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ABSTRACT
A multihop underwater acoustic network, which consists of a
series of equal-distance hops connected by relay transceivers
in a tandem, is considered. Messages are originated as coded
packets from a source node at one end, relayed (decoded and
re-encoded) sequentially hop by hop, and finally received by
a destination node at the other end of the network. Several
key characteristics of underwater acoustic channels, namely,
frequency-dependent signal attenuation and noise, inter-hop
interference, half-duplex constraint, and large propagation
delay, are taken into account in the analysis. A simple trans-
mission protocol with spatial reuse is considered, and the
transmission schedule is designed to satisfy the half-duplex
constraint on relay transceivers in the presence of large prop-
agation delay. To efficiently cope with frequency-dependent
channel characteristic and inter-hop interference, the power
spectral density function of signaling is analytically opti-
mized in a way analogous to water-filling. Furthermore, the
problem of determining the minimum number of hops to
support a prespecified rate and reliability with and without
a maximum coded packet length constraint is examined. Fi-
nally, numerical results are presented to illustrate the anal-
ysis.

Categories and Subject Descriptors
H.1.1 [Information Systems]: Systems and information
theory

General Terms
Theory
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Interference, multihop network, reliability, spectral shaping,
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1. INTRODUCTION
In underwater acoustic communication systems, both band-

width and power are severely limited, due to exponential
(rather than polynomial) attenuation with propagation dis-
tance that is also frequency-dependent. As a consequence,
multihop networking, in which a longer distance is divided
into multiple hops each with a shorter link distance, offers
more favorable bandwidth and path loss conditions, and ap-
pears as an attractive solution for providing high-rate ser-
vices for next-generation underwater acoustic communica-
tion. The aim of the paper is to give a preliminary analysis
of applying multihop networking in underwater acoustic en-
vironments.

To gain insights from the analysis, we take a simple net-
work model, in which several hops, each of an identical dis-
tance, are connected in a tandem, and information-bearing
data packets originating from a source node at one end of the
tandem are forwarded in a sequential manner hop by hop to
a destination node at the other end of the tandem. Specif-
ically, a relay acoustic transceiver node is employed at the
joint of every two consecutive hops. The relay nodes receive
the incoming packets, decode them, and re-transmit them on
to the next hop, until the final destination is reached. Such
a model, though simple, captures the essential elements in
multihop networking, and its analysis reveals several inter-
esting behaviors, as will be shown in the paper.

For multihop networks equipped with full-duplex relay
transceivers, and operating over wireline type of links with-
out interference among hops, the network capacity is easily
shown (by the standard cut-set bound [1] in information
theory) to be the minimum link capacity among hops, and
the capacity is straightforwardly achieved by implementing
good error-control coding for each hop. As a consequence,
a significant portion of the literature on multihop network-
ing has instead focused on the network capacity for non-
coding relays; see, e.g., [2] - [6] and references therein. The
reliability-delay tradeoff in such type of multihop networks
was addressed in [7].

The situation, however, dramatically changes for multihop
networks with half-duplex relay transceivers and with inter-
ference among hops. Such a situation arises in wireless radio
links, or underwater acoustic links, which we consider in the
present paper. The interference among hops is due to the
broadcasting nature of signal propagation in wireless (either
radio or acoustic) medium, and it fundamentally changes
the network model from a simple multihop tandem network
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to a general relay network, for which the capacity problem
is extremely difficult and still open [8]. It is not the aim of
the present paper to solve the general information-theoretic
problem, but instead, we consider a particular transmission
protocol which explicitly considers features of underwater
acoustic channels, and analyze its performance. The consid-
ered transmission protocol is similar to that in [9], in which
for each time slot, a certain subset of nodes simultaneously
transmit in the same frequency band with the same average
power constraint. Such a form of spatial reuse increases the
spectrum utilization efficiency, while at the potential risk of
introducing excess interference among receive nodes. Hence
there exists an optimal reuse factor, which we identify in the
paper. On the other hand, due to the frequency-dependent
SNR characteristic in underwater acoustic links as well as
the existence of interference, the optimal spectral shape of
the signaling scheme can significantly deviate from both flat
and water-filling solutions. In the paper, we also solve the
spectral shaping problem.

