Micromodem Guide

DRAFT

Rev: 1d
Sept 10, 2007

By: Leonard Tracy

Introduction

The WHOI Micromodem is a useful multipurpose communications device for underwater networks. The modem provides a simple interface that allows for simple point to point communication out of the box. The Micromodem incorporates a simple link layer and CSMA that allows for semi-reliable delivery of packets. A thorough error correction scheme and a simple automatic ack mechanism are included in the modem.

In order to develop a full featured, energy efficient, reliable network based on WHOI Micromodems, software is being developed that will allow for easy development and testing of network protocols. The CommStackAPI is a set of C++ classes that provide for a snap-in structure for protocol layers. A data link layer for the Microdem is under development, and some possible MAC protocols are being designed.

This document attempts to give an overview of the features incorporated into the modem along with some specifics (as available) of how these features are implemented. Additionally, details are provided on the API and the protocols under development.
Micromodem Hardware

The Micromodem hardware consists of three separate boards: the main board, the power amplifier, and the floating point coprocessor. The main board is based on the TI Fixed Point DSP TMS320C5416 which performs all of the necessary computation for message processing. It also includes two serial ports, one for user interface to the modem and one for modem control of an external device. The firmware on the Micromodem main board is stored in flash memory. Binary firmware updates can be done using the serial port and software available from WHOI. Additionally, a standard JTAG interface is available to assist in firmware development and testing, however the firmware code is not available to the public. The power amplifier drives the ceramic projector, acts as a single channel receiver, and acts as a power conditioning system. The optional coprocessor is used for processing received PSK packets, and is nominally powered down until a PSK packet has been received.

The average power consumption statistics of the modem are:

· Idle power 80 mW

· TX Power 10 W

· FH-FSK Receive 80 mW

· PSK Receive
3 W

The discrepancy in receive powers is caused by the need for the co processor board while decoding a PSK packet. The co processor board is powered down when not decoding a PSK packet.

Physical Layer

The Micromodem has two possible physical layer modulation schemes, Frequency Shift Keying with Frequency Hopping (FH-FSK), and Phase Shift Keying (PSK). FH-FSK operates at 80 bps after error correction, and PSK operates at between 300 and 5600 bps after error correction. All modems are capable of transmitting PSK, however, a separate co-processor board is required to decode PSK packets. Packet type and speed is selected in the cycle init packet which precedes transmission of each packet. The cycle init packets are always sent with packet type 0. All communications are half duplex regardless of packet type. The packet types are shown in Table XXX.

[image: image1.wmf]IDLE

TX

RX

SENSE BUSY

RUN TIMER

Received Packet for TX

Channel sensed busy

Timer expires

Packet detected for RX

TX Finished

Channel sensed idle

/

No

packet waiting

Packet detected for RX

RX Finished

/

Sensed busy

Packet detected for RX

RX Finished

/

No TX waiting

RX Finised

/

Sense Idle

/

TX

Packet waiting

Sensed Idle

/

TX Waiting

Channel sensed busy

The data frames are described in the WHOI document 401002-SPEC. The structure is shown in Figure XXX. The 16 bit CRC protects both the payload and the header, and is based on the CCITT standard. The size of the payload is based on packet type as shown in Table XXX.
	0
	15
	16
	31
	32
	n

	CRC
	Header
	Data Payload

[image: image2.emf]Table XXX. Packet frame size information

Type Modulation bps # Frames Bytes/Frame Total Bytes

0 FSK 80 1 32 32

1 PSK 250 3 32 96

2 PSK 500 3 64 192

3 PSK 1200 2 256 512

4 PSK 1300 2 256 512

5 PSK 5300 8 256 2048

A description of each bit in the header is shown in Figure XXX.

