards the node,
and the rate of orientation, are relatively faster.

� Objects with a higher degree of rotational asymmetry get into a stable orientation
more easily.

Although the location of the node is better identi�ed in the second setup, the lower
operating frequencies make the localization of the part at the node, and the corresponding
orienting behavior, much slower. These tradeo�s are design considerations that need to be
investigated separately.

6.3.3 Dynamics of Particles and Planar Parts on a Vibrating

Plate

The underlying dynamics that causes the objects placed on a vibrating surface to move
towards the node give rise to an e�ective force �eld. In order to develop a theory for using
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our device as a viable method for sensorless manipulation, it is important to determine
the genesis and variation of this force �eld over the vibrating plate.

Chladni Figures

When particles are spread on a vibrating surface, they collect at the nodes, resulting
in patterns known as Chladni �gures (after Chladni [Chl87], see Figures 6.21 and 6.22).
Rayleigh [Ray45] describes the motion of the particles towards the nodes in the following
words { \the movement to the nodes is irregular in its character. If a grain be situated
elsewhere than at a node, it is made to jump by a su�ciently vigorous transverse vibration.
The result may be a movement either towards or from a node; but after a succession of
such jumps the grain ultimately �nds its way to a node."

The forces that cause the particles to move to the node act on any object placed on
the vibrating surface, generating an e�ective force �eld. The underlying dynamics of this
phenomenon are still poorly understood. In Appendix C we give an approach towards an
analytical model for the more tractable case of the planar motion of a particle bouncing
on a string in transverse vibration.

Results of our experiments indicate that the forces at each location of the plate can
be thought of as proportional to the amplitude of vibration, and perpendicular to the
sinusoidal \envelope" surface of the oscillating plate. They are also proportional to the
oscillation frequency, and the coe�cient of restitution. The �rst-order approximation near
the nodes can be used to show that the force �eld is perpendicular to and points towards
the node, and its magnitude varies linearly with the distance from the node. To simulate
the �eld far from the node, we approximate its magnitude by a sine variation normal to
the node curve.

Motion and Equilibria of Planar Parts

The case of general objects on the plate is more complicated than individual particles,
because the determination of the point on the object that undergoes impact, and the
resulting impulses, are both di�cult problems to solve. For our analysis, we ignore e�ects
such as rolling and tilting of the parts and assume that the contact geometry remains
constant over the impacts.

Instead of dealing with general parts, for which a more complicated formulation would
be required, we look at planar parts for which deriving the stability properties is relatively
straightforward.

We can consider the planar parts as a conglomeration of \particles," each of which
interacts with the plate and experiences the e�ective force �eld discussed in Section 6.3.3.
The forces have to be summed up over the area of contact, giving a speci�c force (per unit
area), f , that acts at every point of the planar object.

Let P be the planar part in contact with the vibrating plate, and c denote the center
of mass of P . The total (\lifted") force fP and moment MP around c can be obtained by
integrating the force �eld f over the contact surface of P :

fP =
Z
P
f dA (6.1)

MP =
Z
P
(r � c)� f dA (6.2)
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Consider a part P on the vibrating plate. We assume that a �rst-order dynamical
system describes the motion of P on the plate. In a �rst-order system, the velocity of a
part is directly proportional to the force acting on it. Hence, an equilibrium is a placement
of P such that P remains stationary. In an equilibrium, the force and moment acting on P
are balanced. This equilibrium condition is met when the lifted force fP and moment MP

(Equations (6.1) and (6.2)) are both zero.
We have made a series of assumptions to suggest that a force �eld exists for parts on a

planar plate. Our experimental results indicate that they are good engineering assumptions
when we observe the system over time, due to an averaging e�ect caused by the vibration
of the plate. An \exact" modeling of the impact dynamics between part and plate, even
though possible (see e.g. [MC95]), is not necessary for our purposes.



Chapter 7

Conclusions and Open Problems

7.1 Universal Feeder-Orienter (UFO) Devices

It was shown in Proposition 4 that every connected polygonal part P with n vertices
has a �nite number of stable orientation equilibria when P is placed into a squeeze �eld
S. Based on this property we were able to generate manipulation strategies for unique
part alignment. We showed in Section 5.1 that by using a combined radial and squeeze
�eld R + �S, the number of equilibria can be reduced to O(k n). Using elliptic force
�elds f(x; y) = (�x; �y) such that � 6= � and �; � 6= 0, this bound can be reduced to
two [Kav95,Kav97]. An \inertial" squeeze �eld f(x; y) = (�sign(x)x2; 0) uniquely orients
a part modulo �eld symmetry �. In a stable equilibrium, the part's major principal axis
of inertia lines up with the squeeze line to minimize the second moment of inertia.

Does there exist a universal �eld that, for every part P , has only one unique equilibrium
(up to part symmetry)? Such a �eld could be used to build a universal parts feeder [AE96]
that uniquely positions a part without the need of a clock, sensors, or programming.

We propose a combined radial and \gravitational" �eld R+ �G which might have this
property. � is a small positive constant, and G is de�ned as G(x; y) = (0;�1). This device
design is inspired by the \universal gripper" in [AE96]. Such a �eld could be obtained from
a MEMS array that implements a unit radial force �eld. Instead of rectangular actuators in
a regular grid, triangular actuators could be laid out in a polar-coordinate grid. The array
could then be tilted slightly to obtain the gravity component. Hence such a device would
be relatively easy to build. Alternatively, a resonating speaker, or a vibrating disk-shaped
plate that is �xed at the center, might be used to create a radial force �eld. Extensive
simulations show that for every part we have tried, one unique total equilibrium is always
obtained. We are working toward a rigorous proof of this experimental observation.

