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ABSTRACT 
A myriad of ocean processes affect life on the planet and are a 
source of intrigue to oceanographers and scientists. Understanding 
these processes and their interactions with currents requires 
collection of relevant data. A network of mobile platforms can be 
used to learn the correlation of processes in space and over time. 
To do this, data samples collected by nodes have to be annotated 
with location information. Given limited access to Global 
Positioning Systems underwater, collaborative self-localization 
schemes applied periodically are well-suited for this purpose. 
However, the specific nature of the underwater acoustic 
environment introduces significant error during network self- 
localization due to the combined effect of large latencies in 
communication and node mobility. We propose a method to 
account for these effects thus significantly improving the accuracy 
of position estimates. 

Categories and Subject Descriptors 
C.2 [Computer-Communication Networks]: C.2.3 
Network Operations C.4 [Performance of Systems] 

General Terms: Algorithms, Performance. 

Keywords: Underwater Networks, Localization, 
Mobility, Latency, Acoustic Networks. 

1.  INTRODUCTION 
The oceans are home to abundant physical and biological 
processes that are in constant flux, with far reaching impacts on 
the global climate and life on earth. However, as many aspects of 
the oceans remain unexplored, scientists and oceanographers are 
continuously seeking to further their understanding of oceanic 
phenomena. Collecting accurate and relevant data is crucial to this 
end. Recently, researchers have begun exploring sensing 
platforms that no longer consist of a single device, but a collection 
of underwater sensors and vehicles, operating in a coordinated 
and networked manner [12]. 
As the ocean is a dynamic environment, most of these sensing 
platforms exhibit some form of mobility. Examples are guided 
AUVs, gliders and drifters, but even anchored sensors are

 
subjected to motions induced by tides and currents. Because of 
this mobility, networked sensing platforms require a location-
finding service, as data samples need to be annotated with 
position information for meaningful interpretation. Because GPS 
does not work underwater, new localization techniques need to be 
developed for these oceanic sensing platforms. Specifically, in a 
networked setting, collaborative techniques allow devices to self-
localize [10], i.e. use local measurements and a few surface 
beacons, to find their positions within the underwater network. 
The process has to be repeated each time the positions of nodes in 
the network need to be found, as network topology is constantly 
varying due to the ocean dynamics. At each such localization time 
Tloc, self-localization operates on inter-node distance estimates. 
When equipped with an acoustic modem, nodes can estimate 
these distances via time-of-flight measurements, a process 
referred to as ranging.  
Now, the intrinsic mobility of the underwater environment creates 
some very specific challenges with respect to ranging, which are 
illustrated using Figure 1. Ideally, all range estimates should be 
acquired at the target localization time Tloc. However, because 
communication occurs over a shared channel, medium access 
control (MAC) has to ensure that excessive collisions are avoided. 
As a result, the gathering of ranging information actually occurs 
over a short time epoch T around the target localization time.  The 
problem is that mobility causes the node positions to change 
significantly during epoch T. This is illustrated in Figure 1 by 
showing the positions of three nodes, at the three time instances at 
which the range for each pair is estimated. We observe that 
ranging (and topology) becomes ambiguous and non-consistent, 
which results in error in position estimates obtained from self-
localization.  
 

 
 
 
 
 
 
 

 
 
 

 
 

 

Figure 1: Position uncertainty due to measurement delay 
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Figure 2: Networked swarm of underwater drifters 

In traditional terrestrial systems, this effect hardly ever comes into 
play. However, as we will illustrate shortly, in underwater 
networks, it can be very significant and the reason is the very 
nature of the underwater communication environment: low data 
rate, long propagation delays and inherent mobility. The goal of 
this paper is to devise a novel localization scheme that limits the 
resulting error on self-localization performance. 

