
1

I. INTRODUCTION

NS2 is an open source network simulator that has
become very well used in researching terrestrial wireless
network protocols. Underwater Acoustic Networks is a
resaerch area of increasing activity. The adaption of
the NS2 simulator to underwater acoustic networking
may provide a low cost standard by which new un-
derwater protocols can be compared. Several modules
for underwater comms have been created with accurate
portrayal of the underwater channel as the main goal.
These modules work to allow a stable accurate platform
for MAC testing and devlopment.

The UAN module is composed of new channel, prop-
agation, phy, and MAC modules. There are two new
classes of channel modules, which correspond to the
two new styles of propagation model. There are also
two new Phy layers, a standard underwater PHY and a
PHY designed to approximate the WHOI Micromodem’s
[citation] implementation of FH-FSK. We have also
developed a simple random backoff MAC layer which
has been researched with the UAN module and compared
to a pure Aloha MAC which has also been included in
the UAN module. Each set of modules are described in
more detail in the following sections.

Detailed documentation on the code is available at
[??]. The UAN modules are designed to be minimally
invasive to the standard NS2 code. Currently, the only
modifications to the NS2 code base are in the mobile
node TCL file and the ns-defaults.tcl. A new UanNode
class is planned as future work, which will remove
the need for both modifications, however it is likely
that future MAC work will require the addition of new
packets which will require some standard modifications.

The UAN modules distribute responsibility differently
than standard NS2 wireless classes. Most notably, col-
lision handling is now handled in the Phy layer as
opposed to the MAC layer. This allows for simpler
MAC research and development and we feel that it more
closely models reality. Information on Packet delivery
is still reported the MAC layer in terms of Phy state
changes. Also, the Propagation layer is now attached
to the channel, and the channel performs initial SNR
calculations. The Phy layer, however, still can access
the Propagation layer through the channel in order to
perform the necessary SINR calculations to fulfill its
duty of collision management.

II. CHANNEL LAYERS

Two channel modules have been developed for UAN
simulation. The first is a basic multipurpose channel
that interfaces with the Phy and Propagation modules

to deliver packets with calculated SNR to other nodes
in the network. The second class is similar but is
specialized to improve runtime performance while using
the Uan/Propagation/BHP that runs Bellhop to get a
channel impulse response. The BHP propagation model
is described in detail in Section III-B.

A. Channel/Uan

The UAN Channel keeps a list of all nodes in the
network using an STL list. When a packet is passed down
from a Phy layer, the channel calculates the propagation
delay to all other nodes in the network and uses a link
to the used propagation model to calculate the SNR at
each of the receivers. The channel then schedules an NS2
event to deliver the packet to the receiver Phy layer at the
appropriate propagation time. Each packet is delivered to
every node in the network regardless of distance. This
is not considered to be a problem due to the relative
sparseness of most UANs, but if this adversely affects
runtime performance, it would be trivial to set a SNR
threshold or maximum transmission range to limit the
number of affected nodes. This channel can be used by
simply setting to “Channel/Uan”

B. Channel/Uan/Bhp

The BHP channel is subclassed from the above chan-
nel. It is slightly modified to work with the informa-
tion returned from Bellhop. Specifically, Bellhop will
calculate arrival information for multiple receivers at
different ranges and depths in a single execution. Using
this feature, the BHP Channel calls a method in the class
UanPropagationBhp that will run Bellhop (if necessary)
to find the path loss to all receivers from a transmitting
node.

III. PROPAGATION LAYERS

Propagation of acoustic waves underwater is very dif-
ferent from the propagation of RF in air. The difference
in propagation characteristics is the largest contributor
to a need for a separate simulation platform. To this end
we have created (or are planning to create) three basic
propagation layers.

All of the UAN propagation models developed so far
use the same noise calculations. The calculuations are are
based on [??]. The required paramters, wind, shipping,
and frequency, are bound to TCL variables and may be
set as Propagation/Uan/wind, and Propagation/Uan/ship.
The frequency value is available from the phy layer.

2

A. UanPropagationThorp

This layer has not been implemented yet, but will use
Thorp’s approximation to provide an estimate of pathloss
through water. Thorp’s approximation has received use
in many underwater network simulations to estimate
the performance of protocols. The approximation has
been shown to be poor at frequencies commonly used
in UANs, but it is still an attractive method due to its
computational simplicity.

It’s implementation is trivial.

B. UanPropagationBhp

UanPropagationBhp uses the Bellhop ray tracing code
available at [??]. Bellhop calculates the channel impulse
response given a set of environmental parameters. This
layer is designed to work with UanChannelBhp, however
its use is not required (Performance will be dramatically
worse when this layer is used with UanChannel).