7.2 Magnitude Control

Consider an array in which the magnitude of the actuator forces cannot be controlled.
Does there exist an array with constant magnitude in which all parts reach one unique
equilibrium? Or can one prove that, without magnitude control, the number of distinct
equilibria is always greater than one?

92
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7.3 Geometric Filters

This thesis focuses mainly on sensorless manipulation strategies for unique positioning of
parts. Another important application of programmable vector �elds are geometric �lters,
which would be useful for sorting and singulation of parts. Figure 1.1 shows a simple �lter
that separates smaller and larger parts. We are interested in the question Given n parts,
does there exist a vector �eld that will separate them into speci�c equivalence classes? For
example, does there exist a �eld that moves small and large rectangles to the left, and
triangles to the right? In particular, it would be interesting to know whether for any two
di�erent parts there exists a sequence of force �elds that will separate them.

7.4 Force Field Computers

In this thesis we have demonstrated that even with a rather limited vocabulary of simple
force �elds, useful and quite complex tasks such as sensorless posing or sorting of parts can
be performed. It might be possible that force �elds could be used to solve certain classes
of problems, by encoding them in particular force �elds, part shapes, and initial and goal
poses, resulting in a \force �eld computer" that provides a physical implementation of the
problem. Identifying the class of encodable problems might yield deeper insights into the
complexity of parts manipulation with force vector �elds.

7.5 Performance Measures

Are there performance measures for how fast (in real time) an array will orient a part? In
some sense the actuators are �ghting each other (as we have observed experimentally) when
the part approaches equilibrium. For squeeze grasps, one measure of \e�ciency," albeit

crude, might be the integral of the magnitude of the moment function, i.e.,
Z 2�

0
jM(�)j d�.

The issue is that if, for many poses, jM(�)j is very small, then the orientation process will
be slow. Better measures are also desirable.

7.6 Uncertainty

In practice, neither the force vector �eld nor the part geometry will be exact, and both
can only be characterized up to tolerances [Don89]. This is particularly important at
micro scale. Within the framework of potential �elds, we can express this uncertainty
by considering not one single potential function UP , but rather families of potentials that
correspond to di�erent values within the uncertainty range. Bounds on part and force
tolerances will correspond to limits on the variation within these function families. An
investigation of these limits will allow us to obtain upper error bounds for manipulation
tasks under which a speci�c strategy will still achieve its goal.

A family of potential functions is a set fU� : C ! Rg�2J where J is an index set. For
example, we may start with a single potential function U : C ! R , and de�ne a family
of potential functions F(U; �; z) as fU� : C ! R j kU�(p) � U(p)kz < �g for some � and
norm z. This is analogous to de�ning a neighborhood in function space, using e.g. the
compact-open topology.
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When we di�erentiate a family of potential �elds (using the gradient) we obtain a
di�erential inclusion instead of a di�erential equation. So if F(u) = F(u; �; z), then
rF(u) = frU�g�2J .

When considering families of potentials, the equilibrium may be known to lie only
within a set Ei, although we may know that it is always a point in Ei. If the sets Ei are
of a small diameter less than some � > 0, our algorithms could be extended to handle
�-approximations.

As a more general approach, we propose an algorithm based on back-projections: For a
given part, let BFi(G) � C = R

2�S1 be the back-projection [LPMT84] of the set G under
Fi, where G � C, and Fi is a family of �elds on R 2. Then we wish to calculate a sequence
of �elds F1; F2; � � � ; Fk such that BF1(BF2(� � �BFk(G) � � �)) = C, where G is a single point
in C (cf. [LPMT84,EM88,Bro88,Don89,Bri92]).

7.7 Output Sensitivity

We have seen in Sections 2.1, 5.1, and 5.2 that the e�ciency of planning and executing
manipulation strategies critically depends on the number of equilibrium con�gurations.
Expressing the planning and execution complexity as a function of the number of equilibria
E, rather than the number of vertices n, is called output sensitive analysis. In practice,
we have found that there are almost no parts with more than two distinct (orientation)
equilibria, even in squeeze �elds. This is far less than the E = O(k n2) upper bound
derived in Section 2.2. If this observation can be supported by an exact or even statistical
analysis of part shapes, it could lead to extremely good expected bounds on plan length
and planning time, even for the less powerful strategies employing manipulation grammars
(note that the complexity of the manipulation grammar algorithm in Proposition 41 is
output-sensitive).

7.8 Discrete Force Fields

For the manipulation strategies described in this thesis we assume that the force �elds
are continuous, i.e. that the generated forces are dense compared to the moving part (as-
sumption Density in Section 2.3). When manipulating very small parts on microactuator
arrays, this condition may be only approximately satis�ed. We are interested in the lim-
itations of the continuous model, and we would like to know the conditions under which
it is necessary to employ a di�erent, discrete model of the array that takes into account
individual actuators, as well as the gaps between actuators. In [BDMM94b] we propose a
model for the interaction between parts and arrays of individual actuators based on the
theory of limit surfaces [GR88,GRP91].

7.9 Resonance Properties

Is it possible to exploit the dynamic resonance properties of parts to tune the control signal
of the array or plate to perform e�cient dynamic manipulation?
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7.10 3D Force Fields

It may be possible to generate 3D force �elds by using Lorentz electromagnetic forces.
Tunable electric coils could be attached to various points of a 3D body, suspending the re-
sulting object in a strong permanent magnetic �eld using magnetic levitation (the Lorentz
e�ect) [HS93,SWH95]. The tuning (control) of the electric coils could be e�ected as fol-
lows: Integrated control circuitry could be fabricated and co-located with the coils, and
conceivably a power supply. The control could be globally e�ected using wireless commu-
nication, or, the control of each coil evolves in time until the part is reoriented as desired.
The Lorentz forces could then be deactivated to bring the object to rest on the ground.
Planning for such a 3D device might reduce to [EMV93].