2.  PROBLEM DESCRIPTION 
Communication underwater has long been known to be 
challenging. Acoustic channels are characterized by long 
propagation delays and acoustic modems can achieve relatively 
low data rates [12]. For example, the micro-modem developed by 
WHOI [2] transmits at 80 bps, and even short data packets take 
around a second or more to complete. With speed of sound 
underwater being around 1500 m/s, propagation delays can also 
be in the order of a second. As such, to avoid collisions in time, 
MAC protocols end up spacing competing transmissions over 
multiple tens to hundreds of seconds. For example, with packets 
of 10 bytes and distances of 500 m, CSMA backoff needs to be 
around 300s to limit collisions to less than 5% in moderately 
dense networks†. This means that the ranging epoch T is in the 
order of 100 seconds. On the other hand, current speeds vary 
between 0.1 to 1 m/s [19], while relative speeds of guided AUVs 
may even exceed this [18]. As a result, displacement in node 
positions during localization can range from a few tens to up to a 
hundred meters. 
This displacement (essentially a ranging error due to ambiguity) is 
much larger than the intrinsic ranging errors of the system. We 
performed ranging experiments with two WHOI micro-modems in 
Mission Bay, San Diego [13]. When stationary, the ranging error 
is only a few meters, and consistent across various scenarios. 
Therefore, and as we will show in the results section of this paper, 
mobility causes significant degradation of self-localization 
performance in underwater networks, if traditional techniques are 
utilized. These traditional collaborative self-localization 
techniques are primarily designed for static networks and do not 
explicitly account for displacement of nodes during the ranging 
epoch [6][7][8][9][10]. Conversely, most tracking solutions for 
mobile robots only track devices individually with respect to 
anchors [14][15]. While inter-robot distance measurements have 
been used to improve tracking performance [3], they do not 
operate in a setting where many nodes only have other to-be-
localized nodes as neighbors with distance measurements being 
the only information available for tracking. In fact, a key 
difference in localizing nodes underwater compared to tracking 
terrestrial mobile nodes is that the medium in which nodes are 
moving has its own unknown motion. Therefore any velocity 
information that nodes obtain independently is only relative to 
that of currents, providing little information about the motion of 
the system in an absolute sense, while terrestrial mobile nodes can 
often obtain velocity information that aids in tracking.  
 

                                                           
† Although CDMA could allow simultaneous transmissions, it is 

difficult to assign orthogonal codes in a mobile network with low 
overhead. Also it does not allow sending and receiving at the same time 
(and therefore does not allow concurrent ranging either). We assume a 
CSMA or TDMA style MAC protocol, as is common for most acoustic 
modems. 

There are ongoing efforts towards more dense systems, built on 
cheaper short range modems [11].  The problem of node mobility 
during the ranging epoch is especially relevant to such short range 
systems since errors are large enough to skew our estimate of the 
network topology. Even if nodes move, it is important to have 
consistent position estimates across sampled data, as these sensor 
networks are data-centric (i.e. the correlation between data 
samples is important, not the identity of the specific device that 
collected the data; as such tracking individual devices is not 
important). 
Our goal is to devise a collaborative localization scheme that 
effectively compensates for node motion within the ranging 
epoch, around the specific localization time of interest Tloc. Our 
scheme is targeted towards situations where localization 
information is only needed once the mission has finished. This is 
reasonable since in many applications, data gathered by 
underwater instruments is analyzed offline by scientists. It is only 
then that annotation of position information to data samples is 
needed. As such, while submerged, the networked devices only 
collect range information. The actual self-localization algorithm 
itself can operate post-mission, where ample computation 
resources are available. We will leverage this in the current 
version of our scheme, which is specifically targeted towards this 
subset of applications. 
Although applicable to the more general class of mobile 
underwater networks, our solution was developed also with a 
specific system in mind. This system, depicted in Figure 2, 
consists of a networked swarm of autonomous sensor-equipped 
drifters. A prototype system was described in our earlier work [1]. 
Our goal is to collaboratively localize nodes in such a network in 
the presence of mobility and delay in obtaining inter-node 
distance measurements. In the next section, we formally define 
the localization problem and introduce a solution strategy.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

3.  SOLUTION STRATEGY 
We will mathematically formulate the problem of localizing 
nodes from non-concurrent distance measurements. As described 
earlier, nodes perform ranging with their neighbors during the 
localization epoch, T. We denote the set of measurements taken 
between node pairs at any time t as dt. The collection of all 
distance measurements obtained in the interval (0,T) is denoted by 
{dt}tє(0,T). Given these measurements, our objective is to determine 
the maximum-a-posteriori (MAP) estimate for the position of each 
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node i at a target localization time, Tloc which we will denote by 
θi,Tloc. The MAP estimate is formally given by equation (1).  

