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Abstract—We address several inter-related aspects of underwa-
ter network design within the context of a cross-layer approach.
We first highlight the impact of key characteristics of the acoustic
propagation medium on the choice of link layer parameters; in
turn, the consequences of these choices on design of a suitable
MAC protocol and its performance are investigated.

Specifically, the paper makes contributions on the following
fronts: a) Based on accepted acoustic channel models, the point-
to-point (link) capacity is numerically calculated, quantifying
sensitivities to factors such as the sound speed profile, power
spectral density of the (colored) additive background noise and
the impact of boundary (surface) conditions for the acoustic
channel; b) It provides an analysis of the Micromodem-like link-
layer based on FH-FSK modulation; and finally c) it undertakes
performance evaluation of a simple MAC protocol based on
ALOHA with Random Backoff, that is shown to be particularly
suitable for small underwater networks.

Index Terms—Underwater acoustic communications, Informa-
tion rate, Access protocols.

I. I NTRODUCTION

Networked observatories comprised of fixed and mobile
underwater (UW) nodes are being conceived and increasingly
deployed for many different environmental monitoring sce-
narios. Of particular significance is the role of monitoring
the physical, chemical and biological properties of the ocean
system as a critical component of the overall grand challenge
problem of climate prediction.

Broadly speaking, there exists a great need forcontinual,
real timemonitoring of the ocean’s properties based on dense
spatio-temporal sampling. Since as much as 90% of the ocean
volume is unexplored, severalregionalundersea observatories
have been recently deployed in partial amelioration of this
deficit. One example (pertinent to the Pacific NorthWest) is
the NEPTUNE project [1] that consists of an initial cabled
sea-bed infrastructure primarily intended for monitoringof
sea-floor events. It is expected that this will expand in time
to include vertical moored profilers as well as underwater
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autonomous vehicles (UAVs). Another semi-autonomous net-
work - PLUSNET - consisting of fixed bottom and mobile
sensors is oriented toward surveillance applications suchas
tracking ships and submarines operating in shallow water
environments typical of the Western Pacific [2].

Real-time observation of the ocean requires reliable acoustic
communication between both fixed and mobile underwater
nodes. The objective of this paper is to provide an integrated
system design approach to such UW acoustic networks, by
highlighting the interplay between the acoustic medium andits
consequent impact on design choices at the link and multiple
access (MAC) layers; see [3] for a recent review of UW
network design issues.

Fundamental to UW network performance analysis is the
choice of suitable acoustic channel models - a research areaof
considerable sophistication that has yielded detailed, numerical
computation-intensive models for the received acoustic field
as a function of the propagation environment. However, our
cross-layer approach necessitates a balance between model
accuracy and computational complexity, as the latter largely
determines the feasibility of simulation-based network-level
performance analysis. Accordingly, in our work we have opted
for simpler models that nonetheless capture the important
gross features of the acoustic medium; the intent is to provide
sensitivity analysis as a function of the key environmental
parameters. Pushing the cross-layer agenda inherently induces
such compromises, whereby the loss of accuracy in channel
modeling is hopefully compensated by the enhanced insights
made available into link and MAC layer design choices.

The insights from the link level analysis coupled with the in-
tended network scenarios and consideration of various system
constraints leads to design choice of a simple MAC protocol
based on ALOHA with random backoff. Evaluation of the
MAC performance is conducted using the freeware simulation
environment ns-2, that quantifies the improvement in channel
utilization relative to pure ALOHA. We note that the link-
optimized MAC layer proposed here has been implemented in
the micro-modem, and will be undergoing sea trials in the near
future. Aside from the US Navy Seaweb project1, our work is
one of few open-source, field validated implementations of an
underwater network.

1The Seaweb project seeks to enable undersea sensor networks, au-
tonomous/unmanned underwater vehicle (AUV/UUV) communication and
navigation, and submarine communications at speed and depth (CSD). Using
an aggressive experimental program based on a proprietary version of the
Benthos ATM family of modems, Seaweb seeks to determine quality of service
(QoS) trade-offs of underwater networks in terms of reliability, availability,
throughput, area coverage, security, and latency.
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A. UW Network Engineering Challenges

As the demands on underwater data communication rates
increase, so does the need for understanding thelimits of
transport of the acoustic medium. Traditionally, the Shannon
capacity (or maximum achievable rate with arbitrarily low
error probability) of any channel perturbed by additive Gaus-
sian noise (AGN) has served as the benchmark for point-to-
point communications. Nonetheless, there have been only a
few recent attempts to compute and characterize such link
capacities over underwater AGN channels. Part of this is
attributable to the fact that channel modeling for undersea
acoustics is still an ongoing art due to its many additional
complexities as compared to terrestrial scenarios.