Appendix A

SCREAM Process

A.1 Processing Template

A.1.1 Photolithographic Masks

CAD

Symbad polygon editor, Dracula polygon
fracturing
1. generate design : : : : : : : : : : : : : : : : : : ped
2. fracture design : : : : : : : : : : : : : : : symbpg
3. check pattern : : : : : pgflash, pgcheck,

jebcad

4. transfer pattern to pattern generator :
pgnet

=) �le: : : : : : : : : : : : : : : : : : : : :
=) 
ashcount: : : : : : : : : : : : :

96
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Pattern Generation

GCA Mann 3600 Pattern Generator
1. load mask
2. load data �le
3. set parameters
4. expose

) �le: : : : : : : : : : : : : : : : : : : : :
) mask type: : : : : : : : : : : : :

=) mask name: : : : : : : : : : : :

Chrome Mask Making

1. MF320 develop : : : : : : : : : : : : : : : : 2 min
2. DI rinse : : : : : : : : : : : : : : : : : : : : : : : 1 min
3. DI soak : : : : : : : : : : : : : : : : : : : : : : : 2 min
4. resist descum (O2 plasma)
5. Chrome Etchant : : : : : : : : : : : : : 1.5 min
6. DI rinse : : : : : : : : : : : : : : : : : : : : : : : 1 min
7. DI soak : : : : : : : : : : : : : : : : : : : : : : : 2 min
8. resist strip (1165 remover or O2

plasma)

) mask name: : : : : : : : : : : :
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A.1.2 Tip Layer

PECVD SiO2 Deposition

IPE System 1000
1. thorough chamber clean before deposi-

tion
2. deposition
! N2O : : : : : : : : : : : : : : : : : 42 sccm (70 %)
! SiH4 (Silane) : : : : : : : : 12 sccm (17 %)
! pressure : : : : : : : : : : : : : : : : : : : : : 450 mT
! power : : : : : : : : : : : : : : : : : 50 W (4.5 %)
! temperature : : : : : : : : : : : : : : : : : : 300�C
! nominal deposition rate � 380 �A/min

3. SiO2 thin �lm measurement (Leitz)

) wafer: : : : : : : : : : : : : : : : : :
) time: : : : : : : : : : : : 90 min

=) thickness : : : : : : : : : : : : : : :
=) deposition rate : : : : : : : :

Photolithography

1. vapor prime (HMDS)
2. spin on photoresist
3. hotplate bake : : : : : : : : : : 3 min, 90�C
4. exposure on 10:1 stepper (see be-

low)
5. develop : : : : : : : : : : : : : : : : : : : : OCG 945
6. DI rinse : : : : : : : : : : : : : : : : : : : : : : : 1 min
7. DI soak : : : : : : : : : : : : : : : : : : : : : : : 3 min
8. dry (N2 jet / spin)

) wafer: : : : : : : : : : : : : : : : : :
) resist: : : OCG 895i 50cs
) spin, time 4000 rpm, 30

sec
) nominal resist thickness

2.4 �m
) development time : : 2.5

min

Exposure on 10:1 Stepper

GCA 6300 10:1 optical stepper
1. load mask
2. load wafer
3. expose

) wafer: : : : : : : : : : : : : : : : : :
) mask: : : : : : : : : : : : : : : : : :
) �le: : : : : : : : : : : : : : : : : : : : :
) time: : : : : : : : : : : 5.25 sec
) focus: : : : : : : : : : : : : : 251



99

MIE SiO2 Etch

MIE MRC-720
1. etch
! CHF3 : : : : : : : : : : : : : : : : : : : : : : : 30 sccm
! O2 : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 sccm
! power : : : : : : : : : : : : : : : : : : : : : : : 1000 W
! pressure : : : : : : : : : : : : : : : : : : : : : 1{2 mT
! nominal etch rate : : : : : : : 3500 �A/min
! nominal selectivity (SiO2:resist) : : : 2:1

2. resist strip
3. SiO2 mesa thin �lm measurement

(Leitz)

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : : 12 min

=) SiO2 thickness : : : : : : : : :

Resist Strip (O2 Plasma)

O2 plasma in Applied Materials RIE
! O2 
ow : : : : : : : : : : : : : : : : : : : : : 30 sccm
! pressure : : : : : : : : : : : : : : : : : : : : : : 30 mT
! power : : : : : : : : : : : : : : : : : : : : : : : : : 90 W
! time : : : : : : : : : : : : : : : : : : : : : : : � 10 min

Cl2 RIE Deep Si Etch

RIE (old) Plasma Therm PK-1250
1. moisture removal : : : : : : : : : : : : : : 1 min
2. native oxide removal : : : : : : : : : : 1 min
3. Si etch

!

step 1 2 3
Cl2 0 2 50 sccm

BCl3 14 14 1.3 sccm
H2 7 7 0 sccm

pressure 20 20 40 mT
voltage 200 300 400 V

! nominal etch rate : : : : : : : : : : 13 �m=h
! nominal selectivity (Si:SiO2) : : : : : 18:1

4. post-etch clean (Nanostrip)
5. SiO2 thin �lm measurement (Leitz)
6. trench measurement (Alpha Step)