We further consider the problem of determining the min-
imum number of hops between two fixed end nodes (source
and destination), for supporting a prespecified rate and re-
liability which is measured in terms of packet error proba-
bility. Such a problem is motivated by the fact that because
deploying nodes is extremely costly for underwater environ-
ments, it is wasteful if more nodes than necessary are used.
We find conditions for determining the minimum number of
hops, under either the ideal situation of capacity-achieving
coding with sufficiently large packet lengths, or the more re-
alistic situation of reliability-rate tradeoff with finite packet
lengths. We note that, since for underwater acoustic com-
munication systems the largest delay contribution is from
signal propagation due to the low speed of sound (cf. [11]),
decreasing the end-to-end coding delay is not our objective
in the paper.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe the multihop network model and a trans-
mission protocol with spatial reuse. In Section 3 we analyze
the impact of spatial reuse and signaling power spectrum
density (PSD) on the capacity of multihop network, and pro-
vide a general method of evaluating the network capacity.
In Section 4 we address the problem of determining the min-
imum number of hops for supporting prespecified rate and
reliability requirements. In Section 5, we present numerical
results, which aim to illustrate the analysis of the previous
sections, and to provide insights to the typical behavior of
multihop underwater acoustic networks. Finally in Section
6 we conclude the paper with conclusions and discussion.

2. MULTIHOP NETWORK MODEL
AND TRANSMISSION PROTOCOL

In this section, we describe the multihop network model
and a transmission protocol with spatial reuse, which we
shall analyze in the paper. Nodes are denoted by Nk, k =
0, 1, . . . , K, among which N0 is the source, NK is the desti-
nation, and the remaining nodes are relays located between
N0 and NK . For analytical simplicity, we assume that all
nodes are located along a straight line, and that every two
adjacent nodes are separated by the same distance d. How-
ever, we note that the analysis in the paper can be modified
to treat multihop line networks with possibly non-uniform
hop distances. For the moment, the number of hops K

and the hop distance d are treated as separate parameters.
In Section 4, we will further fix the source-destination dis-
tance such that d inversely proportionally decreases as K
increases.

2.1 Signal-to-Noise Ratio Model
As a signal propagates and is received by a node, its en-

ergy dissipates and it is contaminated by noise. We describe
these effects using an attenuation function. For wireless ra-
dio links, it is common practice to approximate the attenu-
ation function as A(d) ∝ d−α, where α is a constant decay
factor; see, e.g., [13]. For underwater acoustic links, how-
ever, both link distance and signaling frequency have im-
pact on the attenuation function which we thus denote by
A(d, f) for link distance d and signaling frequency f . Conse-
quently, for a transmitted signal with a sufficiently narrow
bandwidth centered around carrier frequency f with unit
power, the received signal has a frequency-dependent SNR
denoted by ρ(d, f).

In the paper, the analysis is derived for, and thus is appli-
cable to, general relationship of ρ(d, f). For numerical eval-
uation, we consider a specific attenuation and noise model
as described in [12]. The attenuation, or path loss that oc-
curs over a distance d km, for a narrow-band signal of carrier
frequency f kHz, obeys

A(d, f) ∝ dκa(f)d, (1)

where κ is called the spreading factor, which we take as κ =
1.5 (a.k.a. practical spreading), and a(f) is the frequency-
dependent absorption coefficient, illustrated in Figure 1 fol-
lowing [12].
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Figure 1: Absorption coefficient a(f) (in dB) versus
frequency f (in kHz).

Assuming the absence of site-specific noise, the receiver is
affected by colored ambient noise, whose PSD is illustrated
in Figure 2 following [12].

Jointly affected by the attenuation A(d, f) and the noise
PSD N(f), the SNR (density) as a function of narrow-band
signal carrier frequency f and receive distance d is

ρ(d, f) =
1

A(d, f)N(f)
. (2)

As we shall see, the fact that SNR depends upon both dis-
tance and frequency has a fundamental impact upon under-
water acoustic communication system design.
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Figure 2: Noise PSD N(f) (in dB) versus frequency
f (in kHz), with shipping activity factor s = 0.5 and
wind speed w = 0, corresponding to calm seas and a
moderate shipping activity.

2.2 Transmission Protocol with Spatial Reuse
Currently, most acoustic modems can only operate in a

half-duplex mode. That is, each relay node cannot simul-
taneously transmit and receive signals. Such a half-duplex
constraint thus requires the transmission protocol be prop-
erly scheduled to avoid activating both transmit and receive
modes of a relay. In the paper, we focus on a specific class of
transmission protocols with spatial reuse, such that for each
time slot, a certain subset of nodes transmit while another
corresponding subset of nodes receive, without violating the
half-duplex constraint.

