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ABSTRACT

This paper investigates manipulation tasks with arrays of mi-

croelectromechanical structures (MEMS). We develop a model

for the mechanics of microactuators and a theory of sensorless,

parallel manipulation, and we describe e�cient algorithms for

their evaluation.

The theory of limit surfaces o�ers a purely geometric charac-

terization of micro-scale contacts between actuator and moving

object, which can be used to e�ciently predict the motion of the

object on an actuator array. We develop a theory of sensor-

less manipulation with microactuator arrays. It is shown how

simple actuator control strategies can be used to uniquely align

a part up to symmetry. These manipulation strategies can be

computed e�ciently and do not require sensor feedback. This

theory is applicable to a wide range of microactuator arrays.

Our actuators are oscillating structures of single-crystal sili-

con fabricated in a low-temperature SCREAM process. They

exhibit high aspect ratios and high vertical sti�ness, which is of

great advantage for an e�ective implementation of our theory.

Calculations show that arrays of these actuators can generate

forces that are strong enough to levitate and move e.g. a piece

of paper.

1 INTRODUCTION

A wide variety of micromechanical structures (devices typically

in the �m range) has been built by using processing techniques
developed in the VLSI industry. Various microsensors and ac-
tuators have been shown to perform successfully. E.g. a single-
chip air-bag sensor is commercially available [1]; video projec-

tions using an integrated, monolithic mirror array have been
demonstrated recently [16]. More di�cult is the fabrication
of microrobotic devices that can interact and actively change
their environment. Problems arise from (1) unknown material

properties and the lack of adequate models for mechanisms at
very small scales, (2) the limited range of motion and force
that can be generated with microactuators, (3) the lack of suf-

�cient sensor information with regard to manipulation tasks,
and (4) design limitations and geometric tolerances inherent in
the fabrication process. This paper addresses in particular the
�rst three points.
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search, the Mathematical Sciences Institute, Intel Corporation, and AT&T
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We are interested in computational tools for the design, anal-
ysis, and control of MEMS. Based on work on sensorless and

near-sensorless manipulation [5, 7], we have developed geomet-
ric theories of manipulation and control for microactuator ar-
rays, and we have developed and implemented e�cient algo-

rithms for their evaluation. Penecontemporaneously we have
designed, built, and tested microfabricated actuators (length,
width 50 �m to 200 �m) in the National Nanofabrication Fa-
cility at Cornell University [18, 19, 12]. Our calculations show

that arrays of these actuators are strong enough to accomplish
practical manipulation tasks.

The next section brie
y introduces microfabricated actuator

arrays. In Section 3 we investigate manipulation strategies for
microactuator arrays. A model for individual actuators and
their interaction with a movable object is described in Sec-
tion 4. Section 5 describes the design, fabrication, and analysis

of our devices in more detail. Conclusions and an outlook on
future work follow in Section 6.

2 MICROFABRICATED ACTUATOR ARRAYS

Several kinds of devices to position small objects in the plane
have been presented recently. Pister et al. [15] use an air cush-
ion generated by microfabricated nozzles to levitate objects,

and move them with electrostatic forces. Takeshima and Fu-
jita [17] introduce the concept of a distributed micro motion

system (DMMS) that consists of an array of cooperating actu-
ator modules. Furuhata et al. [6] have built arrays of ultrasonic

microactuators. Konishi and Fujita [11] use air 
ow controlled
by microvalves to both levitate and move objects. Ataka et
al. [2] use thermobimorph cantilever beams to mimic the mo-

tion and function of cilia. Due to low friction in the air bearing,
motion induced with designs [15] and [11] is fast but hard to
control because of the lack of damping. Design [2] allows more
control but operates at low frequencies (� 1Hz ). Our design

is closest to Furuhata's [6], with slightly larger devices and
a larger range of out-of-plane motion. It combines controlled
actuator-object interaction with high operation speed. Our ac-
tuators are based on microfabricated torsional resonators [12].