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : : 40 min

=) SiO2 thickness : : : : : : : : :
=) trench depth (Si only) : :
=) etch rate : : : : : : : : : : : : : : :
=) selectivity : : : : : : : : : : : : :
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A.1.3 Actuator Grid Layer

PECVD SiO2 Deposition

IPE System 1000
1. thorough chamber clean before deposi-

tion
2. deposition
! N2O : : : : : : : : : : : : : : : : : 42 sccm (70 %)
! SiH4 (Silane) : : : : : : : : 12 sccm (17 %)
! pressure : : : : : : : : : : : : : : : : : : : : : 450 mT
! power : : : : : : : : : : : : : : : : : 50 W (4.5 %)
! temperature : : : : : : : : : : : : : : : : : : 300�C
! nominal deposition rate � 380 �A/min

3. SiO2 thin �lm measurement (Leitz)

) wafer: : : : : : : : : : : : : : : : : :
) time: : : : : : : : : : : : 40 min

=) thickness : : : : : : : : : : : : : : :
=) deposition rate : : : : : : : :

Photolithography

1. vapor prime (HMDS)
2. spin on photoresist
3. hotplate bake : : : : : : : : : : 3 min, 90�C
4. exposure on 10:1 stepper (see be-

low)
5. develop : : : : : : : : : : : : : : : : : : : : OCG 945
6. DI rinse : : : : : : : : : : : : : : : : : : : : : : : 1 min
7. DI soak : : : : : : : : : : : : : : : : : : : : : : : 3 min
8. dry (N2 jet / spin)

) wafer: : : : : : : : : : : : : : : : : :
) resist: OCG 895i 16.5cs
) spin, time 3000 rpm, 30

sec
) nominal resist thickness

1.5 �m
) development time : : 2.5

min

Exposure on 10:1 Stepper

GCA 6300 10:1 optical stepper
1. load mask
2. load wafer
3. expose

) wafer: : : : : : : : : : : : : : : : : :
) mask: : : : : : : : : : : : : : : : : :
) �le: : : : : : : : : : : : : : : : : : : : :
) time: : : : : 7.25 sec (non-

planar) / 4.75 sec (pla-
nar)

) focus: : 284 (transparent
mode)
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MIE SiO2 Etch

MIE MRC-720
1. etch
! CHF3 : : : : : : : : : : : : : : : : : : : : : : : 30 sccm
! O2 : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 sccm
! power : : : : : : : : : : : : : : : : : : : : : : : 1000 W
! pressure : : : : : : : : : : : : : : : : : : : : : 1{2 mT
! nominal etch rate : : : : : : : 3500 �A/min
! nominal selectivity (SiO2:resist) : : : 2:1

2. resist strip
3. SiO2 mesa thin �lm measurement

(Leitz)

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : : : : 5 min

=) SiO2 thickness : : : : : : : : :

Resist Strip (O2 Plasma)

O2 plasma in Applied Materials RIE
! O2 
ow : : : : : : : : : : : : : : : : : : : : : 30 sccm
! pressure : : : : : : : : : : : : : : : : : : : : : : 30 mT
! power : : : : : : : : : : : : : : : : : : : : : : : : : 90 W
! time : : : : : : : : : : : : : : : : : : : : : : : � 10 min

Cl2 RIE Deep Si Etch

RIE (old) Plasma Therm PK-1250
1. moisture removal : : : : : : : : : : : : : : 1 min
2. native oxide removal : : : : : : : : : : 1 min
3. Si etch

!

step 1 2 3
Cl2 0 2 50 sccm

BCl3 14 14 1.3 sccm
H2 7 7 0 sccm

pressure 20 20 40 mT
voltage 200 300 400 V

! nominal etch rate : : : : : : : : : : 13 �m=h
! nominal selectivity (Si:SiO2) : : : : : 18:1

4. post-etch clean (Nanostrip)
5. SiO2 thin �lm measurement (Leitz)
6. trench measurement (Alpha Step)

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : 37.5 min

=) SiO2 thickness : : : : : : : : :
=) trench depth (Si only) : :
=) etch rate : : : : : : : : : : : : : : :
=) selectivity : : : : : : : : : : : : :
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PECVD SiO2 Deposition

IPE System 1000
1. thorough chamber clean before deposi-

tion
2. deposition
! N2O : : : : : : : : : : : : : : : : : 42 sccm (70 %)
! SiH4 (Silane) : : : : : : : : 12 sccm (17 %)
! pressure : : : : : : : : : : : : : : : : : : : : : 450 mT
! power : : : : : : : : : : : : : : : : : 50 W (4.5 %)
! temperature : : : : : : : : : : : : : : : : : : 300�C
! nominal deposition rate � 380 �A/min

3. SiO2 thin �lm measurement (Leitz)

) wafer: : : : : : : : : : : : : : : : : :
) time: : : : : : : : : : : : 15 min

=) thickness : : : : : : : : : : : : : : :
=) deposition rate : : : : : : : :

CHF3 RIE Trench Bottom Etch

(New) Plasma Therm System 72
1. CHF3 RIE : : : : : : : : : : : : : : : : : process 2
! CHF3 : : : : : : : : : : : : : : : : : : : : : : : : : 100 %
! O2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 %
! pressure : : : : : : : : : : : : : : : : : : : : : : 40 mT
! power (step 4) : : : : : : : : : : : : : : : : : 30 %
! nominal etch rate : : : : : : : : 255 �A/min

2. SiO2 (mesa) thin �lm measurement
(Leitz)

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : : 18 min

=) SiO2 thickness (mesa) : :
=) etch rate : : : : : : : : : : : : : :