By way of an example, the boundary conditions for a
shallow body of water, i.e. the surface and bottom profiles,
exert considerable impact via energy loss and scattering of
acoustic waves, and thus on the link capacity. In terrestrial
communications, typical propagation models between two
fixed nodes such as the two-ray model provide a relation for
signal power attenuation as a function of transmitter - receiver
separation that isindependent of frequency. Therefore, given
a pair of nodes communicating through an additive white
Gaussian noise (AWGN) channel at some fixed transmit power
and bandwidth, the capacity is only a function of distance.
However, in underwater communications, both the attenuation
and noise are known to be strong functions of frequency.
See for example, the recent computations in [4], [5] that
explicitly recognize the frequency selective nature of acoustic
attenuation and noise.

Additionally, acoustic propagation is characterized by the
sound speed profile, which can vary greatly even in shallow
water. The sound speed profile can show great variability at
different times of year and under different weather conditions.
Typical non-uniform sound speeds with respect to water depth
cause a ‘bending’ of acoustic pressure waves.

We will show that the channel sound speed profile and
boundary characteristics play a large role in determining the
capacity between a source and receiver pair. Additionally,two
different receivers at the same distance from a transmitterhave
very diverse capacities depending on their vertical location
relative to the transmitter and the sound speed profile. In our
work, we undertake an analysis of such parametric sensitivities
of the channel capacity to highlight the unique features of UW
networks.

We also conduct a link performance analysis of the Woods
Hole Oceanographic Institution’s (WHOI) Micromodem [6].
The primary reason for doing so is that the Micromodem
remains the only acoustic modem available to the community
at large as a platform for research and integration into UW net-
works. While there exist other commercially available modems
(notably by Teledyne Benthos) and there are ongoing effortsto
develop new software defined acoustic modems, none of them
offer the support and flexibility of the WHOI Micromodem2.

2A Communication stack application programming interface (API) for
the Micromodem was developed at the University of Washington’s Applied
Physics Laboratory for this purpose, i.e. for implementingthe MAC layer
described in this work.

We next incorporate the results of our link layer analysis
into a proposed MAC protocol that is suited to channels with
long propagation delays. Our design philosophy is driven by
pragmatism and seeks to avoid the complexities of network
timing synchronization while pursuing enhanced channel uti-
lization; this implies the need for simple collision avoidance
mechanisms, leading to the choice of ALOHA with a random
back-off. The value of our work in this regard is two-fold:
i) The proposed simple MAC protocol is consistent with
existing UW acoustic modem hardware, such as the WHOI
Micromodem and can be readily implemented for field eval-
uations. It can also be used with little or no modification
in other modems such as the one currently being developed
by Teledyne Benthos that will include both the WHOI and
Benthos link layers. ii) In terms of MAC performance analysis
(conducted with the popular freeware network simulator ns-2),
a suitable abstraction is used for link losses within the protocol
simulation. To the best of our knowledge, this represents one
of the first cross-layer attempts for UW network evaluation
within an open-source simulation environment.

The rest of the paper is organized as follows. Section
II gives an overview of Bellhop and its use to model the
underwater acoustic channel. Section II also includes analysis
for underwater channel capacity using a frequency selective
AGN model for three channels exhibiting varying sound speed
profiles. Section III performs a link analysis for an FH-FSK
modem using a Bellhop channel model. Section IV proposes
a MAC protocol for a network of underwater communications
nodes using the Woods Hole Micromodem. The protocol is
analyzed under one of the same Bellhop Channel profiles given
in Section II. Section V concludes the paper.

II. POINT-TO-POINT L INK CAPACITY

A. Acoustic Modeling Using Bellhop

In modeling underwater acoustic propagation for acoustic
telemetry, we are interested in methods that achieve a good
balance between accuracy in representation of the key features
with acceptable run times. In the realm of high frequency
acoustic modeling, numerical approaches based on Gaussian
ray tracing provide such a compromise. We adopt Bellhop
(developed by M. Porter) for our work; descriptions of the
method and the code can be found at [7] and [8], respectively.
Bellhop’s Gaussian ray tracing generates a complex channel
impulse response for any user defined input channel condi-
tions, that can be used for subsequent link layer performance
analysis.