 
                                         (1) 
 

To compute this estimate, we need the probability distribution of 
each node’s position given all distance measurements. If 
measurements were made with beacons alone, the problem would 
simplify to independently tracking each node. However, since this 
is not the case, we have to take into account that node positions 
over the localization interval are correlated. This correlation is 
induced by inter-node distance constraints and can be expressed 
by the joint distribution of node positions in the interval (0, T).   
The position distribution of each node at Tloc is derived from the 
joint distribution, equation (2).  In order to describe the joint 
distribution over finite number of variables, we will annotate 
distance measurements in discrete time. The joint distribution is 
then defined over node positions at discrete instances in the 
interval (0, T).  

 
                  (2) 

 
 
Where,                

 
 

 
A direct approach to evaluating equation (2) is infeasible. 
However, the general problem of computing the distribution of 
individual variables from a global function defined over many 
variables is frequently encountered in coding theory. Solutions for 
particular instances of this problem (i.e. particular structures of 
the joint distribution) have been previously proposed under 
different names. Some examples are the Forward /Backward 
algorithm or BCJR, iterative turbo decoding and decoding of 
LDPC codes. However, it has been shown that all these 
algorithms and many others (Pearls belief propagation and even 
Kalman filters) are all instances of a single generic message 
passing algorithm, the sum-product algorithm that operates on a 
‘factor-graph’[4][5].  
Factor graphs offer a graphical way of representing any generic 
global function, often a joint probability distribution, in terms of 
simpler local functions that depend only on a subset of variables. 
The sum product algorithm then exploits these simple relations to 
efficiently and simultaneously compute the marginal distributions 
of all variables via iterative message passing. For us, this is 
particularly interesting because factor graphs offer a simple way 
to capture the complex structure of the localization problem, 
allowing all distance measurements to be considered 
simultaneously for estimation. Further, the sum-product algorithm 
can efficiently perform the actual estimation. A brief overview of 
the sum-product algorithm is given in Appendix A. The reader is 
referred to excellent tutorials by Kschischang et al [4] and 
Loeliger [5] for an in-depth review of the algorithm and its 
applications to various problems. In subsequent sections we will 
demonstrate how the sum-product algorithm can be used to solve 
our specific localization problem.  

4. COMPUTING POSITION 
DISTRIBUTIONS 

We begin by obtaining a graphical representation for the joint 
distribution of node positions. We model the motion of nodes in 
time as Markovian i.e. the position of a node at any time t, given 
its position at all previous times only depends on its most recent 
position. By applying the chain rule, the joint distribution can be 
expressed as a product of simpler functions, equation (3).   
 

 
 
         
 

                                         (3) 
  
 
 
 
Where, Lt is the set of node pairs that obtained a measurement at 
time t.    
 
The equivalent factor graph for equation (3) is given by Figure 3. 
The position of any node i at time t is symbolized by a circle and 
we will here on refer to it as the state-variable Өi,t.  Functions that 
relate state-variables are represented as square nodes. A link 
exists between a state-variable and a function node if the state-
variable is an argument of the function. The progression of node 
positions in time is shown in the horizontal dimension.  The 
vertical dimension indicates this time progression for each 
unknown node. 
                                              

 
Figure 3: Factor-graph representation of the localization 

problem 
 

The probabilistic model that describes the evolution of a node’s 
position at each time step is given by function-nodes of type f2. 
We model node speeds to be uniformly distributed between (0, 
vmax), equation (4).   
 
 

 
 
                                                                                              (4) 
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The likelihood of a distance measurement between a node pair is 
given by functions of type f1. If a measurement is obtained with a 
beacon the corresponding function-node is single-ended i.e. it has 
a link only to the unknown state-variable as shown in Figure 3. 
Our experiments with the WHOI micro-modem [13] suggest that a 
zero mean Gaussian model is well suited for ranging error, 
equation (5). However, our solution can accommodate any other 
model.  

 
            
                                                                                     (5) 
 

Where, zi,t is the depth at which node i is at time t.  
            σ is the standard deviation of ranging error.  
 
Further, we may know that the position of unknown nodes is 
restricted to a finite region, ζ around the beacons. Function-
nodes of type f3 describe the distribution for node locations over 
this region.  If no additional information is known, we assume 
that node positions can be anywhere in ζ with equal probability, 
equation (6) 
 

                          (6) 
 
 
 
Where, A ζ  is the area of the region ζ. 
 