Cl2 RIE Deep Si Etch

RIE (old) Plasma Therm PK-1250
1. moisture removal : : : : : : : : : : : : : : 1 min
2. native oxide removal : : : : : : : : : : 1 min
3. Si etch

!

step 1 2 3
Cl2 0 2 50 sccm

BCl3 14 14 1.3 sccm
H2 7 7 0 sccm

pressure 20 20 40 mT
voltage 200 300 400 V

! nominal etch rate : : : : : : : : : : 13 �m=h
! nominal selectivity (Si:SiO2) : : : : : 18:1

4. post-etch clean (Nanostrip)
5. SiO2 thin �lm measurement (Leitz)
6. trench measurement (Alpha Step)

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : : 10 min

=) SiO2 thickness : : : : : : : : :
=) trench depth (Si only) : :
=) etch rate : : : : : : : : : : : : : : :
=) selectivity : : : : : : : : : : : : :
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Release Etch

(New) Plasma Therm System 72
1. SF6 release etch : : : : : : : : : : : : process 5
! SF6 : : : : : : : : : : : : : : : : : 140 sccm (70 %)
! O2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 %
! pressure : : : : : : : : : : : : : : : : : : : : : : 90 mT
! power (step 4) : : : : : : : : : : : : : : : : : 30 %
! nominal etch rate (isotropic) : : : : 1300

�A/min
! nominal selectivity (Si:SiO2) 300:1

2. check release in SEM

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : : : : 6 min

=) etch rate : : : : : : : : : : : : : :

Oxide Strip (BHF)

1. BHF 6:1 soak : : : : : : : : : : : 15 { 30 min
2. thorough rinse

A.1.4 Electrode Layer

PECVD SiO2 Deposition

IPE System 1000
1. thorough chamber clean before deposi-

tion
2. deposition
! N2O : : : : : : : : : : : : : : : : : 42 sccm (70 %)
! SiH4 (Silane) : : : : : : : : 12 sccm (17 %)
! pressure : : : : : : : : : : : : : : : : : : : : : 450 mT
! power : : : : : : : : : : : : : : : : : 50 W (4.5 %)
! temperature : : : : : : : : : : : : : : : : : : 300�C
! nominal deposition rate � 380 �A/min

3. SiO2 thin �lm measurement (Leitz)

) wafer: : : : : : : : : : : : : : : : : :
) time: : : : : : : : : : : 8.5 min

=) thickness : : : : : : : : : : : : : : :
=) deposition rate : : : : : : : :

Sputter Deposition

CVC AST-601 Sputtering System
! current : : : : : : : : : : : : : : : : : : : : : : DC 5 A
! pressure : : : : : : : : : : : : : : : : : : : : : : 25 mT
! Ar 
ow : : : : : : : : : : : : : : : : : : : : : 40 sccm
! nominal deposition rate : : : : 90 �A/min

) wafer : : : : : : : : : : : : : : : : : :
) ramp + presputter : 2 +

10 min
) sputter time : : : : 28 min

=) thickness : : : : : : : : : : : : : :
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Photolithography on Al

1. vapor prime (HMDS)
2. spin on photoresist
3. bake : : : : : : : : : : : : : : : : : : : 3 min, 90�C
4. exposure on 10:1 stepper
5. develop : : : : : : : : : : : : : MDC diluted 1:3
6. DI rinse : : : : : : : : : : : : : : : : : : : : : : : 1 min
7. DI soak : : : : : : : : : : : : : : : : : : : : : : : 3 min
8. dry (N2 jet / spin)

) wafer: : : : : : : : : : : : : : : : : :
) resist: : : OCG 895i 50cs
) spin, time 3000 rpm, 60

sec
) nominal resist thickness

2.8 �m
) development time 3 min

Exposure on 10:1 Stepper

GCA 6300 10:1 optical stepper
1. load mask
2. load wafer
3. expose

) wafer: : : : : : : : : : : : : : : : : :
) mask: : : : : : : : : : : : : : : : : :
) �le: : : : : : : : : : : : : : : : : : : : :
) time: : : : : 15.5 sec (non-

planar) / 12.5 sec (pla-
nar)

) focus: : 284 (transparent
mode)

Cl2 RIE Al Etch

RIE (old) Plasma Therm PK-1250

!

Cl2 20 sccm
BCl3 40 sccm
CH4 1.3 sccm

pressure 20 mT
voltage 400 V

! nominal etch rate : : : : : : : 2000 �A/min
! nominal selectivity (Al:resist) : : : : : 2:1

) wafer : : : : : : : : : : : : : : : : : :
) time : : : : : : : : : : 1:30 min

Resist Strip (O2 Plasma)

O2 plasma in Applied Materials RIE
! O2 
ow : : : : : : : : : : : : : : : : : : : : : 30 sccm
! pressure : : : : : : : : : : : : : : : : : : : : : : 30 mT
! power : : : : : : : : : : : : : : : : : : : : : : : : : 90 W
! time : : : : : : : : : : : : : : : : : : : : : : : � 10 min
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A.2 Processing Notes

Notes on CAD

� The pattern is fractured into rectangles. Therefore acute angles are not possible.
However they are approximated to pattern generator resolution by a large number
of small (fractal-like) rectangles. Thus acute angles should be avoided.

� Fracturing is an NP-hard problem. Several heuristics are used which sometimes give
non-optimal or even surprising results.

� The order of the rectangles is optimized for pattern generator speed. Ordering prece-
dence seems to be angle, size, location. pgcheck draws the rectangles in the order of
exposure.

� It is advantageous to have the origin of the mask exactly at the center. symbpg puts
the center at the exact geometric midpoint. Therefore the pattern should always be
made symmetric w.r.t. the origin.