A torsional resonator is a rectangular grid etched out of single-
crystal silicon and suspended by two rods that act as torsional
springs (Figure 1a). When an AC voltage is applied between

grid and adjacent electrodes, the grid oscillates at resonance
frequencies in the high kHz range, the edges of the grid reach-
ing amplitudes of several �m (Figure 1b). Our calculations
have shown that the forces generated with an array of tor-

sional resonators are large enough to levitate e.g. a piece of
paper (see Section 5).

By introducing asymmetries into the resonator grid (such as

placing the torsional rods o� the center of the grid, or adding
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(a) (b)

Figure 1: Torsional resonator (CAD model): (a) Resonator grid with
suspending beams. (b) Resonator and electrodes (in dark color).

poles on one side of the grid) anisotropic lateral forces are

generated, thus achieving a motion bias for the object on top
of the actuator.

Each actuator can generate motion in one speci�c direction if
it is activated; otherwise it acts as a passive frictional contact.
The combination and selective activation of several actuators

with di�erent motion bias allows us to generate various motions
in the plane. Figure 2 shows such a \motion pixel."

Design aspects, fabrication process and mechanism analysis are
described in more detail in section 5.

Figure 2: Prototype motion pixel (SEM micrograph).

3 MACROSCOPIC MODEL FOR MANIPULATION

In this section we develop a geometric theory of manipulation
for microactuator arrays. Our ideas are based on the ground-
breaking work of Erdmann and Mason [5] in the �eld of sen-

sorless and near-sensorless manipulation. In this line of work,
Peshkin and Sanderson [14] have shown how to align parts
on a conveyer belt with stationary fences. Goldberg [7] has

given an algorithm to align parts by a sequence of grasps with
a parallel-jaw gripper. In the following we show how, under
reasonable assumptions, the problem of aligning a part with a

microactuator array can be reduced to the alignment task with

a parallel-jaw gripper, e�ectively using the actuator array to
simulate a two-�nger gripper.

Goldberg's algorithm [7] takes the geometry of an arbitrary
polygonal part P and determines its squeeze function s : S1!
S
1, where S1 is the set of planar orientations.1 The squeeze

1
S
1 can be viewed as the circular interval [0; 2�), where all expressions

are evaluated modulo 2�.

function describes the change in orientation of P when it is

grasped by a parallel-jaw gripper with negligible friction. It

assumes that the jaws make contact with the part simulta-

neously, and that the part rotates until the distance between

the jaws reaches a local minimum (squeeze grasp). The squeeze

function can be derived from the diameter function d : S1! R,

which describes the distance between the two horizontal lines

tangential to P at a particular orientation. The squeeze func-

tion maps all orientations that lie between two adjacent lo-

cal maxima of the diameter function to the orientation corre-

sponding to the intermediate local minimum (Figures 3a, b,

c). Goldberg then gives an algorithm that, given a speci�c

squeeze function, computes a sequence of grasp orientations to

uniquely align P (up to symmetries) from an arbitrary initial

orientation (Figure 3d). Let us summarize the results:

Theorem 1 (Goldberg [7]) Let P be a polygon whose con-

vex hull has n vertices. There is a sensorless control strategy

S for a parallel-jaw gripper that aligns P up to symmetries in

O(n) squeeze grasps. S can be computed in O(n2) time.2
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Figure 3: (a) Sample rectangle. (b) Diameter function. (c) Squeeze
function. (d) Sensorless alignment strategy.

Now we show how to reduce a manipulation task with a mi-

croactuator array to an equivalent task with a parallel-jaw grip-

per. We make the following assumptions:

Simplicity: The moving part P can be treated as a simple


at polygon.

Bilateral Symmetry: We have the following elementary ac-

tuator control scheme available: The array can be divided

by a straight line l such that all motion pixels on either

side of l push normally towards l.

Density: The generated forces can be described by a two-

dimensional vector �eld. This means that the individual

microactuators are dense compared to the size of the mov-

ing part. (We will discuss later how to relax this assump-

tion.)