	0
	1
	2
	7
	8
	11
	12
	15

	Full
	Ack
	Frame #
	Dest. Address
	Source Address

[image: image3.emf]
The Full bit signifies that the frame is full of data. If not set, the full bit signifies that the frame has been padded to be the standard size and that byte 5 of the frame contains the number of bytes of data included.. The ACK bit signals to the receiving node whether an ACK has been requested for this frame. The Frame # signals which frame in the packet has been received for multi frame packets. The dest and source addresses are self explanatory, however notice that only 16 nodes are distinguishable at the physical layer.
The formed packet is passed through a data whitening phase before transmission. The data is whitened using an m sequence generated from a 11 bit shift register using the polynomial g(x) = 1+x2 + x11.
 The data is also interleaved and encoded before transmission, however the 401002-SPEC does not describe the actual process used in the modem. The SPEC simply states that the specific encoding process is dependent on the ECC layer.
The default modulation scheme used in the Micromodem is FH-FSK. The current implementation of the FH-FSK on the Micromodem allows for reliable single-user communication in a shallow water channel with multipath interference. Currently, the Micromodem supports configuration to one of three TX hopping codes and one of three RX hopping codes. Each code moves between seven pairs of frequencies. Theoretically, FH-FSK can support multi-user access on a single channel, however the Micromodem can only decode one packet at a time. Every FH-FSK packet is preceded by an upward linear FM chirp across all bands. Every modem that hears the chirp will receive and decode the entire packet.
PSK modulation allows for higher frequency rates using a floating point coprocessor. A linear downward FM chirp precedes all PSK packet transmissions. Demodulation is accomplished using a decision feedback equalizer (DFE). The DFE is capable of using multiple hydrophones in order to increase the reliability of reception in noisy conditions. The Micromodem increases power efficiency by keeping the coprocessor board completely powered off until a PSK packet is detected for reception. All PSK transmissions are accomplished using the same symbol rate. Different data rates are achieved by using different modulation schemes. The specifics of the Micromodem PSK modulation are not published.

Recent updates to the Micromodem have implemented changes in the treatment of PSK packets. A separate cycle init packet is no required to be sent prior to a PSK transmission. Instead the information previously contained in the cycle init packet is sent in the header of the PSK packet. Also, the size of a PSK packet is now variable. Packets may contain a variable number of frames which is a departure from the initial design that made all packet transmissions take approximately 3.5 seconds regardless of the data rate.
Micromodem Data link layer.

Every FH-FSK transmission from a Micromodem is preceded by a short cycle init packet. The cycle init packet contains the source and destination ids of the transssion, and the packet type (modulation and data rate). The cycle init packet also includes a single user defined bit. The sender of the cycle init does not need to be involved in the communication. This allows for a centrally controlled TDMA system where a single node assumes a master role, allocating channel time to other nodes in the network. Each data packet is designed to take up to 3.5 seconds to transmit regardless of the data rate. PSK packets may be shorter as the number of frames included in the transmission is variable. Currently, each cycle is restricted to a single packet. A master node is not necessary, as any modem may transmit data at any time.
In addition to the standard data packets, 21 bit mini packets are available and defined in the 401010C-SPEC. Cycle init commands and pings are always sent as mini packets. Mini packet structure is shown in Figure XXX.
	0
	20
	21
	23
	24
	31

	Data Payload
	Type
	CRC

[image: image4.wmf]IDLE

TX

RX

SENSE BUSY

RUN TIMER

Received Packet for TX

Channel sensed busy

Timer expires

Packet detected for RX

TX Finished

Channel sensed idle

/

No

packet waiting

Packet detected for RX

RX Finished

/

Sensed busy

Packet detected for RX

RX Finished

/

No TX waiting

RX Finised

/

Sense Idle

/

TX

Packet waiting

Sensed Idle

/

TX Waiting

Channel sensed busy

The defined types are shown in Table XXX. This document describes the payload of a Cycle Init packet in the software interface section. More details are given on the other types in the 401010C-SPEC. Type 4, the user type, allows for 21 bits of user defined data to be broadcast to all nodes within range.

