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Abstract

In network tomography, we seek to infer the status of paramdsuch as delay) for links inside
a network throughend-to-endorobing between (external) boundary nodes along predéatechroutes.
In this work, we apply concepts from compressed sensing ébwark topologies that are expanders,
to the delay estimation problem. We first show that a relatinggority of network topologies araot
expanders for the existing error bounds. Motivated by this, relax this bound leading to evidence
that for 30% more networks, the link delays can be estimaféel.provide simulation performance
analysis of delay estimation based Gnminimization, showing that accurate estimation is feasiol

an increasing proportion of networks.

Index Terms

Network Tomography, Delay Estimation, Compressed Sen&irgander Graphg; minimization

. INTRODUCTION

Monitoring of link properties (delay, loss rates, etc.) etworks continues to be an integral
requirement within any network management framework as gamonitoring its utilization
and performance. The need for accurate and fast monitodhgnses has escalated in recent
years due to the increasing popularity of new resourcetguirgy services (such as video-
conferencing, Voice over IP, and online games) that requuiaity-of-service (QoS) guarantees
[2]. The primary objective of this paper is to demonstratevltmmpressed sensing ideas may

be applied to derive a fast delay monitoring algorithm thatperforms other schemes.

Authors are with the Department of Electrical Engineeribfgiversity of Washington, Seattle, WA, 98195 USA. e-mail:
{firooz,sroy} @u.washington.edu
A preliminary version of our results appears in [1]. This sigsion is distinct due to the fuller discussion &f & 1)-

identifiability, a thorough set of simulation experimerasd including the proofs of theorems.
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The termnetwork tomographwas used in [3] to encompass a class of approaches that seek to
infer the internal link status from end-to-end measures\@fit [5], [6]. A useful classification

of network tomography methods for our purposes is as follpfjs

« Cooperative Internal Nodes: This method assumes that internal nodes on probe routes
respond tocontrol packets. For example, active tools such as a ping or a trae,ro
measure and report attributes of the round-trip path fronerader to the internal node
based on probe packets [8]. Beside complexity, the chadlemd such methods arise from
the fact that service providers do not own the entire netwhak is being probed and hence
do not have access to the desired internal nodes for apptepronfiguration [9], [10].

« End-to-End: In networks with a definedboundary it is assumed that access is available
to (all) nodes at the edge (but not to any in the interior). Aifary node sends probes to
all (or a subset of) other boundary nodes to measure padkisiugts on the path between
network end points. These edge-based methods do not rexygin@nging control messages
with any interior nodes. The primary challenge confrontswgh end-to-end probe-based
link status estimation is that of identifiability, as dissad below [11], [12], [2].

As the networks evolve toward more decentralized, unc@per and heterogeneous ad-
ministrative (sub)domains, the availability of cooperatinterior nodes is increasingly limited.
Hence, end-to-end network diagnostic tools attract irgngpattention. In end-to-end network
tomography, probes are sent between boundary nodgsealeterminedoutes; typically, these
are usually the shortest paths between the nodes basedstimgxouting protocols.

For parameters such as delay, an additive linear model atldguepresents the relationship

between a measured path and an individual link delay [13f], [de.,
y = Rx, 1)

wherex is then x 1 (unknown) vector of the individual link mean delay. Thex n binary
matrix R is the routing matrix for the network graph correspondingthie paths chosen for
the probes (note: each row of the matrix correspond to a patidy < R” is the measured
r-vector of end-to-end path delays. Although the focus of gaper is link delay, our approach
readily applies to any other link attributes (suchlag of packet loss rate), allowing such a
linear relationship with end-to-end measurements.

Link delay estimators based on Eq. (1) can be classified &snsil
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1) Deterministic: The delays are considered unknown but constant. Becaesknthdelay
is typically time varying, such approaches are suitablepkniods of local “stationarity”
where such an assumption is valid.

2) Stochastic The delay vector is specified by a suitable a-priori parametric probability
distribution; the method then estimates the unknown patemmef the model. For exam-
ple, [15], [13], [14], [16] assumed that link delay followsGaussian or an exponential

distribution.