We can now give a formal de�nition for an alignment strategy:

2
O(k) (\order of k") denotes an upper bound on the complexity of a

task with respect to an input parameter k. O(n) means at most linear in
n, O(n2) means at most quadratic in n.
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De�nition 2 An alignment strategy S for an actuator array

is a sequence of straight lines (l1; : : : ; lk) such that assumption

Bilateral Symmetry holds for all li, 1 � i � k.

Note that the system requires a clock that signals when enough
time has elapsed for the object to reach its rest position.

An object will move towards the line l and come to rest there
(see also Furuhata et al. [6]). We are interested in the motion

of an arbitrarily shaped part P . Let us call P1, P2 the regions
of P that lie to the left and to the right of l, respectively,
and C1, C2 their centers of gravity. In a rest position both
translational and rotational forces must be in equilibrium. We

get the following two conditions:

I : The areas P1 and P2 must be equal.

II : The vector C2 � C1 must be normal to l.

De�nition 3 A median of a simple polygon P is a straight

line that divides P into two parts of equal size.

Condition I says that l is a median of P . P has a motion
component normal to l if I does not hold. P has a rotational
motion component if II does not hold. P is in equilibrium
(stable or metastable) if and only if I and II hold. See Figure 4

for an illustration.

(a) (b) (c)

(d) (e) (f)

Figure 4: Square object on actuator array: (a) I not satis�ed, II not
satis�ed. (b) I, not II. (c) not I, II. (d) I, II (metastable). (e) I, II
(stable). (f) Stable (thick) and metastable (thin) medians of square.

For simplicity of presentation we make another assumption.
This assumption will not hold in general, however it is not
essential to the reduction and can be relaxed as described later.

It corresponds exactly to the assumption that the parallel-jaw
gripper performs pure squeeze grasps in which both jaws make
contact with the part simultaneously [7].

2Phase: The motion of P has two phases: (1) Pure trans-
lation towards l until condition I is satis�ed. (2) Motion

until condition II is satis�ed without violating condition I.

The following de�nition is in analogy with the diameter func-

tion above:

De�nition 4 Let � be the orientation of a simple polygon P

on an actuator array, and let us assume that condition I holds.

The turn function t : � ! f�1; 0; 1g describes the instanta-

neous rotational motion of P . t(�) = 1 if P will turn counter-

clockwise, t(�) = �1 if P will turn clockwise, and t(�) = 0 if

P is in equilibrium.

This de�nition immediately implies the following lemma:

Lemma 5 Let P be a polygon with orientation � on an ac-

tuator array such that conditions I and II hold. P is sta-

ble if t(�) = 0, t(�+) � 0, and t(��) � 0. Otherwise P is

metastable.

Using this lemma we can identify all stable orientations, which
allows us to construct the squeeze function of P in analogy to
Goldberg [7]:

Lemma 6 Let P be a simple polygonal part on an actuator

array A such that assumptions Simplicity, Bilateral Sym-

metry, Density, and 2Phase hold. Given the turn function

t of P , its corresponding squeeze function s : S1 ! S
1 is con-

structed as follows:

1. All stable orientations � map to �.

2. All metastable orientations map (by convention) to the

nearest right stable orientation.

3. All orientations � with t(�) = 1 (�1) map to the nearest

right (left) stable orientation.

Then s describes the transition of P induced by A.
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Figure 5: (a) Polygonal part; stable (thick line) and metastable (thin
line) medians are also shown. (b) Turn function. (c) Squeeze func-
tion. (d) Alignment strategy for two arbitrary initial con�gurations.

See Figures 5a, b, c for an example. We can now complete the
reduction from an actuator array to a parallel-jaw gripper:

Theorem 7 For a simple polygonal part P and an actuator

array A there exists an alignment strategy S = (l1; : : : ; lk) that
uniquely aligns P up to symmetries.

Proof: We can get a formula for the turn function t of P by
taking the sign of the dot product between the direction of

the line l and the line connecting C1 and C2. Straightforward
algebra shows that this product can be written as a piecewise
rational function of �xed low degree, with O(n2) pieces for

general simple polygons, and O(n) pieces for convex polygons.