	Table XXX. Mini Packet Command Types

	Type Code
	Name

	0
	Cycle Init

	1
	Navigation

	2
	ACK

	3
	Modem Acoustic Command

	4
	User Data

Generally, a data transmission follows several steps:

1. The user requests that data be sent

2. The modem sends a cycle init packet

3. The transmitting modem requests each frame of data from the host separately.

4. The transmitting modem sends the packet

5. The receiving modem responds with acks if requested.

For cycles without ACK requests, the cycle can be considered finished after either a data packet is sent or PTO seconds. All receiving modems will generate a message if data has not been received after PTO seconds. If an ACK has been requested, the user must decide how long to wait for an ACK before considering the packet to be lost.

Modem Software Interface

Users interface to the Micromodem using a standard RS-232 serial port. All communication between the user and the modem takes place using standard NMEA sentences. According to the standard, all sentences begin with the talker ID, command type, and one or more parameters based on the command type. The modem uses talker identifier “CA” for acoustic communication functions, and “SN” for acoustic navigation. User to modem communication commands use the talker ID “CC”. The specifics of all documented commands are available in the WHOI Micromodem Software Interface guide.

Modem configuration is accomplished with CCCFG sentences in the following format:

$CCCFG,NNN,vv

where NNN is the parameter name, and vv is the new value. On success, the modem echoes the same sentence with the checksum attached.

A packet exchange begins with a cycle init command, CCCYC. The CCYC command takes the following form

$CCCYC,Command Type, SRC, DEST, Packet Type, ACK Request Bit, Number of Packets

The 401010C-SPEC shows the following figure to describe the payload of the Cycle Init mini packet:

The command type is either 0, 1, or 2 and specifies that the source unit transmit to all, to the DEST unit only, or to a group respectively. Additionally, command type 4 specifies that a group is transmitting to all, and type 5 is for active navigation. More information on command types is available in the software interface guide. In the current implementation, the number of packets per cycle is 1. Regardless of the intended destination, all modems in range will receive and process transmitted packets.

When a CCCYC command is received by the modem, it replies with a CACYC command in the same format. The SRC node in the following cycle will send a CADRQ to its user requesting data to transmit to the DEST. In PSK packets with multiple frames, each frame is addressed individually (i.e. It may be possible to have multiple intended destinations in a single packet). The user can provide data to the modem using the CCTXA or CCTXD for ASCII encoded data or hex encoded data respectively. Upon receipt of the transmitted data, the receiving modem forwards the received information to the user in a CARXD message. ACK packets are automatically generated when requested. If an ACK message is not received, the user must determine how long to wait and whether a retransmission is warranted.

Micromodem CommStack API

The CommStack API is designed to allow for easy development and testing of network protocols for use with the Micromodem. CommStack is developed using C++, and is based on the OSI layering model. At it's core, CommStack is a collection of utility classes that allow for building modular network layers that snap together into a working API. CommStack is still in the early stages of development, so many design decisions are still being made and many details are still unavailable.

The CommStack API will run on a Gumstix processor interfaced to the Micromodem DSP. Because the Micromodem uses NMEA sentences to communicate and generates multiple messages per communication, it is not easy for most applications to directly interface with the modem. The DSP on the Micromodem is utilized to capacity while coding and decoding messages, so it is not able to host an API like CommStack. Using the CommStack on a Gumstix processor, an application friendly interface between the Micromodem hardware and applications is formed.
Every layer in CommStack inherits from the CCommsLayer class. The CCommsLayer class provides basic layering functionality such as attaching to the layer above and below it and forwarding messages between adjacent layers. All communications between layers take place with CommMessages based on the CCommMsg class. CommMessages consist of a message name and a variable number of key/value pairs. By convention all messages received by a layer will be forwarded. The information in the message may be processed and expanded upon, but all of the original contents will be forwarded. This allows for communication between non-adjacent layers in the stack.

There are currently only four message types defined in the CommStack API.