The relevant environmental conditions that influence the
channel impulse response include the channel depth, sound
speed profile (SSP), surface and bottom conditions, and the
frequency bands in use. The SSP influences the propagation
of acoustic rays by ’bending’ them according to Snell’s law.
Interface conditions and the frequency of transmission both
influence losses of acoustic energy. Although conservationof
energy holds, energy in the form of acoustic pressure within
the medium is lost due to two processes: 1) transmission out
of the water medium and into the sediment at the bottom
interface and 2) frequency dependent dissipation as heat. We
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model both the top and bottom surfaces as homogeneous liquid
halfspaces. Under this assumption, losses of acoustical energy
occur based on the transmission and reflection coefficients.
When rays are incident with the bottom surface, the fractionof
the ray’s energy transmitted into the soil is determined by the
specific acoustical properties of the bottom material as well as
the grazing angle of the incident ray. Bellhop allows the user
to enter the acoustical properties of the bottom surface in order
to model this loss. Additionally, acoustic energy is dissipated
as heat due to frequency selective Thorp attenuation, givenas

A(d, f) = d · 10 log(a(f)) (1)

10 log(a(f)) = 0.1
f2

1 + f2
+ 40

f2

4100 + f2
(2)

where 10 log(a(f)) is Thorp Attenuation, given in dB per
kiloyard. A(d, f) is the absorption loss in dB for a ray at
frequencyf , in kHz, which travelsd kiloyards.

Scattering at rough interfaces represents the loss of beam
coherency. The Rayleigh parameter,R, given in [9] asR =
2kH sin(α) can be used to roughly determine if a ray is
reflected coherently (R ≪ 1) or is scattered (R ≫ 1) based
on the wavenumber (k), the RMS surface displacement (H),
and the grazing angle (α). A simple model for analyzing
surface scattering is based on the coherent beam losses. Urick
[9] defines the amplitude reflection coefficient as the ratio
of coherent reflected amplitude to the incident amplitude
u = e−R. We determine the RMS wave height in meters,
H , assuming a Pierson-Moskowitz model for the sea state as
H = 5.33×10−3w2 wherew is the wind speed in meters per
second [10]. We use this simple model to represent losses at
the sea surface due to roughness.

B. Link Capacity

The received bandpass signal in an underwater acoustic
channel may be generally written as

r(t) =

L
∑

l=1

Re[hl(t)e
(j2πfc(t−τl))x(t − τl)] + n(t) (3)

which represents the superposition ofL copies of the trans-
mitted lowpass (narrowband) signalx(t) modulated at carrier
frequencyfc arriving at the receiver, with respective delays
τ1, ..., τL. The valuesh1(t), ..., hl(t) are the complex gains
introduced by the channel. Without loss of generality, we
assume that the first arrival occurs at delayτ1 = 0. If
the symbol period is less than the maximum delayτl, then
the channel is frequency selective, leading to inter-symbol
interference (ISI). On the other hand, if the symbol period is
significantly greater thanτl, there is no ISI, and the received
signal becomes:

r(t) = Re[α(t)x(t)e(j2πfct)] + n(t)

α(t) =

L
∑

l=1

hl(t)e
−j2πfcτl

(4)

Due to low symbol rates, we assume that Eq. (4) models the
received signal. However, despite the lack of ISI, we note

that acoustic attenuation and ambient sea noise characteristics
induce significant frequency dependence.

In order to compute the channel capacity we make the
following assumptions. We assume that the channel impulse
response is constant over the period of observation. We also
assume that the ambient noise term,n(t) is additive colored
Gaussian with a p.s.d determined by the various components
(wind, thermal, turbulence, and shipping) given in [11]. Under
these assumptions, we can compute the channel capacity
by the usual approach: the signal bandwidth is divided into
sufficiently narrow (ie. frequency non-selective), equi-spaced
frequency bins, and the net transmit powerP is allocated
among the bins via ‘water filling’. The capacity of each bin is
then computed and summed to obtain the aggregate capacity.
The bins are sufficiently small such that the channel impulse
response, frequency selective attenuation, and noise can be
assumed to be constant across the bin. For this to be true, the
bandwidth of each bin must be the smaller of1/τl or 100
Hz. The first requirement ensures that the symbol period is
larger than the delay spread of the channel while the second
ensures that the frequency selective attenuation and noisecan
be assumed constant across the frequency bin. Under these
assumptions, the received signal in then-th bin is given as:

rn(t) = Re[αn

√

Pnx(t)e(j2πfnt)] + nn(t)

αn(t) =

L
∑

l=1

Re[hn,l(t)e
−j2πfnτl ]

(5)

wherefn is the center frequency of then-th bin andPn is the
corresponding power allocation.