From t we can construct the squeeze function s (Lemma 6)
within the same time bounds. Then the alignment strategy S
is obtained by using Goldberg's algorithm [7] (Theorem 1). 2

From the proof we can obtain complexity bounds for microac-
tuator alignment strategies [3]: If P is a n-gon, the algorithm
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runs in time O(n4) and produces a strategy S = (l1; : : : ; lk) of
length k = O(n2). If P is convex the running time is O(n2)

and k = O(n).

Finally let us reconsider two of the assumptions made earlier in
this section. Relaxing 2Phase corresponds to allowing push-

squeeze grasps for the parallel-jaw gripper [7] in which one jaw
pushes P before the second jaw makes contact with P . The

squeeze function must be replaced by a shift-squeeze function
which takes combined translational and rotational motions into
account. However neither the (meta-)stable orientations of P

nor the complexity of the turn function will change, so the
complexity of the generated strategy remains the same. Simi-
lar constructions seem possible to �nd reductions to conveyer
belts [14] or tilting trays [5].

If we want to relax assumption Density we need to model

the mechanics of individual actuators and understand their in-
teraction. Relaxing Density is necessary to manipulate parts
that are only slightly larger than the actuators. This is dis-
cussed in the following section.

4 MICROSCOPIC MODEL FOR ACTUATOR CONTACT

In this section we develop a model for the mechanics of mi-
croactuators. We make use of limit surfaces [8] that describe

anisotropic frictional contact. We extend the model to active
contacts and describe fast algorithms to compute the combined
e�ect of many actuators.

Limit Surfaces. Assume we have a part P that moves on top of

the actuator array. The limit surface L in load space (forces
Fx and Fy, moment M) fully describes the relationship be-
tween generalized velocity v, e�ective applied load Fe�, and

frictional load Fr of the moving part. It is based on the Maxi-
mumWork Inequality which is an engineering assumption com-
monly used when modeling friction or plasticity [8, 13]. The
Maximum Work Inequality generalizes Coulomb's friction law

to anisotropic rate-independent friction. The following prop-
erties of limit surfaces are useful [8]:

1. L is a closed convex surface in load space.

2. L contains all possible frictional loads Fr on P .

3. If v 6= 0, Fr 2 L and �v is normal to L at Fr.

4. Fr is the vector inside or on L such that the length of
Fr � Fe� is minimal.

5. In the special case when the moment component M of Fr
is 0, L is a limit curve in (Fx-Fy) load space.

See Figure 6 for examples. It follows that the inside of L
contains all loads Fe� that can be applied to P without setting
it in motion, and if Fe� 6= 0 and v 6= 0, Fr is determined
uniquely. But note that for given v, Fr is not unique if L has

Fr
Fr

{v

{v

(a) (b)

Fy

Fx

Fy

Fx

Figure 6: Limit curves: (a) �v is always normal to L at Fr. (b) Fr
can be nonunique for a speci�c given v.

(a) (b)

rolling

direction

Fy

Fx

Fy

Fx
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fb

Fa

Figure 7: Limit curve of (a) passive wheel, (b) driven wheel.

a 
at face with normal �v. Similarly for given Fr, v is not
unique if L has a vertex or edge at Fr. This indeterminacy can

be resolved by taking the inertia of P into account [8].
Consider as an example Figure 7a. The anisotropic behavior
of a wheel can be modeled with a long rectangular limit curve

which gives low bearing friction fb in the rolling direction and
high sideways friction fs.

Active Contacts. We now extend the limit surface model to
\active" contacts that apply loads to P .

De�nition 8 The active limit surface L in load space is the

set of loads that can be applied to P without resulting in motion

of P .

This de�nition includes limit surfaces for passive contacts, but
it allows us to model for example a wheel driven by some torque
�a. Figure 7b shows that if no additional load is applied the

wheel will move in y direction, accelerated by Fa minus the
bearing friction fb (where Fa is such that �a = r � Fa, and r is
the radius of the wheel). In general we get motion if the origin
of load space O lies outside of L.