Both modeling approaches have their pro’s and con’s. Stichanodels are usually more
computationally intensive than deterministic ones [17]tlaesy suffer from overmodeling (too
many parameters for the data). Moreover, in many scenasius,s typically interested in only
thefewlinks that are congested (i.e., suffer excessive link del2gterministic models are better
suited to exploit this (side) information; our method faNghin this class.

In Eq. (1), usually, the number of observations much less than the number of variables
(i.,e.,r < n) because the number of accessible boundary nodes is mudlerstinan the number
of links inside the network. Thus, the number of variable€m (1) to be estimated is much
larger than the number of equations [16], leading to the gem®nuniqueness of solutions to
Eq. (1), i.e., the inability to uniquely determine link dglfL5] from end-to-end measurements.
However, the problem of identifying only the (few) links Wwitarge delays (a.k.a congested
links!) suggests the possibility of improved mechanisms to sdigeunder-determined system
in Eq. (1), provided that theparsityof the desired solution can be exploited. In other words,
we are interested in solutions with only a few - uptok large entries. If the other entries
are small, we refer to such vector aearly k-sparse and if they are exactly zero we call it
exactlyk-sparse Clearly, if vectorx is exactlyk-sparse, it is also nearly-sparse. For the sake
of simplicity, we use the termsearly k-sparseand k-sparseinterchangeably in the sequel. A
network is calledk-identifiable if for everyexactlyk-sparse delay vectax, Eqg. (1) is uniquely
solvable.

Compressed sensing has been proposed recently for netaworgtaphy [18], [18], [19],
[20] as part of methods that vary significantly in their urgieg assumptions and utility for

practical networking scenarios. Authors in [18] used cagsped sensing to estimate link delays
A congested link is one with a significantly elevated delaynpared to the rest of the links in the network.
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of the unobserved links on an end-to-end path when measatadisi available on a subset of
links. Xu et. al. [19] applied compressed sensing by perfiogra standard random walk over
a sufficientlyconnected graph to take measurements. However, this isrianga with typical
network scenarios where the measurement matrix (i.e.ingputatrix) is already given. Besides,
most networks are not sufficiently connected [21], [22].Histwork we assume that the routing
path between any pair of boundary nodes is predeterminadiydy shortest path algorithm—
without any constraint on the underlying network topology.

This work applies the concepts expander grapho the network tomography problem along
with compressive sensing based link delay estimation [3]], [25], [26]. This is achieved
by fundamentally relating the network routing matrix to aditite graph. If the bipartite graph
is an expander graphthen one can ush minimization to solve Eq. (1), that has polynomial
complexity inn, independent of: [27]. We derive the proposed delay estimation algorithm for
network topologies that are expanders for the dasel initially largely for illustrative purposes.

The remainder of the paper then focusses on the geheral case.

A. Contributions and Organization

Our specific contributions are as follows: we first estaldistovel connection between network
delay tomography and binary compressed sensing via themofiexpander graphs. Next, for
1-identifiable networks, we relax the existing result fopamsion frome < 1/6 to ¢ < 1/4
(Lemma 1). Further, we extend our result for expander grdaphsclude networks that are
union of sub-graphs which are themselves expanders in &re@r We then provide simulation
results to show that in generat (> 1), a large proportion of networks (more than 60%) do
not satisfy the conditions for being an expander. Hence, weveleréw results that broaden the
set of potential expanders at the cost of accepting a bigger eargin in reconstruction for
the generalk case (Theorem 3). We derive estimation error boundsi/;faninimization link
delays that are validated by simulation results. Our sitrartieevidence shows that the proposed
delay estimator achieves predicted accuracy for a largetitm of networks, compared to the
state-of-the-art in the literature [28], [29].

The rest of the paper is organized as follows: Section Itesléhe routing matrix of a network
to bipartite graphs. Section Il establishes a connectetween link delay estimation and binary

compressed sensing and identifies conditions on the netwatlkhg matrix under which a given
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network isk-identifiable. We evaluate our findings using simulationsSection IV. The paper
concludes with reflections on possible future works in ®ect. In the Appendix we provide
proof of the theorems.

Notations We use bold capitals (e.®) to represent matrices and bold lowercase symbols
(e.g.x) for vectors. Thei-th entry of a vectorx is denoted byr;. For the matrixR, NV (R)
denotes its null space, and superscfitenotes its transpose. A set is denoted by a normal
capitals (e.gV) and a set of sets is presented by calligraphic capitaligetbsl|, e.g.R which
is the set of all end-to-end paths in the netwolR | is the cardinality (number of elements) in
the set. An empty set is denoted bydeg(v) indicates degree of the nodein a graph, defined
as number of nodes it is connected to.