� Standard alignment marks for the 10:1 stepper are generated with EXECUTE

cadmacros:gca key. Only necessary on the �rst mask. Make alignment marks as
trenches, otherwise they may get released and disappear.

� ped library | CAD polygon editor.
� symbpg (symbpg rev) | fracturing (with tone reversal). symbpg starts a batch job.
The batch queue can be checked with show queue /batch.

� pgflash | print 
ashcounts and other information after fracturing.
� pgcheck /d=gpx �le or jebcad | draw generated rectangles.
� pg dump [/out=�le] | write rectangle �le in ASCII format.
� pgmerge �le1,�le2,: : :,�leN out�le | merge rectangles of multiple �les.
� (pgtape | write fractured pattern on tape for pattern generator.)
� pgnet | transfer pattern to Pattern Generator

Notes on Pattern Generation

� Maximum �eld size is 10mm square with cut-o� corners. Largest full inscribed
square is 9:4mm square.

� For chrome masks (shutter mode) approximately 7,000 to 8,000 
ashes per hour.
� Closure test produces pattern that is partially made before and after exposure. This
way alignment shifts can be detected. Center rectangle is supposed to be exactly
centered. X:40 / Y:55 puts pattern in upper right corner. Avoid 55/55 because of
non-uniform resist in corner, avoid 55/0 or 0/55 because of �ducials.

� Chrome masks (used here) have positive resist. Tone reversal is necessary to expose
everything except pattern. Emulsion masks have negative resist.

� Mask needs �ducial marks (\C" for Cr masks) for alignment with the optical column
of the stepper.

� Only �rst mask needs CAD alignment marks.

Notes on Chrome Mask Making

� Chrome etch over light until chrome in exposed areas is gone, i.e. mask is clear.
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Notes on PECVD SiO2 Deposition

� To avoid build-up of 
akes as much as possible, the chamber has to be very clean.
Clean Process is often not su�cient. Remove all depositions inside the chamber.
Remove shower head and scrub it in sink. Blow and vacuum chamber.

� Flakes tend to fall during and after chamber venting. Remove wafers as quickly as
possible and let them cool down outside chamber. Flakes falling down after processing
can mostly be removed with the N2 jet.

� Some users recommend short conditioning of chamber before deposition (a) to remove
CF4 and (b) to bond loose particles left after clean (debatable).

� Some users suggest letting the system sit for a while after pumpdown at high tem-
perature to get rid of moisture.

Notes on Photolithography

� HMDS vapor prime is preferred. Alternatively, bake wafer on 115�C hot plate for
10 min to remove moisture. Cover whole wafer with HMDS 20 % and let sit for a
few seconds. Then spin for 30 sec at 3000 rpm.

� Put a quarter-sized blob of resist on center of wafer before spinning, avoid bubbles
as they may cause areas with no resist.

� Resist may be spread more evenly, and without the risk of leaving streaks of uncoated
wafer, if the spin speed is ramped up.

� Use chuck slightly smaller than wafer so that excess resist can get o� freely, avoiding
edge beads.

� Resist (especially OCG 895i) does not stick well to Al (or rather Al2O3). Shipley
System 8 sticks better. Very careful cleaning is necessary. It may be better to deposit
about 1000 �A of SiO2 on Al for better adhesion. However, Al does not take PECVD
too well, it tends to form bumps and bubbles.

� Re
ectivity of Al causes focusing problem. Stepper can be switched to \transparent"
mode.

� Most developers (especially OCG 945) attack Al. For lithography on Al use Microp-
osit Developer Concentrate (MDC) diluted (1:3) with DI.

� Nominal resist thicknesses for OCG 895i (�m):
rpm 3000 4000
5cs .8 .6
10cs 1.1 .9

16.5cs 1.5 1.3
22cs 1.7 1.5
34cs 2.1 1.9
50cs 2.8 2.4

� Some users recommend contrast enhancing material (CEM). CEM is opaque but
becomes transparent after a short exposure. It acts like an in-situ contact mask,
improving resolution and sidewall slopes.

� Then, some users do not use BC5 but applies CEM365 directly to photoresist. Po-
tential problem: CEM365 does not bond well to photoresist.

� AZ4903 thickness:
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rpm �m
750 30.0
1000 23.5
2000 14.6
3000 13.1
4000 10.7
5000 9.1
6000 8.0
7000 7.2

� Thick resist AZ4903 needs hold time (30 min) to absorb moisture before exposure.
� Strip AZ4903 with AZ Thinner, AZ EBR, acetone, or O2 plasma.
� 10x stepper delivers 58.08 mW =cm2.

Notes on Exposure on 10:1 Stepper

� Don't forget to get lamp into position after aligning mask.
� Check shutters, opaque/transparent switch.
� Exposure wavelength 365 nm.
� For optimal alignment after loading or switching wafers and masks, wait at least 5
min for temperature to settle inside the Stepper.

� Standard alignment marks are 63.5 mm apart.
� Positions and spacing can be controlled with 5 digits accuracy.
� To get standard alignment marks, spacing should be a divisor of 63.5 mm.
� If an exposure has multiple passes, masks can be switched after each pass without
losing alignment.

� If parts of the exposure need di�erent masks, use multiple passes and use
ARRAY-DROPOUT to remove single dies from the exposure, or PLUG-PLUG IN to put
single dies into the exposure. PLUG IN also allows an arbitrary o�set, so the die can
basically go anywhere.

� Syntax: EXEC <file>, PASS1, PASS2. After each pass the system waits and asks
CHANGE RETICLES? Then replace masks.