Now that the factor-graph model for the problem has been 
obtained, the sum-product algorithm can be applied to compute 
the distributions of state-variables via iterative message passing. 
Next, we will present the actual messages generated by nodes and 
then describe their physical interpretation for the localization 
problem.  

4.1 Position Estimation via Message Passing 
During the operation of the sum-product algorithm, messages are 
generated by state-variables and function nodes. Let      μx-f(x) 
denote the message sent from a state-variable, x to a function 
node f (X), where X is the set of arguments of f. Let μf-x(x) be the 
message sent from a function node to a state-variable. Also, let 
n(w) denote the set of neighbors of a given node w on the graph. 
Messages are computed by each node as per the following rule 
[4].  

 
                    (7) 
 
 
                    (8) 

 
 

The algorithm operates as follows. Per iteration, nodes compute 
outgoing messages on all their links based on the (latest) 
messages that had arrived on those links in a previous iteration. 
Since the factor-graph representation of our problem is cyclic, 
nodes initiate message-passing by assuming that a unit message 
has arrived on each of their links. Further the algorithm has to 
iterate a number of times to converge. The estimate of a state-
variable’s distribution is the product of all its incoming messages. 
To obtain a physical interpretation of the operation of the sum-

product algorithm, it is sufficient to examine a message passed 
from one state-variable to another via a function node as shown in 
Figure 4. In step 1, the message, μx-f(x) is sent from state-variable x 
to function-node f with f є {f1 ,f2}. This message is an estimate of 
the probability mass distribution of x. Next, in step 2, node f 
computes an estimate of the distribution of the position of y based 
on the likelihood of any information that relates x and y. This 
information could be a distance measurement or a model of how a 
node’s position evolves in time.   
 

 
 

Figure 4: Messages passed between two state-nodes 
 
 
We observe in step 2, that a number of messages simultaneously 
arrive at y, each being an individual estimate of its position-
distribution.  Node y intersects all these individual distributions to 
obtain an estimate of its distribution. This is the product step of 
the algorithm. In step 3, y sends out the most recent estimate of its 
distribution to all its neighbors. Therefore, information obtained 
from distance measurements made at different instances travels 
back and forth (in time and space), modifying the distributions of 
node positions along the way. One of the main challenges in 
applying the above solution to the problem of network 
localization is an efficient representation for the distribution of 
node positions. As such the sum-product algorithm operates on 
discrete state-variables. Prior to localization there is a large 
uncertainty (up to a few kms) in node locations. Therefore, fine-
grained discretization would result in unrealistically long 
messages while a nominal message size gives rise to coarse and 
inaccurate estimates. Therefore, we need an efficient way to 
represent position distributions over a large region without losing 
information. 

4.2 Efficient representation of position 
distributions 

As discussed in the previous section, each run of the sum-product 
algorithm gives an estimate of position-distributions. We store 
distributions as a set of weights defined over grids. Thus, the 
length of messages generated by the sum-product algorithm is 
directly proportional to the number grids used for representing 
each distribution. In order to obtain fine-grained estimates with 
nominal message size, we start with coarse representations (large 
grids) and iteratively shrink the region over which distributions 
are defined based on the likelihood of node locations (as obtained 
from the sum-product algorithm). Per iteration, we select the 
smallest area in which a node resides with high probability. This 
region is then re-discretized keeping the number of grids (hence 
the message size) constant. The sum-product algorithm is used in 
the next iteration to compute new likelihood estimates. The 
algorithm terminates when the change in grid size is less than a 
set threshold or when a target granularity is reached for all state-
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variables.  We further propose methods for efficient and fast 
operation of the algorithm. 
 
Since representations for node distributions are not modified 
during the operation of the sum-product algorithm, mappings 
defined by function nodes can be pre-computed at the end of each 
run of the algorithm. We had defined function nodes in equations 
(4), (5) and (6) on continuous random variables. We must modify 
these mappings for grid representations. Since grids can be of 
large size, the position of nodes cannot be approximated as the 
grid-center which is commonly done in grid-based 
representations[22]. Function-nodes introduced earlier are 
redefined for grid representations in Appendix B. If we estimate 
node-positions for all time instances in the localization interval T 
and the granularity of time discretization is δt, the number of 
state-variables grows with finer discretization as per equation (9). 
 