The channel capacity is therefore given by [12]:

C(f) =
∑

max Pn:
∑

Pn≤P

B log2(1 +
|αn|

2Pn

NnB
) b/s (6)

whereαn is given in Eq. (5),Nn is the noise power spectral
density (p.s.d.) for then-th bin, andB is the bin bandwidth.
We determine the noise p.s.d. from its various components
given by Coates [11], which, in the frequency bands useful
for underwater communications, are highly dependent on wind
speed and shipping activity.

We now apply the capacity calculations defined above to
several different underwater channels. We show the capacity
under different bottom conditions, wind speeds, and SSPs. We
assume that the bottom is composed of ‘silty clay’ unless
otherwise mentioned, the acoustical properties of which can
be found in [13]. We use a channel bandwidth of 22 - 26
kHz, and transmit power of 190 dB re 1 uPa. Additionally,
on all plots we include the capacity of the channel based on
uniform spreading and Thorp attenuation as a reference for
comparison. We do this by calculating the value of|αn|

2 in
(6) as:

10 log(|αn|
2) = k · 10 log(d · 103) + d · 10 log(a(fn)) (7)

10 log(a(fn)) = 0.1
f2

n

1 + f2
n

+ 40
f2

n

4100 + f2
n

(8)

The value fn is the center frequency of binn, k is the
spreading coefficient, andd is the distance in kiloyards. Bins



4

Fig. 1. Sound Speed Profiles studied for the capacity calculations in Section
III

are separated by 100 Hz. We usek = 1.5 for the spreading
coefficient as was done in [4] to represent a compromise
between spherical and cylindrical spreading.

C. Link Capacity Results

We examine channels exhibiting three distinct sound speed
profiles. The first exhibits a warm mixed layer at the surface
with high sound speeds, then a thermocline where the sound
speed drops drastically. The second exhibits a downward
refracting sound speed profile, and the third exhibits an upward
refracting sound speed profile. These three profiles are shown
from left to right in Fig. 1. These SSPs were measured in
the Mediterranean Sea in September, in June in Griffin Bay
near the San Juan Islands, and in February in the Bering Sea
respectively.

Figs. 2 - 5 give capacity calculations for different source and
receiver locations within these different SSPs under varying
surface and bottom conditions. We can see from these figures
that the specific channel variabilities significantly impact the
channel capacity. We can compare Figs. 2(a) and 3 to see
the influence of bottom type. Bottom losses due to ‘medium
sand’ are less than those due to ‘silty clay’, and we see this
effect clearly in the estimated capacity. From Fig. 2 when the
source and receiver are both located either above or below
the thermocline, the capacity is greater than when they are
on opposite sides. Additionally, surface losses due to wind
impact the source and receiver above the thermocline much
more than the source and receiver below the thermocline. Fig.
5 shows that surface losses due to increased wind noise play
a significant role at all source and receiver locations when
the SSP is upward refracting. While these results conform
to general intuition, they provide numerical estimates of the
impact of these important channel parameters vis-a-vis Thorp
attenuation and uniform spreading and provide guidance for
node placements in an underwater network.
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Fig. 2. Capacity for SSP 1 in Fig. 1 with a ’silty clay’ bottom and wind
speed of 2.5 m/s (a) and 10m/s (b).
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Fig. 3. Capacity for SSP 1 in Fig. 1 with a ’medium sand’ bottomand wind
speed of 2.5 m/s.

III. L INK PERFORMANCE INACOUSTIC CHANNELS:
FREQUENCYHOPPED-FREQUENCY SHIFT KEYING

(FH-FSK)

Achieving rates close to capacity on the underwater commu-
nications channel continues to be a challenge. For example,in
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Fig. 4. Capacity for SSP 2 in Fig. 1 with a ’silty clay’ bottom and wind
speed of 2.5 m/s (a) and 10m/s (b).

our capacity calculations, we neglected any ISI and assumed
that the receiver captures all of the transmitted signal power.
Since underwater channels typically exhibit significant delay
spreads, this is unlikely to be the case. Hence, limitations
in terms of processing speed and energy considerations on
current underwater platforms strongly impact the state-of-
art in UW modem speeds. UW modems today typically use
spectrally inefficient coding and modulation schemes, thereby
trading off rate with robustness to channel impairments.

We now turn our attention to link performance of an FH-
FSK modem such as the Micromodem [14] [6]. We assume
that the modem transmits at a channel rate of 80 bits per sec-
ond utilizing binary FH-FSK with 13 hopping bins as shown
in Fig. 6. The modulator and demodulator hop through these
bins in a pre-determined pattern and perform non-coherent
binary FSK in each bin. The inter-bin frequency separation
is 160 Hz, with 2 frequencies at each bin; therefore the total
system bandwidth is approximately 4 kHz. The transmitter
and receiver spend 12.5 ms in each bin before hopping to
the next one, so a complete cycle time is 150 ms that equals
the ‘clearing’ time on any single narrowband channel. Since
the bins are presumed orthogonal, inter-symbol interference is
mitigated for channels with delay spreads less than the above
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Fig. 5. Capacity for SSP 3 in Fig. 1 with a ’silty clay’ bottom and wind
speed of 2.5 m/s (a) and 10m/s (b).