For any setS C {1,2,3,...n}, S° represents the complement. Also, for any vector R",
vectorxg € R™ has entries defined as follows:

(2)

(xS)i =
0 0.W.

If x € R", thel,-norm of x is defined as follows:

N
| x |l,= (in’) - 3)
=1
II. ROUTING MATRIX AND BIPARTITE GRAPH

As is customary, a network consisting of bidirectional rdonnecting transmitters, switches,
and receivers can be modeled as an undirected grafli £), where V' (FE) is the set of
vertices (edges). Throughout this manuscript, boundades@re depicted as solid circles, while
intermediate nodes are presented using dashed circless®vaaiwork depicted in Figure 1 to
illustrate the subsequent definitions.

In this section, we show that the routing matrix of any netwoan be represented asha
adjacency matrof a suitably definedipartite graph. This will help connect the problem of

network identifiability withexpander graphsa special subset of bipartite graphs.

Definition 1. A bipartite graph is one whose vertices can be divided into tigjoint sets,X

and Y, so that every edge connects a vertexXirto one inY [30].

2Each path is itself set of nodes and edges of the network.
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Fig. 1. A network with 4 boundary nodes, 2 intermediate ncatas 5 links

A bipartite graph is usually represented as a trigleX, Y, H), where H C X x Y is a set
with paired elements fronX andY. The vertex sets{ andY are the left and right sides of the
graph, respectively. A bipartite gragh(.X, Y, H) can be represented by ité-adjacencymatrix
A = [a;;], whereq;; = 1 if nodei € Y is connected to nod¢ € X, and is zero otherwise,

i.e.,
1 (j,i)e H
0 - (7,9) € | @
0 (j,i)¢g H
A = ay).

Note that in the definition of the bi-adjacency matAx rows of A correspond td”, which
is the right-hand side of the graph; columnsAfcorrespond taX, which is the left-hand side
of the graph. This convention is used throughout the paper.

Assume that a given network (V, E') has a total ofn links (i.e.,n = |E

), and R is the
(given) set of paths between the boundary nodes of the netarat» = |R|. Let R,.,,, denote
the routing matrix, where there exists an isomorphism betwae sefR and the corresponding
routing matrixR.. For example, for the 1-identifiable netwdik Figure 1, suppose the following

routing matrix is given:

Lol s g s

Py :ng ~ ng (1011 0]

R= P :n~ns 01101 (5)
Pyimi~ns |1 1000/
Py ng ~ ng 00 0 1 1

3A network with no degree-two nodes is known to be 1-identiéiab
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Fig. 2. Bipartite graph corresponding to given routing rixatn Eq. (5)

which is equivalent to the following set of patiis

R = {l1l3l47 l2l3l57 l1l27 l4l5}' (6)

R, can be viewed as a bi-adjacency matrix of a bipartite g@pk, Y, H), whereX = FE
(set of links in the network) and” = R (set of given paths in the network). There exists a
connection between a node i and a node irY” if a path inR includes the corresponding link
in E. Figure 2 presents the bipartite graph for the network irufggl with the routing matrix
R in Eq. (5).

Note that the above routing matrix, or its equivalent set athp, is not a complete set of
routes for the network in Figure 1 (e.g., it does not include path fromn; to ng, which is
l3l514). However, it is a fundamental premise in network tomogyagtat the routing matrix is
already chosen and may not be changed. Hence, we initiadlly t&einvestigate the following
guestion: Assuming that the routing matrix is given, wheit {gossible to identify or estimate

link delays?

IIl. EXPANDER GRAPHS AND NETWORK IDENTIFIABILITY

In recent years, a new approa€lempressed Senskigr estimating am-dimensional (signal)
vectorx from a lower-dimensional representation has attractedhnatiention [26], [31], [25].
For any signalkx < R”, the reduced dimension representation is equay te Ax, where
m X n matrix A (m << n) is referred to as theneasurement matrixrhe main challenge in
traditional compressed sensing is to constrctvith the following desirable (and conflicting)
properties: (a) achieve maximum possible compressigm(small) and yet allow (b) an accurate

reconstruction ofk from y whenx is known to be sparse using (c) a fast decoding algorithm
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[32], [33], [34], [35]. For example, wher is a binary matrix,n = O(k log7) suffices when
x is nearlyk-sparse.