   

                    (9) 
 
Where, N is the number of nodes with unknown positions.  
 
However, the only node-states that are informative are at the 
target localization time and instances when a distance 
measurement was obtained. By including node states only for 
such instances, the number of state-variables in the factor-graph 
no longer follows equation (9). Instead it tends to a constant as δt 
goes to zero because the number of distance measurements is 
finite. By maintaining only necessary states fewer messages are 
generated. In addition, the maximum number of iterations 
required for convergence of the sum-product algorithm depends 
on the width of the factor-graph, defined as the shortest path of 
maximum length. Reducing state-variables also reduces the 
graph-width and significantly drops the run-time of the algorithm. 
Next, we present simulation results when our proposed solution 
strategy is used for localization. 

5.  RESULTS 
To evaluate the performance of our localization scheme, we 
performed simulations in Parsec [20]. All simulation parameters 
are summarized in Table 1. We deployed nodes over a 3D region 
where they move with current streams of equal thickness. The 
velocity of these streams varies with depth which is a commonly 
assumed model [21]. The speed of each layer is independently 
chosen between 0 and vmax. 
Distance estimates are obtained from broadcast transmissions. 
However prior to transmitting, nodes choose a random back off 
between 0 and Tbackoff to avoid collisions. Four surface beacons are 
used to localize a network of 15 nodes. The transmission range is 
R with some variation. We estimate the position of nodes in 2D 
since nodes know their depth from pressure measurements.  
Figure 5 shows a view of the network when looking from above 
and elucidates the problem we are trying to address. In Figure 5, 
the movement of nodes during the time all distance measurements 
are obtained is shown by blue dots. The actual positions of 
unknown nodes at a target localization time are represented by 
stars. Beacon positions at that time are shown as triangles. We 
observe that nodes are displaced between 10m to 180m during 

localization which is considerably large compared to their 
transmission range.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Movement in node positions during localization 
 
For the above scenario we used our proposed method to localize 
nodes at a target localization time. However, to compare the 
performance of our scheme we also estimate node positions using 
a robust self-localization algorithm, Multi-dimensional Scaling 
(MDS) [6]. To enhance the performance of MDS we chose for 
each node pair distance measurements that were closest to the 
target time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 6 shows the cumulative error distribution for position 
estimates using our scheme and MDS. Our proposed scheme 
localized 70 % of nodes with error lower than the minimum error 
obtained from MDS. The actual distributions of node positions are 
shown in Figure 7, with the estimate for each node indicated by 
circle. In Figure 6 we observed that around 30% of the nodes had 
a much larger error compared to the rest of the network when our 
scheme was used. This is because three of the eleven unknown 
nodes have multimodal distributions due to insufficient 
measurements. The distribution of these nodes is spread out over a 
large region as shown in Figure 7. We used only 36 grids to 
represent the distribution of each node. The effect of allowing 
variable grid sizes can also be observed in Figure 7 where fine 
granularity is achieved for nodes that are well constrained. 
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Figure 6: Cumulative error distribution of nodes 
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Figure 7: Probability distributions of node positions 
 
 

Table 1: Simulation Parameters 
Max Current speed, vmax 60 cm/s 
Thickness of current layers 10 m 
Max Depth , D 100 m 
Transmission range, R 100 m 
Number of nodes, N 15 
Number of beacons, NB 4 
Area of deployment 300m x 300 m 
MAC Back-off, Tbackoff 300 s 
Number of grids per node 36 