Fig. 6. Hopping Pattern for Binary FH-FSK

channel clearing time.
We now assume a slowly, time varying channel (see Eq. (3))

represented as a discrete tap delay line with taps at intervals
of the symbol period. The complex gain of them-th tap is:

αm =
∑

l

hl(t)e
(−j2πfcτl) l s.t. mTs ≤ τl < (m + 1)Ts

(9)
whereTs is the symbol period andhl andτl are the gain and
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delay of the unresolvable arrivals within them-th interval.
Note that in the following derivation, the channel attenuation
and noise p.s.d are assumed constant across any bin. Thek-th
sample of the received lowpass signal is therefore

rk =

M
∑

m=1

αmxk−m + nk (10)

where xk is the transmitted symbol sequence andnk is a
sample of additive Gaussian noise.

It is well-known [15] that the probability of error for non-
coherent binary FSK in an ISI-free fading channel can be
derived by averaging the probability of the signal to noise
ratio (SNR),γb = |α|2Eb/N0, over the probability of error in
AWGN whereEb is the energy per bit, and the noise power
spectral density isN0/2:

P2 =

∫ ∞

0

Pe(γb)Pγb
(γb)dγb (11)

Therefore, the probability of error is dictated by the the
distribution of γb. If we assume that the amplitude of the
arrivals is Rayleigh distributed, thenPγb

(γb) = 1
γ̄b

e(−γb/γ̄b)

where γ̄b = E[|a|2]Eb/N0 and E[ ] denotes expected value.
The well known result for binary FSK is:

P2(γ̄b) =
1

2 + γ̄b
(12)

To include the effect of ISI indicated by Eq. (10), we use
the expected value of the signal to multipath ratio (SMR) as
opposed to the SNR in Eq. (12). The expected value of the
SMR, assuming that the tap gains are independent, is given as

γ̄bm =
E[|α0|

2]Eb

(N0 +
∑

n E[|αDn|2]Eb)
(13)

where the second term in the denominator of Eq. (13) is the
ISI energy during the sampling interval, modeled as equivalent
Gaussian noise. The index for the ISI is at intervals ofD, the
number of hops in the hopping pattern. As mentioned earlier,
in an FH system there is a channel clearing time that eliminates
some of the ISI; therefore only the multipath arrivals that arrive
at the receiver in delay intervals corresponding to an integer
multiple of the clearing timeDTs are considered as potential
interference.

Siderius et al show in [16] that assuming a Rayleigh
distribution with SMR as the received amplitude metric closely
matches experimental data. Since we are interested in using
a suitable physical layer model to drive the probability of
error in a MAC layer simulator, we next adapt the received
signal power to include the interference, i.e. arrivals from
neighboring nodes that collide in both time and frequency with
the desired signal. We also model these arrivals as additive
noise, giving the (final) average SINR as

γ̄bi =
E[|α0|

2]Eb

N0 +
∑

n E[|α(Dn)|2]Eb +
∑

i E[|di|2]Eb
(14)

where the final term in the denominator is the interference
power fromi interferers with corresponding path gainsdi. The
above equation indicates the need to determine the average

path gains for the channels, typically called the power delay
profile. We again use a Bellhop model to accomplish this
for a given channel, by perturbing the SSP by a sequence
of i.i.d. zero mean Gaussian random variables (one at each
depth where the SSP is defined). For each SSP, we compute
the squared magnitude of each tap from the channel impulse
response given by Bellhop using Eq. (9), and then average to
determineE[|αm|2] for each tap.

Using this method, we computed the power delay profile for
channels at two depths for SSP 1 in Fig. 1 with a ’medium
sand’ bottom and wind speed of 0 m/s. Fig. 7(a) represents
a source and receiver both at 70m depth separated by 3
km. In (b), the source is at 70 m depth and the receiver at
10 m depth, again separated by 3 km. In these figures, we
assume that our receiver will acquire timing based on the
largest impulse response component, which was aligned to
be the fourth tap. We see that the channel is much more
favorable when the source and receiver are each below the
thermocline, as the channel is dominated by a large coherent
arrival. When the receiver is above the thermocline, the power
delay profile indicates that the channel is ISI dominated. An
analysis in [16] using experimental data to perturb the SSP
gives similar results. Clearly, these two channel power delay
profiles will lead to very different modem link performance.In
the following section we will explore how, in turn,this affects
MAC design.