As discussed above, the routing matrix of a network is thesueament matrix for delay
tomography application, and in most scenarios it is predeteed. The main issue, therefore, is
to determine whether it is aappropriate measurement matrix for compressed sensing, i.e., if
it satisfies objective (b) above. In the simulation sectwwn, show that the existing conditions
for the measurement matriXd, do not apply to most of the routing matrices. Motivated by
this observation, we aim to revisit these conditions and ifgddem so that they become more
suitable to the network tomography problem. Then, we usaliprogram (LP) optimization to
solve Eq. (1).

A. Expander Graphs

Definition 2. A bipartite graphG(X,Y, H) with a left degreel (i.e., deg(v) =d Vv € X) is a
(¢,d, €) — expander if for any & C X with |®| < ¢, the following condition holds:

IN(@)| = (1 —€)d|2], (7)

where N(®) is a set of neighbors ob 4. ¢ and ¢ are the "expansion factor” and the "error

parameter,” respectively.

Roughly speaking, in an expander graph, the degree of ctwitgdor a collection of nodes
(with cardinality of up to¢) on the left-hand sideX) expands by that factor on the right-
hand side Y') [36]. Expander graphs are well-studied; authors in [338][ [39] show how to
construct a(¢, d, €) — expander graph. In a key result, Berinde and Indyk in [40], [27] show
that the bi-adjacency matrix of @¢, d, €) — expander graph can be used as the measurement
matrix for a¢-sparse signal, for < %

The parametetr in an expander graph is a design variable that is relateddovesy error.
The existing results require < 1/6, which, as we will show, does not apply to most of the
networks . In a network tomography problem, the measuremetrtix is pre-determined, so we
need to enlarge the bound eras high as possible to increase the likelihood that it leadsnt

identifiable network.
“Neighbors of® are nodes which are connected to at least one of the nodés in
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The bipartite graph given in Figure 2 coordinates with theldntifiable network in Figure
1 with the routing matrix in Eq. (5). It is easy to see that thipartite graph is an expander
for e = 1/4. Motivated by this example, we relax the existing result fo£ 1/6 to e < 1/4.
In the simulation results (Section IV-B), we show that the¢axation increases the number of
k-identifiable networks that satisfy the expansion propénty30%. In other words, for more
than 30% ofk-identifiable networks, we have/6 < ¢ < 1/4. For networks that satisfy the
expansion property, LP optimization can be used to solveadhmgraphy problem.

The analytical results are first derived for 1-identifiabt#works because it is easier to give
intuitive explanation. Then we generalized the resulttdentifiable networks with arbitrary.
In Section IV, we present simulation results to indicatet the proposed algorithm to recover

a nearlyk > 1-sparse vectors provides an acceptable estimation error.

B. 1-ldentifiability

The following lemma provides an upper bound on the error obveringx from its lower-
dimensional projectio’Ax when A is a bi-adjacency matrix of &, d, ¢)-expander graph and
e <1/4.

lemma 1. Let A be a bi-adjacency matrix of €2, d, ¢)-expander graph witl < 1/4. Consider

any two vectorsx andx’, with the same projection under the measurement marike., Ax =

Ax’'. Assume that is 1-sparse. Further, without loss of generality, suppdse ff x’ ||;<|| x [|1.
Let S be the set of the largest (in magnitude) elementsg.ofhen,
| x"—x [[i< f(e) [l xse |1, (8)
where
2(1+ 2¢) 1
=7 <.
flo =52 €< ©)

Proof: See Appendix.
The results from the previous lemma show that under someittamgl the link delay in a

network may be estimated as the unique solution to Eq. (19.féhowing theorem relates the
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problem of delay estimation in a network(V, E) to results on expander graphs with< 1/4

and shows that Eq. (1) can be solved fousing LP optimization.