For underwater acoustic communication, the propagation
delay of signaling is typically large, and thus needs to be
carefully treated in transmission protocols. The speed of
sound underwater is approximately c = 1.5 km/s. There-
fore, for typical systems the hop propagation delay can be
as large as a fraction of or even several seconds, much larger
than packet lengths in many systems. In transmission proto-
cols with spatial reuse, to account for the large propagation
delay per hop, it is necessary to adjust the timings of trans-
mit and receive nodes accordingly, as demonstrated by the
following example.

In the example, we consider a four-hop network; see Figure
3. Each hop has distance d km, thus incuring a propagation
delay of τ = d/c s.

Due to the propagation delay, a data packet sent from
time 0 to T will be received by the desired node from time
τ to (T + τ). To efficiently utilize the time resource, in the
example, we consider a slotted model such that each time
slot has a duration of T = τ/2 and each data packet fits
exactly into one time slot. In time slot 0, corresponding
to time interval [0, T = τ/2], nodes N0 (source) and N2

transmit. However, due to propagation delay, nodes N1 and
N3 receive the packets sent by N0 and N2, respectively, in
time interval [τ = 2T, 3τ/2 = 3T ], corresponding to time
slot 2. Therefore, by induction, we observe that the system
can operate if we let N0 and N2 transmit, and N1 and N3

receive, in all even time slots; while N1 and N3 transmit,
and N2 and N4 receive, in all odd time slots.

In light of the above example, it is obvious that for a K-
hop network, if we choose the time slot duration and the

Figure 3: Example: four-hop network with spatial
reuse.

length of data packets as

T =
d/c

Q
, (3)

for an arbitrary integer Q ≥ 2 (in the four-hop example
we take Q = 2), then we have the following schedule for
continuous transmission:

time slots: . . . ,−Q, 0, Q, 2Q, . . .

nodes N0,NQ,N2Q, . . . transmit

nodes N1,NQ+1,N2Q+1, . . . receive

time slots: . . . ,−Q + 1, 1, Q + 1, 2Q + 1, . . .

nodes N1,NQ+1,N2Q+1, . . . transmit

nodes N2,NQ+2,N2Q+2, . . . receive

. . . . . .

time slots: . . . ,−1, Q− 1, 2Q− 1, 3Q− 1, . . .

nodes NQ−1,N2Q−1,N3Q−1, . . . transmit

nodes NQ,N2Q,N3Q, . . . receive

The schedule is also illustrated in Figure 4.

Figure 4: Illustration of the transmission schedule.
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Discussion:
(1) In the transmission protocol described, only when Q

is an integer, all the time slots are fully utilized. In practical
systems, there are generally certain losses in time efficiency,
due to various non-ideal issues such as unequal hop dis-
tances (leading to unequal hop propagation delays), multi-
path spread (incurring additional propagation delays). Nev-
ertheless, as long as the propagation delay is substantially
larger than the data packet length, – a typical situation in
practical systems, such losses in time efficiency are negligi-
ble.

(2) The transmission schedule in the protocol is just one
of the several schedules that achieve full-time transmission
without violating the half-duplex constraint. For example,
an alternative schedule essentially equivalent to Q = 2 was
considered in [11], under the condition that the ratio be-
tween hop propagation delay and time slot length is an odd
integer.

In the following sections, we shall focus on the transmis-
sion protocol described in this subsection. We call the pa-
rameter Q the reuse factor, which plays a key role in perfor-
mance analysis.

3. PROTOCOL CAPACITY ANALYSIS
AND SIGNALING PSD DESIGN

In this section, we analyze the impact of spatial reuse and
signaling PSD on the transmission rate of a multihop net-
work. In the analysis, we consider Gaussian random coding
schemes [1], and let each receive node treat its received sig-
nals from nodes other than its immediate upstream node
as interference rather than information-bearing coded sig-
nals. From an information-theoretic perspective, the coding
scheme considered is suboptimal, and in principle (assum-
ing perfect synchronism and coherence among nodes) it is
possible to use successive interference cancellation to im-
prove the achievable rate [9]. However, we emphasize that
the main purpose of the present paper is to provide insights
into practical underwater acoustic networks, and we call the
achievable rate the protocol capacity.