For the wheel accelerated with torque �a = r � Fa the limit
curve simply shifts in load space by Fa. For our actuators we
expect the shape of active and passive limit surface to be dif-

ferent because of interactions between friction and oscillation.
However, because the limit surface will represent the time aver-
age over frictional contacts, we believe that the theory of limit
surfaces is a valid model.

Combining Limit Surfaces. We have already noted one advan-
tage of limit surfaces: they o�er a uniform, purely geometric
representation of contact properties. In addition, multiple con-

tacts can be described by a single joint limit surface. Goyal
and Ruina [8] have shown that this joint limit surface is the
convolution (Minkowski sum) of the individual limit surfaces.
There exist fast algorithms from computational geometry [9] to

compute this convolution. They are described in more detail in
our technical report [3]. Thus limit surfaces o�er a technique
to e�ciently determine and represent the behavior of an entire
actuator array.

For illustration, Figure 8 shows a rigid bar with two point
contacts and Coulomb friction, and their corresponding limit
surfaces. The individual surfaces are 
at because they can gen-

erate no moment about the contact point, but tilted because
they can generate moments about the center of mass. The tilt
angle � can be determined by tan � = jM j

jF j = jr�F j
jF j = jrj, so

for jrj = 1 we get � = 45�. Figure 9 shows the combined limit
surface.

Motion Prediction. For simplicity let us �rst consider the

\upside-down" case where the actuator array \walks" on a ho-
mogeneous 
at surface. The contacts and thus the limit surface
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Figure 8: Bar with two point contacts at (1; 0) and (�1; 0), and their
corresponding limit surfaces with respect to the center of mass (0; 0).

L are �xed with respect to a coordinate system attached to the
actuator array. If the origin of load space O is inside L there
will be no motion. Otherwise the generated force F is the point

on L closest to O. At that point the surface normal is parallel
to F , so velocity and accelerating force are parallel. The walker
will move on a straight line or a circle. This is not unexpected
for a �xed actuator strategy on a homogeneous surface.

Now consider the case where the object is on top of the ac-
tuator array. There are two major di�erences to the previous
case: When the object moves (1) some actuators loose con-

tact, others make contact, (2) the induced moment changes.
(1) requires periodic updates of the limit surface. (2) results
in stretching of the limit surface along the moment axis. Our

corresponding technical report [3] gives details on how to han-
dle these cases e�ciently. There, we outline a simple yet e�-
cient motion prediction algorithm: Numerically integrate the
velocities computed as described above, and update the limit

surface L accordingly. Each integration step can be done in
constant time. Each update of L is linear in the complexity of
L.

Motion Planning. The shape of the limit surface is determined
by the activation pattern of the actuator array, which depends
on each individual actuator. The limit surface gives us a ge-

ometric representation of the forces and velocities generated
with a speci�c actuator activation pattern. Though theoret-
ically possible, there are practical limitations on using limit
surfaces to plan microscopic manipulation strategies due to the

combinatorial complexity and mechanical uncertainty. How-
ever, the microscopic model will prove important to analyze
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Figure 9: Combined limit surface for the object in Figure 8.

and verify strategies before fabrication. It forms the link be-
tween \actuator macros" (Section 3) that predict the global

behavior of manipulation strategies, and individual microfab-
ricated mechanisms (Section 5).

5 FABRICATION OF ACTUATOR ARRAY

Design Aspects. Figure 10 shows a schematic cross section of
an actuator with poles on one edge. h is the clearance between
resonator and trench, x1 the distance between pole and rota-

tional axis, x2 the width of the other side of the resonator, z
the height of the poles, and � the de
ection of the resonator.
If the actuator is inactive, the moving object will rest on the

poles. In case it is active and the poles are moving upward we
assume that the poles push the object up and sideways. Dur-
ing the downward motion we assume that the object keeps its

horizontal position (e.g. because other actuators are holding

it) but moves straight down (due to gravity). This results in a
stepwise sideways motion with each oscillation of the actuator.
We want to optimize this motion.

First note that we should choose x1 � x2 = �x. x1 � x2
would decrease the force and horizontal motion at the pole

tips. x1 < x2 yields a force-motion tradeo� (lever). x1 � x2 is
unfavorable because then the maximum de
ection of the pole
tip would be smaller than the de
ection of the other edge of

the resonator.