In determining the final probability of error, we also include
the effect of a raterc = 1

2 convolutional code of constraint
length 9 with soft decision Viterbi decoding as well as a CRC
that corrects up to one bit error. The final probability of error
is

Pp(γ̄bi) = 1−((1−Pb(γ̄bi))
288+

(

288

1

)

Pb(γ̄bi)(1−Pb(γ̄bi))
287)

(15)
wherePb(γ̄bi) is the probability of error at the output of the
the Viterbi decoder which can be determined by equations
in [15]. We use the packet error rate computed above as the
abstraction for the physical layer (ie. if a packet is received
correctly/incorrectly over the channel with SINR̄γbi) in our
MAC simulations in the next section.

IV. MAC PRINCIPLES FORUNDERWATER NETWORKS

We now apply the above packet level abstraction of the
link layer to MAC design and simulation analysis. It has
been well documented that the underwater channel conditions,
especially the long propagation delay, are detrimental to the
performance of traditional MAC techniques. It is importantto
consider constraints imposed by the link layer hardware on the
available choices for MAC design. For example, researchers
using commercial off the shelf(COTS) acoustic modems rarely
have access to modem firmware that is necessary to implement
their custom designed protocols. As such, many previously
proposed protocols are somewhat academic in nature, as
they make assumptions on PHY layer abilities that are not
necessarily tenable with COTS equipment. For example, the
MAC protocols of [17] and [18] use handshaking schemes
(RTS/CTS) prior to a data transmission. The Micromodem in
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(a)

(b)

Fig. 7. Expected magnitude for two different tap delay line channels. We use
SSP1 of Fig. 1 with a ’medium sand’ bottom type and the distance between
source and receiver is 3 km. In (a) both source and receiver are below the
thermocline. In (b) the source is below the thermocline and the receiver is
above.

FH-FSK mode only allows two packet sizes: 21 bits and 32
bytes. If the desired control information cannot be contained in
21 bits then the control packet size itself must be 32 bytes (im-
plying a significant additional 3.2 second transmission delay
at 80 bits/sec and consequent poor channel utilization). Other
protocols, such as [19] require node placement informationand
precise power control. On typical platforms power control may
not be available, and, if node positions are not known, accurate
underwater localization continues to be a difficult problem.

With the above in mind, we propose a simple ALOHA based
scheme with random backoff which makes use of only the
simplest link state information. We believe this protocol to
be applicable to a wide range of networks implemented on
virtually any modem hardware. Previous literature has found
that ALOHA based protocols are a good candidate for sparse
low data rate networks [20]; the addition of the random backoff
mechanism will further assist these networks to cope with
(short-term) heavy load bursts such as in a monitoring network
employed for event detection. In this case, although long term
average load is low, when an event occurs, network load
closely approximates saturation conditions.

We next provide the specifics of our proposed MAC proto-

col, then describe its interactions with the Micromodem FH-
FSK link layer.

A. ALOHA With Random Backoff

A state diagram of our proposed MAC protocol is shown
in Fig. 8. For backoff purposes, each node uses the parameter,
CW , the contention window size. When a packet is received
for transmission, the node randomly chooses a starting slot
value between0 andCW −1. The time duration of each slot,
σ, is an implementation specific parameter which should be
long enough to assess channel state information3. The node
then sets a timer accordingly and begins counting down; the
timer will pause whenever the channel is assessed to be busy.
When the timer reaches 0, the node transmits.

The above requires nodes to assess the channel state
(busy/idle) continually at each slot boundary. However,
many platforms, including the WHOI Micromodem, are not
equipped with a separate carrier sense capability. Therefore,
each node pauses its timer whenever a packet is acquired for
reception at any node. In the case of the Micromodem, all
acquired packets are received in their entirety which effectively
results in a form of clear channel assessment or carrier sensing.
However it is not robust, as evidenced by the case in which an
interfering transmission arrives at some timeτ after a packet
has been acquired and is being received. The later arrival
will not be acquired regardless of its SINR, and (assuming
equal packet lengths) there will be a periodτ after the first
arrival has been received in its entirety that the channel will
be erroneously assessed to be idle.

Our MAC is defined by the two parametersσ and CW .
The slot duration,σ, must be long enough to assess channel
state information. In the micromodem this equals the delay
in reporting a matched filter detection. We will tuneCW
(as a multiple of slot durations) for optimal MAC throughput
and verify these dependencies through simulation for selected
network environments.