Consider the K-hop network model. For simplicity, we
let all nodes (except the destination NK since it does not
transmit) have an identical average power constraint of P .
Although unequal power allocation among nodes may lead to
certain performance gain, the resulting optimization prob-
lem, however, would be non-trivial even for simple wireless
radio model without frequency-dependent attenuation [9].
Meanwhile, in order to account for the frequency-dependent
link SNR model as described in Section 2.1, transmit nodes
may adapt their signaling PSD analogously to water-filling
in colored Gaussian noise channels (see, e.g., [1]). Again for
simplicity, we let all nodes use the same PSD to shape their
transmitted signals.

From the model, it is seen that the bottleneck link is
the middle hop from NbK/2c to NbK/2c+1, since it suffers
from the most interference coming from upstream and down-
stream nodes. To facilitate analysis, we further let the num-
ber of hops, K, become infinitely large. This is a worst-case
scenario in that the interference power is maximized, and the
obtained protocol capacity hence serves as a performance
lower bound for networks with finite size. For the under-
water acoustic link SNR model, our numerical investigation
shows that essentially all of the interference is contributed

by the two or three nearest interfering nodes, so the infinite-
node approximation in fact has a satisfactory accuracy even
for networks with a small size.

By inspecting the transmission schedule in Section 2.2, we
notice that for a receive node, the interference components in
its received signal can only come from earlier transmissions
of nodes at the following locations:

Left: (Q + 1)d, (2Q + 1)d, . . . , (iQ + 1)d, . . .

away from the receive node;

and right: (Q− 1)d, (2Q− 1)d, . . . , (jQ− 1)d, . . .

away from the receive node.

Here it is implicitly assumed that the acoustic modem trans-
mitter is omni-directional.

Consider a narrow bandwidth centered around a carrier
frequency f , and assume that the signaling of all the nodes
is shaped with PSD S(f), we then have that the interference-
to-noise ratio within this narrow bandwidth from all inter-
fering nodes is

I(f) =

∞X
i=1

ρ ((iQ + 1)d, f) S(f) +

∞X
j=1

ρ ((jQ− 1)d, f) S(f)

= ρ̃Q,d(f)S(f), (4)

where

ρ̃Q,d(f) :=

∞X
i=1

ρ ((iQ + 1)d, f) +

∞X
j=1

ρ ((jQ− 1)d, f)

characterizes the frequency-dependent interference-to-noise
ratio density, parameterized by the reuse factor Q and hop
distance d.

The signal-to-interference-plus-noise ratio (SINR) at a car-
rier frequency f hence can be evaluated as

ρ(d, f)S(f)

1 + ρ̃Q,d(f)S(f)
,

and the information rate achieved by signaling with PSD
S(f) is

RQ,S(·) =
1

Q

Z
f≥0

log

„
1 +

ρ(d, f)S(f)

1 + ρ̃Q,d(f)S(f)

«
df, (5)

where the 1/Q factor is due to the transmission schedule
with spatial reuse.

For a given hop distance d, we can thus optimize over
Q and S(f) to maximize the rate RQ,S(·). Since Q ≥ 2
is integer-valued, the optimization over Q can only be per-
formed using discrete search. For a fixed Q, however, the
optimization over S(f) can be accomplished analytically, as
given by the following proposition.

Proposition 1. For a fixed reuse factor Q, the signaling
PSD that maximizes RQ,S(·) is given by

S(f) =
1

2ρ̃Q,d(f) [ρ(d, f) + ρ̃Q,d(f)]
·

n
− [ρ(d, f) + 2ρ̃Q,d(f)]

+
p

ρ2(d, f) + (4/λ)ρ(d, f)ρ̃Q,d(f) [ρ(d, f) + ρ̃Q,d(f)]
o

(6)

if ρ(d, f) ≥ λ; and S(f) = 0 otherwise. The parameter
λ > 0 is chosen such thatZ

f≥0

S(f)df = P (7)

is satisfied.
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Proof: Omitted due to space limitation.
To compute the optimal signaling PSD, we start with a

sufficiently small λ > 0, which would lead to S(f) such thatR
f≥0

S(f)df > P , thus violating (7). We then gradually

increase λ, until the equation (7) is satisfied. The corre-
sponding λ thus yields the optimal S(f). As we optimize
the signaling PSD for every integer Q ≥ 2, we get the max-
imum information rate, i.e., the protocol capacity, of the
transmission protocols considered in Section 2.2:

C(d) = max
Q≥2,S(·)

RQ,S(·). (8)

We use C(d) to explicitly indicate that the protocol capacity
is for multihop networks with hop distance d.