· Quality
Contains quality of service information

· Telemetry
Contains data for transmission

· Config

Contains modem configuration data

· NewState
Contains modem state change information

The key/value pairs for the messages, with the exception of NewState, are not yet defined. These messages are defined for the Micromodem layer. Additional messages will be defined as needed for higher layers.

The lowest layer in the CommStackAPI is the Micromodem layer. This layer acts as a device driver for the modem, handling all direct communication with the modem itself. Modem information is transmitted to upper layers as a modem state packet. A NewState packet contains two key/value pairs, “ID” which contains an integer representation of the modem state and a “Name” which contains a string representation of the modem state. All possible modem state values are contained in the header file, “ModemState.h”. The MicroModem layer queues all incoming messages and sends them to the modem as soon as it is available. This allows for a send and forget interface for higher layers or an application attempting to configure the modem. When configuration is done, the Micromodem layer will notify higher layers via a NewState message.

Micromodem Limitations

Several limitation in the current Micromodem configuration have been identified. The modem was designed with point to point communications or a static preconfigured network in mind. As such, for two nodes or a network with a master node controlling communications, the Micromodem fulfills its purpose well. In an ad hoc sensor network or a network of autonomous mobile nodes, there are many deficiencies.

The limitations identified thus far are:

· No multiple access capability
· No carrier sensing capability

· No control over packet reception

· Firmware is closed source

· Proprietary modulation schemes

· 4 bit physical layer addresses

 In order to operate in a fully networked environment channel capacity must be shared between nodes. The best way to accomplish this task in an underwater environment is an ongoing area of research, however the Micromodem does not currently support any concurrent multiple access technique. This limits the user to some form of time division scheme.
The Micromodem also does not provide any mechanism for carrier sensing to determine if the channel is in use, which is a feature relied upon in many random access MAC protocols. Additionally, the Micromodem is unable to report an incoming packet for reception until after the cycle init packet is received which is more than 250 ms after the channel has become busy. Also, the Micromodem receives and decodes all packets regardless of the intended destination. This could prove to be an enormous waist of time and energy in a network of even moderate size.
The limitations discussed so far are compounded by the fact that the hardware schematics and firmware source are not published. Researchers attempting to use the Micromodem are prevented from addressing the limitations inherent in the current implementations. Changes to the modem firmware could alleviate the packet reception problem and the node address limitation. Simple hardware additions may be able to add some carrier sensing ability. The PSK coding is also closed source, meaning that simulation and analysis that could lead to important optimizations are impossible.
Benthos Modem
Information provided in this section comes from Teledyne Benthos documentation entitled Underwater Acoustic Communication and Modem-Based Navigation Aids by Dale Green.

The Benthos Telesonar modems are very similar to the WHOI Micromodem described in this document. The Benthos modem is also capable of operating in a FH-FSK mode that has a data rate (including error correction) of 80 bps. Like the Micromodem the Benthos modem follows a pseudo random hopping sequence. The Benthos modem, however, is able to acquire and process four separate FH-FSK signals at the same time.

The Benthos modem also includes an MFSK scheme which allows for up between 140 and 2400 bps data rates. The documentation provided us suggests that between 600 bps and 800 bps work sufficiently well in most environments. This modulation scheme works by sending multiple MFSK tones in different frequencies during the same symbol period. An example given in the Benthos documentation shows 32 separate M=4 MFSK tones being sent every 25 ms. For a slightly higher level of detail see page 3 of the above mentioned document.
The Benthos modem, like the Micromodem also offers a PSK mode, however, like the Micromodem special hardware is required to decode the packets. The Benthos documentation indicates data rates between 2500 bps and 10 kbps are possible with PSK coding.
Proposed MAC layers