� Masks have 4 �ducial marks, so they can be used in 4 orientations.
� Exposure of dies is done as shown by ASCII-graphics on screen, but each individual
die is rotated by 180� due to the projection.

Notes on MIE SiO2 etch

� Etch is uniform up to about 1/2 inch to edge of wafer, where it is slower and very
nonuniform. Therefore patterns close to the edge should be avoided. They will
produce a lot of grass.

� Watch the He pressure. If it drops, liquid He is leaking. This means the wafer will
not be cooled properly, and the He may mess up the etch.

� After chamber has been opened, always run chamber clean (O2 or CHF3) until pres-
sure reaches � 5 mT .

Notes on Cl2 RIE Deep Si Etch

� If previous user did not etch Si (especially Al) make sure chamber is clean.
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� Steps 1 and 2 may not be absolutely necessary.
� Low Cl2 
ow in Step 2 is hard to achieve. Start at higher 
ow and lower it gradually.
Still, 2 sccm may not be stable.

Notes on CHF3 RIE Trench Bottom Etch

� Slow SiO2 etch for very thin �lms.
� Make sure gas selector switch is on correct setting.
� Watch DC bias voltage. Change in bias indicates build-up of polymers.

Notes on Release Etch

� Make sure gas selector switch is on correct setting.
� Etch is rather non-uniform.
� Some users recommend a short pre-release etch to get rid of oxide and other deposits:
process 8, pressure 10 mT , power 15 %, CF4 50 %, O2 2 %.

� Some users use O2 chamber clean before release. Don't! Plasma Therm sta� recom-
mends anything except O2 (in particular SF6) for chamber conditioning before release
etch.

Notes on Sputter Deposition

� System takes long time to pump down.
� Use monitor wafer to measure thickness, e.g. with partial resist for acetone lift-o�
and alpha-step (usually provided by sta�).

� To close shutter, black nob must be in target sector.
� Al with low percentage of Si supposedly has better properties for wire bonding, but
is not very popular in the CNF.

� Breakdown voltage for PECVD SiO2 is about 300 V =�m. However voltage may leak
through defects in oxide. Devices with leaks may still function as the leaks are rather
small.

� Leaks and breakdown decrease with thicker �lms, but �lm stress increases, which in
turn can cause leakage and breakdown.



Appendix B

Microscopic Model For Actuator

Contact

In this section we develop a model for the mechanics of microactuators. We make use of
limit surfaces [GR88] that describe anisotropic frictional contact. We extend the model
to active contacts and describe fast algorithms to compute the combined e�ect of many
actuators.
Limit Surfaces. Assume we have a part P that moves on top of the actuator array. The
limit surface L in load space (forces Fx and Fy, momentM) fully describes the relationship
between generalized velocity v, e�ective applied load Fe� , and frictional load Fr of the mov-
ing part. It is based on the Maximum Work Inequality which is an engineering assumption
commonly used when modeling friction or plasticity [GR88,PS88]. The Maximum Work
Inequality generalizes Coulomb's friction law to anisotropic rate-independent friction. The
following properties of limit surfaces are useful [GR88]:

1. L is a closed convex surface in load space.
2. L contains all possible frictional loads Fr on P .
3. If v 6= 0, Fr 2 L and �v is normal to L at Fr.
4. Fr is the vector inside or on L such that the length of Fr � Fe� is minimal.
5. In the special case when the moment component M of Fr is 0, L is a limit curve in

(Fx � Fy) load space.

Fr
Fr

{v

{v

(a) (b)

Fy

Fx

Fy

Fx

Figure B.1: Limit curves: (a) �v is always normal to L at Fr. (b) Fr can be nonunique for
a speci�c given v.
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Fx

Fy

Fx
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fb

Figure B.2: Limit curve of (a) passive wheel, (b) driven wheel.

See Figure B.1 for examples. It follows that the inside of L contains all loads Fe� that
can be applied to P without setting it in motion, and if Fe� 6= 0 and v 6= 0, Fr is determined
uniquely. But note that for given v, Fr is not unique if L has a 
at face with normal �v.
Similarly for given Fr, v is not unique if L has a vertex or edge at Fr. This indeterminacy
can be resolved by taking the inertia of P into account [GR88].

Consider as an example Figure B.2a. The anisotropic behavior of a wheel can be
modeled with a long rectangular limit curve which gives low bearing friction fb in the
rolling direction and high sideways friction fs.

Active Contacts. We now extend the limit surface model to \active" contacts that
apply loads to P .

De�nition 43 The active limit surface L in load space is the set of loads that can be
applied to P without resulting in motion of P .

This de�nition includes limit surfaces for passive contacts, but it allows us to model for
example a wheel driven by some torque �a. Figure B.2b shows that if no additional load
is applied the wheel will move in y direction, accelerated by Fa minus the bearing friction
fb (where Fa is such that �a = r � Fa, and r is the radius of the wheel). In general we get
motion if the origin of load space 0 lies outside of L.

For the wheel accelerated with torque �a = r � Fa the limit curve simply shifts in load
space by Fa. For our actuators we expect the shape of active and passive limit surface to
be di�erent because of interactions between friction and oscillation. However, because the
limit surface will represent the time average over frictional contacts, we believe that the
theory of limit surfaces is a valid model.