A detailed description of how Bellhop works is far
beyond the scope of this document. We provide only
a quick description of how Bellhop is used to get a
channel impulse response, and then how we use that
impulse response to calculate the pathloss. Bellhop takes,
as an input, a set of envrionmental paramaters. These
paramaters include the Sound speed profile, propagation
frequency, and surface and bottom characteristics. The
environment file also includes the transmitter depth, a
set of receiver depths and a set of receiver ranges.
Bellhop then creates an arrival file that includes ray
arrivals, amplitudes, phase shifts, and delays to all of
the receiver range and depth pairs. The arrivals for a
receiver depth/range pair can be summed to find the
pathloss from the transmitter to the receiver. In all of
the simulations conducted thus far we have used the
thermocline soundspeed profile described in [??].

UanPropagationBhp writes a Bellhop environment file
with the thermocline soundspeed profile and a list of
receiver depths and ranges (provided by the UanChan-
nelBhp). UanPropagationBhp takes two paramters, the
symbol time,tsym, and the clear time,tclear. When
the channel or a Phy layer calls UanPropagationBhp to
find the received SNR at a node, UanPropagationBhp
sums all arivals that arrive in the interval tsym be-
ginning with the first arrival as shown in figure 1.
Any arrivals that arrive betweentsym + tclear and
2tsym + tclear are considered interference and added
to the caluclated noise. Noise calculations are performed
in the same way as above.tsym and tclear can be set
via TCL using Propagation/Uan/Bhp/tsym and Propaga-
tion/Uan/Bhp/tclear respectively.

Fig. 1. Window method for determining signal strength and ISI

The transmission loss, TL, is calculated

TL =
∑

i

τprop≤τdi≤τprop+tsym

|ai|e
2πfτdi

The received power is thenPr = Ptx−PL wherePtx is
the transmit power in dB (Ptx is set in the simulator by
editting the variable Phy/Uan/txpower). And the received
SNR (including ISI) is calculated

SNR =
Pr

N + Pisi

For τprop, the propagation delay from the source to the
receiver,ai, the amplitude of the ith multipath arrival as
found by Bellhop andτdi, the delay of the ith arrival.

UanPropagationBhp will check the set of arrivals in
memory when it is called from UanChannelBhp. If there
has been no movement of the transmitting node or
the receiving nodes to within predefined tolerances, the
previous data will be used. This is a valid approach as
Bellhop is a deterministic algorithm. Separate tolerances
for frequency, receiver depth, transmitter depth, and
range are available. Their corresponding TCL names are
available at [??]

C. UanPropagationBhf

This section is left for future work. Building on the
deterministic model of Bellhop, we will create a cached
list of arrivals at varying ranges and frequencies and use
these to calculate the arrivals at a specific point. This
will create a huge increase in performance. Calculation
of SNR will be identical to UanPropagationBhp.

IV. PHY LAYERS

We have created two Phy layers for the UAN NS2
simulater, UanPhy and UanPhyBhpFsk. The former is a
generic Phy layer, and the latter is a derivation that has
been designed to closely mimic the FH-FSK implemen-
tation found in the WHOI Micromodem [??].

3

The UAN classes depart slightly from standard NS2
Wireless code. In the UAN modules, the Phy layer is
responsible for deciding when a packet is decodable
and when collisions have taken place. Communication
with the MAC layer is handled through state transitions.
Currently, these states include TX, RX, and IDLE.
Additionally, for carrier sensing applications, dummy
transitions are made to CSBUSY and CSIDLE. The Phy
layer does not remain in these states, however, when the
MAC receives a transition to CSBUSY it knows that
energy sensed on the channel is above the CS Threshold
and a transition to CSIDLE means that the energy on the
channel is no longer above the CS threshold. The Phy
layer will transition to one of these states whenever the
aggregate SNR on the channel rises above the threshold
set in the TCL variable Phy/Uan/csthresh.

A. UanPhy

The UanPhy class is a simple Phy layer designed to
be a generic platform for MAC layer testing.

In the UanPhy class collision decisions are function
of SINR and overlap time. Both of these parameters
are accessible from TCL scripts as Phy/Uan/coltime and
Phy/Uan/rxthresh. The coltime parameter specifies how
long a packet must be below the rxthresh before it is
considered lost, and the rxthresh specifies the necessary
SINR in dB for acquisition and successful reception.

The SINR is calculated as

SINR = 20log(
Pr∑

i Pi + N
)

Where Pr is the received power,Pi is the power of
an interfering packet at the receiver andN is the noise
power. Calculation of SINR uses links to the propagation
layer to find the noise and receive power.

B. UanPhyBhpFsk

The UanPhyBhpFsk layer is designed to work with the
UanPropagationBhp (Described in section III-B). layer
to mimic the FH-FSK modulation scheme employed in
the WHOI Micromodem [??].

V. MAC L AYERS

VI. RESULTS