6.  RELATED WORK 
Graphical inference has been previously used to localize a 

network of static nodes [17]. Here non-parametric belief 
propagation is used for estimating node positions. We use the 
general framework of factor graphs to solve the extended problem 
where nodes are mobile. The sum-product algorithm is equivalent 
in operation to a number of estimation methods including belief 
propagation. In a mobile setting collaborative robot localization 
has been proposed [3]. Here nodes use proximity information with 
neighbors to improve their position estimates. The proposed 
method is aimed at real-time localization and incorporates each 
measurement sequentially in time. It does not have a mechanism 
to use measurements to improve past estimates. Further node 
distributions are assumed independent leading to inaccuracies in 
estimates as reported. This scheme is based on an earlier work in 
global positioning of robots that assumes a Markov model for the 
propagation of positions in time [16]. As such our present scheme 
is also based on a Markov model for node motion, however, due 
to the generic framework that factor graphs provide other motion 
models can be incorporated. A method to incorporate non-
simultaneous measurements for tracking the path of a mobile 
robot moving through a fixed beacon field has been proposed by 
Corke et al. [15]. Underwater nodes are individually tracked by 
beacons. We extend this to the case where nodes have to be 
localized based on measurements with other unknown nodes.   

7.  CONCLUSIONS 
We have considered collaborative localization of a network of 
mobile nodes in the presence of a few surface beacons.  We show 
that a specific problem arises while applying self-localization 
algorithms to estimate node positions underwater. Due to the high 
latency in acoustic communication and low data rates of acoustic 
modems, nodes have to back off for a substantial time before they 
can transmit, introducing a large delay in obtaining distance-
measurements. The combined effect of this delay and node 
mobility causes node positions to change during localization 
resulting in erroneous estimates. Our proposed method shows 
significant improvement in localization performance by taking 
into account these effects. 
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APPENDIX A 
Summary of the sum-product algorithm [4] 
 
The sum-product algorithm is the solution to the following 
generic problem. Given a global function g(x1, x2, x3,…, xn), 
where each  xi takes values in the discrete domain Ai, the sum-
product algorithm computes simultaneously and efficiently the 

summary for each xi where the summary function is defined in  
equation (A.1) 

 
                        (A.1) 

 
When the global function is a joint distribution, the algorithm 
naturally computes the marginal distributions for each xi. To do 
this, it exploits the way the global function g() factorizes. For an 
example function given by equation (A.2), the equivalent factor 
graph is given in Figure 8. 

                                                                            
                                                                                 (A.2) 

 
 
 
 
 
 
 
 
 

 
 

 

APPENDIX B 
Defining function nodes for grid representations: 
 The position of a node, i at time t is denoted by Өi,t . Its domain is 
the collection of grid-centers and the grid size, denoted by 
Gi,t,k=(Xi,t,k, Yi,t,k, ai,t),k=1,….S, Where. S is the number of grids 
used to represent distributions.  
For any two state-variables, Өi,t  and Өj,t  , each belonging to grids 
Gi,t,k and Gj,t,m respectively , the function f1 (Өi,t , Өj,t) is computed 
as the likelihood of a distance measurement, dij averaged for all 
points in grids Gi,t,k and Gj,t,m . Starting with the definition of f1 in 
equation (5) this is given by equation (B.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                       (B.1) 
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Where zi,t, zj,t are the depths of node i and node j respectively at 
time t. 
 
 Equation (B.1) when further simplified yields equation (B.2). 
 
 
 
 

 
 
 
 
             
 
 
 

(B.2) 
Where,  
 
 
When a measurement is made between an unknown node, Өi,t  and 
a beacon whose position is Qb,t=(Xb,t,Yb,t,Zb,t), functions of type f1  
are computed as per equation (B.3) 
 
 

             
 
 
 

  (B.3) 
 

 
 
We also observe that the likelihood function is the same for 
different orientations of a node pair as long as their relative 
orientation is the same. Therefore, we compute probabilities for 
unique orientations alone.  
Functions of type f2 compute the transition probabilities, P(Өi,t1 , 
Өi,t2) . Node speeds are modeled to be uniformly distributed 
between 0 and vmax. Let state-variables Өi,t1 and Өi,t2 belong to 
grids Gi,t1,k and Gi,t2,m respectively. We compute approximate 
transition probabilities as follows. If ai,t1 <ai,t2, expand each side 
of the grid Gi,t1,k, by vmax.|t2-t1| to obtain the region Qi,t1,k. If 

φ≠∩ mtikti GQ ,2,,1, ,  P(Өi,t1= Gi,t1,k , Өi,t2= Gi,t2,m )=1/M. 

Where, M is the total number of grids belonging to Өi,t2 that have 
a non-empty intersection with Qi,t1,k else P(Өi,t1= Gi,t1,k, Өi,t2= 
Gi,t2,m)=0. 
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