The Micromodem firmware automatically tracks the state of the channel, and the MicroModem driver programmed for the CommStack API has a message queue built in. These features form the basis of a simple Aloha Half Duplex (Aloha-HD) MAC. If an upper layer transmits a TX message, the MicroModem layer will wait until the modem is in an idle state before transmitting the packet. The problem with this scheme has to do with the probability of collisions resulting from the long propagation delay inherit in the acoustic channel. Two nodes can attempt to begin transmission before the cycle init from one node reaches the other, and there is no way to detect collisions from the transmitter’s point of a view with the current hardware. Requesting ACKS for important transmissions is a simple way to make this scheme reliable. This is the recommended option for small low traffic networks. The implementation is almost trivial, as the modem automatically generates messages when its state changes from idle to receive. A potential problem elaborated on later is that the modem does not immediately report the state transmission from IDLE to RX. The modem will report the state change after the cycle init has been received which introduces a substantial delay in the propagation of channel information.
In contrast with other common random access MAC protocols, the Micromodem does not use a CTS/RTS handshaking scheme. Instead, the sender will transmit a Cycle init packet indicating that the sender will be using the channel to send a data packet. All nodes in range of the sender will then treat the channel as occupied until a data packet has been transmitted or PTO seconds have expired. Propagation delays and the hidden terminal problem can cause obvious problems in this scheme. Reliable robust transfers can be guaranteed via the use of Acks, which the Micromodem can generate automatically. Packets will not be automatically retransmitted however, so the sender must determine how long to wait for an Ack and what to do if the ack does not arrive.
Proposed Backoff Method:

To increase the probability of successful packet reception a simple slotted random backoff time is proposed. The timer will increase the robustness of the network by reducing the probability of collision and does not increase overhead by requiring synchronization or network configuration information. The hidden terminal problem is

The state transition diagram for the proposed MAC protocol is shown in Figure XXX. When a packet is received for transmit, a slot is chosen at random between 0 and CW-1. CW is called the contention window and is a network specific parameter that should be chosen based on the number of nodes. The length of each slot is also a network specific parameter, which should be based on the maximum distance between nodes. When the channel is perceived to be free, a timer is set to the chosen slot number multiplied by the slot length and begins counting down. If the channel is sensed to be busy, or the node begins receiving a packet, the MAC transitions to the appropriate state and the timer is stopped until the channel is again perceived to be idle. When the timer reaches zero, the MAC transitions to the TX state and the waiting packet is transmitted. When the transmission is finished, the MAC returns to the IDLE state.

Note that in the Micromodem, no carrier sensing is available, so the MAC will never transition into the “Channel Sensed Busy” state. This will dramatically increase the possibility of collision for larger networks, but will still provide an improvement over simple Aloha-HD. Also, as the propagation delay grows much larger than the slot size, the performance of this MAC will approach the performance of pure Aloha.

� EMBED Microsoft Excel 97-Tabelle ���

Figure XXX. Header detail

Figure XXX. Data Frame Structure

Figure XXX. Mini packet structure

Figure XXX. Cycle Init Structure from 401010C-SPEC

Figure XXX. Random Access MAC

� EMBED Visio.Drawing.11 ���

�This information is not accurate. More concrete message information will be available in the next couple of days.

_146617848.xls
Sheet1

		

				Table XXX. Packet frame size information

				Type		Modulation		bps		# Frames		Bytes/Frame		Total Bytes

				0		FSK		80		1		32		32

				1		PSK		250		3		32		96

				2		PSK		500		3		64		192

				3		PSK		1200		2		256		512

				4		PSK		1300		2		256		512

				5		PSK		5300		8		256		2048

&C&A

&CPage &P

_1249803222.vsd
IDLE

TX

RX

SENSE BUSY

RUN TIMER

Received Packet for TX

Channel sensed busy

Timer expires

Packet detected for RX

TX Finished

Channel sensed idle/No packet waiting

Packet detected for RX

RX Finished/Sensed busy

Packet detected for RX

RX Finished/No TX waiting

RX Finised/Sense Idle/TX Packet waiting

Sensed Idle/TX Waiting

Channel sensed busy