Combining Limit Surfaces. We have already noted one advantage of limit surfaces:
they o�er a uniform, purely geometric representation of contact properties. In addition,
multiple contacts can be described by a single joint limit surface. Goyal and Ruina [GR88]
have shown that this joint limit surface is the convolution (Minkowski sum) of the individ-
ual limit surfaces. There exist fast algorithms from computational geometry [GS88] to com-
pute this convolution. They are described in more detail in our technical report [BDMM93].
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Figure B.3: Two rigidly connected point contacts at (1; 0) and (�1; 0), and their corre-
sponding limit surfaces with respect to the center of mass (0; 0).
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Figure B.4: Combined limit surface for two rigidly connected point contacts.

Thus limit surfaces o�er a technique to e�ciently determine and represent the behavior of
an entire actuator array.

For illustration, Figure B.3 shows two rigidly connected point contacts and Coulomb
friction, and their corresponding limit surfaces. The individual surfaces are 
at because
they can generate no moment about the contact point, but tilted because they can generate
moments about the center of mass. The tilt angle � can be determined by tan � = jM j

jF j
=

jr�F j
jF j

= jrj, so for jrj = 1 we get � = 45�. Figure B.4 shows the combined limit surface.

Motion Prediction. For simplicity let us �rst consider the \upside-down" case where
the actuator array \walks" on a homogeneous 
at surface. The contacts and thus the limit
surface L are �xed with respect to a coordinate system attached to the actuator array. If
the origin of load space 0 is inside L there will be no motion. Otherwise the generated
force F is the point on L closest to 0. At that point the surface normal is parallel to F ,
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so velocity and accelerating force are parallel. The walker will move on a straight line or
a circle. This is not unexpected for a �xed actuator strategy on a homogeneous surface.

Now consider the case where the object is on top of the actuator array. There are
two major di�erences to the previous case: When the object moves (1) some actuators
lose contact, others make contact, (2) the induced moment changes. (1) requires periodic
updates of the limit surface. (2) results in stretching of the limit surface along the moment
axis. Our technical report [BDMM93] gives details on how to handle these cases e�ciently.
There, we outline a simple yet e�cient motion prediction algorithm: Numerically integrate
the velocities computed as described above, and update the limit surface L accordingly.
Each integration step can be done in constant time. Each update of L is linear in the
complexity of L.

Motion Planning. The shape of the limit surface is determined by the activation pat-
tern of the actuator array, which depends on each individual actuator. The limit surface
gives us a geometric representation of the forces and velocities generated with a speci�c
actuator activation pattern. Though theoretically possible, there are practical limitations
on using limit surfaces to plan microscopic manipulation strategies due to the combina-
torial complexity and mechanical uncertainty. However, the microscopic model will prove
important to analyze and verify strategies before fabrication. It forms the link between \ac-
tuator macros" (Section 2.3) that predict the global behavior of manipulation strategies,
and individual microfabricated mechanisms (Sections 6.1 and 6.2).



Appendix C

Particle Bouncing on a Vibrating

String

To understand the e�ective forces on particles on a vibrating surface, we look at the
more tractable case of the planar motion of a particle bouncing on a string in transverse
vibrations (Figure C.1).

The string vibrates in the �rst mode, and is not a�ected by its interaction with the
particle. The shape of the string, at time t, for a given x location is:

ys = A sinx sin 2��t

where � is the frequency of oscillation. The position of the particle is given by (xp; yp).
The interaction between the particle and the string is through a sequence of impacts.

We use a model for particle impact with a �nite friction coe�cient �, and a coe�cient of
restitution e. � is the slope of the string at the point and instant of impact, and is small
for small amplitudes of string vibration.

tan � = A cos x sin 2��t

The motion of the particle can be simulated as a series of impacts with the string, with
the particle in free 
ight in-between. The change in the momentum of the particle during
impact is calculated using a simple planar impact model. Figure C.2 shows the results of
a numerical simulation of the model at two di�erent values of e.

y

�

ys = A sinx sin 2��t

n

t

A

(xp; yp)

x

�

Figure C.1: Particle bouncing on a vibrating string.
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Figure C.2: Simulation results showing the position of a particle moving on a vibrating
string.

For a particle starting at rest, at t = 0, we �nd that _yp � _xp. Using the assumption
that the amplitude of oscillations is small, sin � � tan � ; cos � � 1. If ( _x�p ; _y

�
p ) represent

the velocity just before impact, the velocity just after impact ( _x+p ; _y
+
p ), is:

_x+p = e ( _y�p � _y�s ) sin � + � v�relt (C.1)

_y+p = _y�s (1 + e)� e _y�p (C.2)

where v�relt = ( _y�p � _y�s ) sin � + _x�p is the relative velocity along the tangential direction
before impact, and � 2 [0; 1] is the dissipation factor that depends on �.

After the impact, _x+p is a sum of the relative tangential velocity before impact, at-
tenuated by friction; and a component from the impulse in the normal direction, which
depends on e and the slope of the string at the point of impact. The portion of x impulse
added purely due to the e�ect of the string can be approximated as �e _ys sin �, by setting
_y�p = 0.

If this component of the impulse were spread uniformly over time, the e�ective force,
Fe� , that the particle would experience is:

Fe� / ��eA2 sinx cos 2��t cos x sin 2��t (C.3)
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We now use the argument that it is more probable for the particle to impact the string
at times when the string is above the mean rest position, to show that over a large number
of impacts, the time dependent terms in equation (C.3) average out to a positive quantity.
Therefore, the time averaged e�ective force, Favg , experienced by the particle is:

Favg / ��eA2 sin 2x

This con�rms the intuition and the observed behavior that the particle moves faster at
higher amplitudes of string oscillation, coe�cient of restitution, and oscillation frequency.
The sine dependency of the force with x ensures that it points towards the corresponding
nodes on either side of the anti-node at x = �

2
.
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