B. ns2 Implementation

We have developed new MAC, PHY, and propagation
models in the popular freeware network simulator, ns-2.
Documentation and the code is available at [21]. For each
node pair in the network, we develop a power delay profile
(PDP) for the specific environmental conditions and geometry
using the technique in Section III. This information is usedto
calculate the SINR at the receiver which in turn specifies the
packet error rate for that FH-FSK link; this provides the link
layer abstraction in ns-2 for determining whether a transmitted
packet is successfully received or lost.

To account for interference on the frequency hopping link
layer, we consider signal power components that overlap in
time with the reference symbol on a given frequency. For
instance, a packet with only one significant arrival in its power
delay profile will only interfere if it arrives at the receiver
in an interval [mTs, (m + 1)Ts) before/after the reference

3The backoff time is discretized into slots in order to account for hardware
timing constraints and to simplify implementation.
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Fig. 8. State transition graph for ALOHA with Random Backoff

packet, whereTs is the symbol period. Calculation of the
SINR follows from Eq. (14) and finally packets are dropped
according to Eq. (15) using the minimum received SINR over
the packet duration. This is in contrast to the usual ‘collision’
assumption whereby all packets are conservatively assumedto
be lost if there isany overlap in time.

C. Simulation of ALOHA with Random Backoff MAC

For the following simulations, we place a receiving node
in the geographic center of the simulation area and randomly
deploy traffic generating nodes in a square region around the
receiver. We assume a constant packet transmission delay of
3.2 s and use a slot length of 0.2 s. All throughput estimates
are based on averaging of 7 simulation runs (each lasting 30
minutes); approximately 500 packets are transmitted in each
run, achieving desired confidence levels. We report normalized
throughput by dividing the measured throughput by the link
capacity of1/3.2 packets per second.

In the next set of simulations, the environment SSP 1 shown
in Fig. 1 is used with all nodes at 70 meters depth. This
deployment is representative of the channel impulse response
in the upper panel shown in Fig. 7. In the final simulation we
will show the effect that deploying a single node above the
thermocline can cause.

Example 1: Saturated TrafficFirst, simulations are con-
ducted with saturated traffic in order to find the optimum value
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Fig. 9. Throughput vsCW for 10, 15, and 20 nodes with saturated traffic
and deployed in a 500m x 500m region using the FH PHY.
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Fig. 10. Throughput vs network offered load for a) 10, 15, and20 nodes
in a 500m x 500m region with Poisson traffic and the ALOHA with random
backoff MAC and b) 15 nodes in 500m x 500m region with Poisson traffic
and Pure ALOHA.

of CW for 10, 15, and 20 node networks where the nodes are
uniformly placed in a square region measuring 500m x 500m.
The results are given in Fig. 9. We will use these results to
tune theCW parameter for further simulations.

Example 2: Poisson TrafficWe now present simulation
results for 10, 15, and 20 node networks deployed in a 500m
x 500m region with Poisson traffic arrivals.CW is set to
the value corresponding to peak throughput found in Fig. 9.
Specifically we setCW = 48, CW = 76, andCW = 107
for 10, 15, and 20 nodes respectively. Throughput versus
normalized network offered load results are shown in Fig. 10.
These results show that the maximum achievable throughput
is not dependent on the number of nodes as long asCW is
tuned correctly.

Overlaid with the results of our ALOHA with random back-
off are simulations carried out with the pure ALOHA protocol.
It is important to note that the maximum throughput achieved
with the pure ALOHA protocol exceeds the1/(2e) theoretical
maximum. This is due to the ‘collision’ model adopted in
the simulations that allows the possibility ofcapture of the
stronger packet when two packets overlap. The simulation
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Fig. 11. Percent TX power wasted vs offered load for a) 10, 15,and 20
nodes in 500m x 500m region with Poisson traffic and ALOHA withrandom
backoff and b) Pure ALOHA for 15 nodes in a 500m x 500m region with
Poisson traffic.

results nonetheless show that the random backoff mechanism
still greatly outperforms the pure ALOHA protocol.

The power expended in underwater sensor networks under
moderate to heavy load is generally dominated by the transmit
power which is orders of magnitude higher than the power
expended in receive or idle modes. As an example, the Mi-
cromodem consumes 10W while transmitting and only 80 mW
while idle or in receive mode [14]. Given these characteristics,
a significant measurement of the energy efficiency of our
protocol is the percentage of transmit power wasted in collision
which we show vs. the normalized network offered load in Fig.
11. These results show that our protocol offers a significant
improvement in energy efficiency over pure ALOHA.