From the form of (8), it appears that we need to per-
form an exhaustive search over all integers Q ≥ 2. In
fact, it is not necessary to search over large Q’s. For a
fixed Q, an immediate upper bound to RQ,S(·) is (1/Q) ×
(the single-hop capacity without interference), which mono-
tonically decreases to zero as Q increases. Therefore, as soon
as the upper bound for a certain Q1 falls below maxS(·) RQ2,S(·)
for any Q2 < Q1, we can stop searching beyond Q = Q1.

4. MINIMUM NUMBER OF HOPS FOR PRE-
SPECIFIED RATE AND RELIABILITY

The analysis in Section 3 provides a general method of
evaluating the information rates of multihop networks with
spatial reuse. In this section, we turn to an application of
that analysis. Here we fix the end-to-end distance between
source and destination to dt km, and consider how many
hops are necessary to support a prescribed rate with a pre-
scribed reliability, measured by an upper bound to packet
error probability.

Since packets transmitted through hops are coded, we
need a tool to relate reliability and information rate, on ba-
sis of a fixed maximum packet length. The following general
form of reliability function will be instrumental in analysis
of this section:

EC(R, T ) : packet error probability, with

R : information rate of the coded packet;

T : length of the coded packet.

For a specific channel parametrized by a generic parame-
ter C (for example, SNR in additive white Gaussian noise
channels, or crossover probability in binary symmetric chan-
nels), a specific coding scheme with information rate R,
coding block length T , and a specific decoding algorithm,
EC(R, T ) is the corresponding block error probability. Gen-
erally speaking, EC(R, T ) may be obtained either through
analytical methods (see, e.g., [14]), or Monte Carlo simula-
tions. In information theory, EC(R, T ) is often interpreted
as the minimum block error probability (often its upper and
lower bounds) for optimal codes and optimal (maximum-
likelihood) decoding algorithms (see, e.g., [15]).

It is not hard to see that for a properly designed coded
system, EC(R, T ) should satisfy the following properties:

(a) EC(R, T ) is non-increasing in coding block length T ;

(b) EC(R, T ) is non-decreasing in information rate R;

(c) For rates below a certain threshold (for example, the
channel capacity), there exist coding scheme and de-

coding algorithm such that EC(R, T ) decreases toward
zero as T →∞;

(d) For rates above the threshold in (c), EC(R, T ) is always
bounded away from zero.

Now let us return back to the problem of determining the
minimum number of hops. Consider dividing the length-dt

distance between source and destination into K hops, each
of which has link distance dt/K. Meanwhile, we fix the to-
tal power as Pt, and thus each node, when transmitting, is
allocated an average power of (Q/K) ·Pt (assuming K ≥ Q)
if the transmission protocol has a spatial reuse factor of Q.
From the discussion in Section 3, we have that the protocol
capacity C(dt/K) is given by (8). We assume that the sys-
tem design requires a prespecified information rate of R0,
with a prespecified end-to-end packet error probability no
greater than E0. For many practical applications, E0 is a
number close to zero, say 10−4, and the number of hops K
is moderate. Therefore, the union bounding technique pro-
vides a reasonably accurate reliability constraint for each
hop, as E0/K. Due to complexity and network-layer con-
siderations, we further assume that the coded packets have
a maximum length constraint of Tm.

We first consider an ideal scenario, where the maximum
packet length Tm is sufficiently large, such that all rates up
until C(dt/K) can be achieved while satisfying the per-hop
reliability constraint E0/K. Therefore the number of hops
should satisfy

C

„
dt

K

«
≥ R0, (9)

and the minimum number of hops immediately follows. The
inequality (9) simply asserts that the number of hops should
be chosen such that the hop capacity exceeds the prespeci-
fied information rate.

We then consider the more realistic scenario where Tm

is finite. Using the number of hops K to parameterize the
hops, we have that it suffices to choose K such that

EK(R0, Tm) ≤ E0

K
, (10)

is satisfied. That is, for each hop, the coding scheme achieves
an average packet error probability no greater than E0/K,
at information rate R0, and with packet length Tm.

5. NUMERICAL RESULTS
In this section, we illustrate the analytical results numer-

ically, for the underwater acoustic link model described in
Section 2.1.