Let �x be the horizontal component of the motion of a pole
tip when it moves from � = 0 to maximum de
ection b�. Then
�x = z sin b�+ x1(1� cos b�).

The motion generated by the device is �x

�t
= �x � f , where f

is its resonance frequency, and both �x and f are functions
of �x. It can be shown that the derivative of �x � f is always
non-positive. This means that decreasing �x improves the per-
formance of the actuator.

In summary, the horizontal motion is optimized by choosing h

and z as large as permitted by the fabrication process. Then
choose x1 � x2 as small as possible. Obviously in practice
still x2 � h, otherwise b� will not be reached. Note that this
result means that we have to maximize the aspect ratio of our

design. This has an additional advantage: If the horizontal
size is reduced we can pack more devices per area. This yields
further performance improvement.

Fabrication Process. The actuators are etched out of a single-

crystal silicon wafer in a SCREAM (Single Crystal Reactive
Etching and Metallization) process [18, 19, 12]. A dry etch re-
leases grid structures with beams of up to 1 �m width. Metal

electrodes are deposited during a self-aligning aluminum evap-

x1

z

x2

h

�

Figure 10: Schematic cross section of actuator (not to scale).



Proc. Seventh IEEE International Workshop on Micro Electro Mechanical Systems, Oiso, Japan, January 1994.

oration. Single beams are up to 5 �m high, with � 3 �m

clearance underneath. This clearance allows the out-of-plane

motion of the resonator grid. For cleaning and improvement
of levitation it is conceivable to combine the resonator with
air nozzles as described in Section 2 [15]. The fabrication can

be done in one to two weeks in the National Nanofabrication
Facility (NNF) at Cornell University.

E�ciency. We have analyzed a resonator of size 50 � 50 �m2

with clearance h = 3 �m using the �nite element simulator
Coulomb [10]. Similar actuators are shown in Figures 1 and 2.
The vertical force generated is 2:8�10�7N when a voltage of

50V is applied. Assuming that the entire device uses a total
area of 100�100 �m2 we get 2:8�10�11 N

�m2 . This is almost two
orders of magnitude higher than the speci�c weight of paper
80 g

m2
�= 8�10�13 N

�m2 . This indicates that our devices are strong

enough to do practical manipulation tasks. Downscaling of
the devices will further improve this ratio, because the force
decreases linearly with the scaling, while the actuator density

grows quadratically with decreasing scale.

Results. A wide variety of resonators has been built and tested

in the NNF at Cornell University (see Figure 2), yielding in-
formation on the optimal design of actuators and material
properties such as sti�ness, structural sturdiness, and inter-
nal stresses. In experiments with single actuators we observed

motion of powder particles. A prototype of actuator arrays is
currently being built.

6 CONCLUSIONS AND FUTURE WORK

We have outlined a theory of manipulation and control for
microfabricated actuator arrays that applies concepts from
robotics to the �eld of MEMS. We believe that joint e�orts

in these �elds are important for future MEMS of high com-
plexity, and will prove fruitful for both areas.

The next steps of laboratory work will include the fabrication
of a prototype array with a large number of microactuators, the
experimental characterization of the limit surface of a microac-
tuator, and experiments on micromanipulation to evaluate and

validate our model.

The ideas presented here extend work in our group on parallel,

distributed robotics [4] to massively parallel systems with simi-
lar, relatively simple individual components (DMMS [17]). Fu-
ture work will include exploration of the limitations of macro-
scopic manipulation strategies due to the quantized forces gen-

erated by motion pixels, and the determination of quantitative
error estimates. Other goals are the development and analy-
sis of additional macroscopic strategies (\actuator macros"),
and a more detailed design and implementation of motion pre-

diction algorithms. The low-temperature SCREAM process is
compatible with conventional VLSI fabrication, which allows
mechanisms and logic on one chip. This combination would

make complex control strategies possible. Finally we also hope
to address the case where the actuator array \walks" on a

at surface. This could conceivably lead to walking or self-
assembling chips.
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