To determine the effect of network size on the achievable
throughput we ran simulations of 15 nodes in square regions
with dimension measuring 200m, 500m, and 1km. The optimal
value of CW was found via simulation (using the same
method as above) to be 42, 76, and 100 for 200m, 500m, and
1km respectively forσ = 0.2 s. The throughput vs. offered
load is shown in Fig. 12. As should be expected, the attainable
throughput is adversely affected by increased network size.

D. Sensitivity Analysis

In the previous simulation examples, we assumed precise
knowledge of the number of nodes and the network area
for tuning of theCW parameter. We now present results of
simulations where knowledge of network parameters - number
of nodes and network size is mismatched with the true values.

If the number of network nodes is incorrectly estimated
and CW incorrectly tuned, then the network throughput at
heavy loads is negatively impacted relative to that in Fig. 9.
To confirm this, we ran simulations of varying numbers of
nodes randomly deployed in a 500m x 500m area withCW
tuned for a 15 node network. The results for the correctly tuned
network and those for the mismatched network are presented
in Fig. 13. We found that withCW tuned forn = 15 nodes
(CW = 76), throughput at an offered load of 2.5 was within
10% of the maximum for6 < n < 24.
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Fig. 12. Throughput vs network offered load for 15 nodes withPoisson traffic
a) deployed in 200m x 200m, 500m x 500m, and 1000m x 1000m regions
using ALOHA with random backoff and b)500m x 500m region using Pure
ALOHA
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Fig. 13. Throughput vs network offered load for 6, 15, and 24 node networks
with saturated traffic and deployed in a 500m by 500m region with CW tuned
for 15 nodes

Error in estimating network dimension (or equivalently,
maximum propagation delay) will also result in mismatched
CW . Fig. 14 shows results of a 15 node network with param-
eters tuned for 500m x 500m deployment where the actual
deployments are 200m x 200m and 1km x 1km, respectively.
Compared with Fig. 12 with perfect knowledge for 200m x
200m and 1km x 1km network size, the results illustrate that
mismatches lead to approximately 4.8% and 2.5% degradation
in optimum throughput, respectively. This robustness in MAC
protocol design suggests that on-line adaptation to network
deployment size is feasible.

E. Environmental Effects

We have shown through simulation that the MAC perfor-
mance is dependent on the underlying PHY. We have also
shown in previous sections the impact of environmental condi-
tions and source and receiver location on link capacity and link
performance for the FH-FSK modem. We will now present
simulation results that show how node placement within
the channel also affects MAC performance and tuning via
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Fig. 15. Throughput vsCW for 15 nodes saturated with data in a star
topology with radius to central receiver of 1.5km and a) receiver at depth
70m and b) receiver at depth 10m.

increased probability of collision. In our previous simulations
we placed all nodes, transmitters and receiver, at a depth of
70m in SSP 1. We now compare results of two simulations, the
first with the receiver still placed at 70m depth and the second
with the receiver placed above the thermocline at 10m depth.
In both simulations transmitting nodes will still be placedat
a depth of 70m. 15 nodes will be arranged in a star topology
with each transmitting node at a range of 1.5km from the
central receiver. The results of our simulations are shown in
Fig. 15.

As indicated by Fig. 7, the power delay profile has many
more significant arrivals when the receiving node is above the
thermocline. This adds both ISI in a single user’s transmission,
and also increases the chance for interference. This is reflected
in the MAC layer by an increased probability of data loss for
colliding packets. The end result is reduced optimal throughput
and a larger optimal value ofCW for the case with the
receiver above the thermocline. This clearly shows that MAC
optimization in an underwater network is highly dependent
upon the specific channel conditions which stem from the
environmental effects of the channel.

V. CONCLUSION

In this paper, we investigated the influence of environmental
conditions and network geometry on several different layers
of underwater acoustic communications systems. The capacity
computations and FH-FSK link performance show that acous-
tic conditions and node locations have considerable impacton
the maximum achievable bit rate. We then show how acoustic
propagation geometry and link level losses affect MAC layer
design and tuning for performance optimization.

Our MAC analysis shows that networks using the WHOI
Micromodem can increase throughput over pure ALOHA
by implementing a backoff rule assuming knowledge of the
expected number of contending nodes and the maximum
propagation delay. Sensitivity analysis suggests that this is a
robust approach; exploring techniques for making this protocol
adaptive to network load and channel conditions is left as
future work. Despite MAC improvements to a WHOI Mi-
cromodem, the achievable rate with current technology is a
small fraction of the theoretical channel capacity. This points
to the need for continued enhancements to cross layer design
approaches that jointly optimize both the link and MAC to
achieve the potential of the acoustic channel.
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