We take the link parameters as κ = 1.5 (practical spread-
ing), s = 0.5 (moderate shipping activity), and w = 0
(calm seas). For convenience, we normalize ρ(d, f) such that
maxf ρ(1km, f) = 0 dB. In Figure 5 we plot the SNR density
ρ(d, f) as a function of frequency f for d = 0.5, 1 and 2 (in
km). From Figure 5, we observe that the SNR degradation
with distance is quite severe. For each link distance, there
is a particular frequency at which the received SNR is maxi-
mized, and the resulting maximum SNR decreases rapidly as
link distance increases. Furthermore, the SNR vanishes ap-
proximately in a dB-linear fashion at high frequencies, and
the decay rate grows as link distance increases.

From the SNR characteristic we can evaluate the interference-
to-noise ratio characteristic ρ̃Q,d(f). We plot ρ̃Q,d(f) as a
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Figure 5: SNR characteristic ρ(d, f) as a function of
frequency f , for link distances d = 0.5, 1 and 2 (in
km).

function of f in Figure 6, for d = 0.5 km, and for spatial
reuse factor Q = 2, 3, 4 and 5. We observe that for each
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Figure 6: Interference strength ρ̃Q,d(f) as a function
of frequency f , for link distances d = 0.5 km, and
reuse factor Q = 2, 3, 4 and 5.

Q, the ρ̃Q,d(f) curve closely follows similar trend as ρ(d, f).
In fact, our numerical evaluation shows that, most fractions
of ρ̃Q,d(f) are contributed by the nearest interfering node
(with distance (Q − 1)d away from the receiver), and es-
sentially all of ρ̃Q,d(f) is due to the two or three nearest
interfering nodes. Therefore the similarity between ρ̃Q,d(f)
and ρ(d, f) is not entirely surprising. Such a rapid con-
vergence in ρ̃Q,d(f) is largely due to the exponential term
a(f)d in the attenuation function A(d, f) in (1), and this is
a key difference between underwater acoustic channels and
wireless radio channels, where interference coming from re-
mote nodes decays slowly. As the reuse factor Q increases,
ρ̃Q,d(f) rapidly decreases, resulting in less interference for
the receiving node. However, the 1/Q scaling factor in the
achievable rate RQ,S(·) also takes effect. As a consequence,
it is usually optimal to operate at Q = 2 or 3, as shown in
the following figures.

We compute the optimized signaling PSD following Propo-
sition 1, and plot achievable rates as functions of power P in

Figures 7 and 8, for hop distance d = 0.5 km and 2 km, re-
spectively. From both figures, we observe that the optimal
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Figure 7: Achievable information rates (optimized
over signaling PSD) versus per-node power con-
straint, for hop distance d = 0.5 km, and reuse factor
Q = 2, 3 and 4.
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Figure 8: Achievable information rates (optimized
over signaling PSD) versus per-node power con-
straint, for hop distance d = 2 km, and reuse factor
Q = 2, 3 and 4.

reuse factor Q in fact depends on the power constraint P .
For small P , it is optimal to use Q = 2, while letting Q = 3
actually does not lead to much rate loss. As P increases,
Q = 3 becomes the optimal choice, and curves for Q = 2 are
in turn outperformed by those for Q = 3 and 4.

The optimal signaling PSD as given by Proposition 1 de-
viates from water-filling, and leads to non-flat receiver SINR
versus frequency. We plot the SINR-frequency relationship
in Figure 9, for P = 20 dB re µ Pa, d = 1 km, and Q = 2, 3
and 4. We observe that the SINR curves are quite differ-
ent for different spatial reuse factors, thus indicating their
dependence on the spectral behavior of interference.

Now we proceed to determining the minimum number of
hops for supporting prespecified rate and reliability, as an-
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Figure 9: Optimal receiver SINR as a function of
f , for per-node power constraint P = 20 dB, hop
distance d = 1 km, and reuse factor Q = 2, 3 and 4.

alyzed in Section 4. For the ideal scenario given by (9), we
can compute for a sequence of values of K the corresponding
protocol capacity of the K-hop network C(dt/K), and find
the minimum value of K such that (9) is satisfied. As an
example, we plot in Figure 10 the C(dt/K) versus K curve,
for dt = 10 km, Pt = 40 dB re µ Pa. We observe that if
the prespecified information rate is R0 = 75 kbps, then the
minimum number of hops should be chosen as Km = 15,
implying that the hop distance is dt/Km ≈ 667 m.
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Figure 10: Finding the minimum number of hops
necessary to support a prespecified rate. The curve
with squares indicates the relationship between the
number of hops and the resulting protocol capacity,
and the first square strictly above the prespecified
rate corresponds to the minimum number of hops,
which is Km = 15 in this plot. System parameters
are dt = 10 km, Pt = 40 dB re µ Pa, and R0 = 75 kbps.

Next we consider the realistic scenario, in which both rate
and reliability (packet error probability) affect the minimum
number of hops, as indicated by (10). Determining the reli-
ability function EK(R, T ) is rather tedious, depending upon
the particular coding scheme and decoding algorithm used.
For simplicity, we evaluate EK(R, T ) as the random-coding
exponential error bound [15], i.e., EK(R, T ) = exp[−T ·

Er(R)] where Er(R) is the so-called random-coding error
exponent, treating the channel SNR characteristic as flat;
due to space limitation, we defer the mathematical expres-
sions that we use for numerical evaluation to the full version
of the paper.

The minimum number of hops should have the resulting
random-coding error exponent satisfy

Er(R0) ≥
1

Tm
log

„
K

E0

«
. (11)

We thus plot in Figure 11 two cases: the curve with squares
indicates the relationship between K and Er(R0), and the
dashed-dot curve is 1

Tm
log (K/E0) versus K. System pa-

rameters are the same as those of Figure 10, and addition-
ally we assume E0 = 10−4 and Tm = 0.1 s. We observe that
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Figure 11: Finding the minimum number of hops
necessary to support prespecified rate (R0 = 75 kbps)
and packet error probability (E0 = 10−4). The curve
with squares indicates the relationship between the
number of hops K and the resulting random-coding
error exponent Er(R0), and the dashed-dot curve
indicates 1

Tm
log (K/E0) versus K. The first square

above the dashed-dot curve corresponds to the min-
imum number of hops, which is Km = 17 in this plot.
System parameters are dt = 10 km, Pt = 40 dB re µ
Pa, and Tm = 0.1 s.

as K increases, Er(R0) initially dwells at zero, then starts
increasing, and gradually exceeds 1

Tm
log (K/E0). The min-

imum number of hops turns out to be Km = 17 (i.e., hop
distance dt/Km ≈ 588 m), rather than 15 as in the idealized
analysis of Figure 10, which overlooked the effect of finite
packet length on packet error probability.

Finally, we plot in Figure 12 the minimum number of hops
as we change the prespecified information rate from zero to
around 80 kbps, for the same system parameters as those
of Figure 11. The Km versus R relationship is piecewise
integer-valued from 1 to around 20, as the information rate
increases. Such a plot yields a convenient tool for finding
the required number of hops for a given rate. For example,
if the prespecified information rate is R0 = 75 kbps, then in-
specting Figure 12 immediately indicates that the minimum
number of hops is Km = 17.
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6. CONCLUSIONS
This paper presents a preliminary analysis of multihop-

ping strategies for achieving high-rate transmission in un-
derwater acoustic networking applications. As exemplified
in earlier investigations (e.g., [16]), performance of signal de-
tection can be dramatically improved through multihopping
in underwater acoustic environments. In this paper, our
analysis of information-theoretically achievable rates con-
firms such a benefit, and yields additional insights into the
design of efficient coding schemes. As shown in our numeri-
cal study, transmission protocols with a small spatial reuse
factor like two or three typically strikes the optimal balance
between interference and rate scaling. Furthermore, when
inter-hop interference cannot be safely ignored, performing
water-filling hop by hop is not optimal and the optimal
signaling PSD should be computed taking the interference
into account, following Proposition 1. We develop a tool of
determining the minimum number of hops for supporting
prespecified rate and reliability, and exemplify its applica-
tion through the random-coding exponential error bound, –
whereas we note that for practical systems it may be more
relevant to evaluate the channel reliability function in an ad
hoc fashion for the specific coding scheme used. Our numer-
ical result indicates that, in determining the minimum num-
ber of hops, the ideal assumption of infinitely large packet
length may yield overly optimistic estimate of the minimum
number of hops, and it is usually necessary to take into
account the coding block length versus decoding error prob-
ability tradeoff revealed by the channel reliability function.
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