Theorem 1. Let N(V, E) be a network with a set of path® and a corresponding routing
matrix R. Suppose that7(E, R, H) is a bipartite graph with bi-adjacency matriR. Assume
that x is the true (unknown) delay vector of(V, E) andy = Rx is the (given) end-to-end

delay measurement. L&t be a solution to the following LP optimization:

min || X" [|; (10)
s.t.
Rx =y.
Then
Ix =" [[1< f(e) [ xse [|1, (11)

if G is a(2,d,e)-expander withe < 1.

Proof: See Appendix.

If the routing matrixR is a bi-adjacency matrix of &, d, ¢)-expander graphe(< 1/4), then
the equationy = Rx has a unique solution for nearly 1-sparse delay vegt@nd it can be
found using the LP optimization in Eg. (10). In the simulati@sults we will show that almost
70% of the networks are expanders witk 1/4. In other words, for 70% of the networks the
delay vector can be estimated using the LP optimization.

Note that if the true delay vectaris exactly 1-sparse (which almost never happens in practice
because links always have nonzero delay), it implies|thad. ||;= 0, which means that’ = x;
i.e., [;-norm minimization in Eq. (10) can recoverwith zero estimation error. In other words,
if the delay of all links in the network is zero except for maytine link, the delay of that link
can be exactly recovered from the end-to-end delay measmterdowever, if the true delay
vector contains links with small but nonzero delays (the emidtely scenario), the estimation
error is not zero and the above theorem yields an upper bound.

One of the conditions for expander graphsdisegularity on the left-hand side. However,
there exists some networkd(V, E), which arel-identifiable, but their corresponding bipartite

graphs are nod-regular. Hence, the result of Theorem 1 does not apply. Amgte of such a
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(@) (b)

Fig. 3. A l-identifiable network whose corresponding bipargraph is not regular on the left side: (a) Network topglgh)

Corresponding bipartite graph

(D@

X @)

(O F)
(@) (b)

Fig. 4. Two subgraphs of the bipartite graph in Figure 3-bolhare regular on their left side

network is depicted in Figure 3-(a) with the following rawgi matrix:

bl By by Is lg |
Pl:nlwm 1 1.0 0 1 0O

R — (12)
Pg:nlwng 1 01 0 0 1
szngwng _0 0 0 1 1 1_

The above routing matrix is a bi-adjacency matrix of the Hipmgraph presented in Figure
3-(b). This bipartite graph is not regular in the left sidedese the degree of a node in the left
set is either 1 or 2; hence, it cannot be an expander. Howengnes 4-(a) and (b), respectively,
represent subgraphs 6f with regular left degree 1 and 2; these subgraphs are expgnajehs.
The above observation convinces us that the result in Thedras extendable for networks

whose corresponding bipartite graph is not regular (anbesefore not an expander) but can be
partitioned into subgraphs that are expander graphs.
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Theorem 2. Let N(V, E) be a network with routing matriR. Let G(X,Y, H) be a bipartite
graph with bi-adjacency matriR. Suppose thaG;(X;,Y, H;), i = 1,2,...M, are d;-regular
bipartite subgraphs of7 such that

e X=UX;and X;NX; =0 fori+#j

« H=UH,

o diF#djfori#j

Then,N(V, E) is 1-identifiable ifG; is a (2, d;, €)-expander graph with < 1,i=1,2,..., M.
Further, the link delay is the solution to LP optimizationkigj. (10).

Proof: See Appendix.

For future reference, we refer to the conditions in Theoreums 2-identifiability expansion
conditions If the network N (V, E) satisfies these conditions, we refer to it as thidentifiable
expander network

Note that the 1-identifiable expansion conditions in Theo& imply the following for any
link pair ; and;:

. They belong to differenty;’s and hence have different degregs# d,.

« They belong to the same subgra@h i.e.,d; = d;. In that case, becaugg; is a bipartite

graph, they satisfy the expansion property in Eq. (7).

We state this observation formally in the following corojla

Corollary 1. Let N(V, E') be a network with the routing matriR and a set of path$R. Let
G(E, R, H) be its corresponding bipartite graph with the bi-adjacemegtrix R. Then, one and
only one of the following statements is true for any two lihkand /; in E, i # j:

o deg(l;) > deg(ly)

o deg(l;) < deg(ly)

o deg(l;) + deg(l;) — 4deg(l;,1;) > 0

wheredeg(l;, ;) is defined as the number of nodes connected to hathd/; in the bipartite
graphG(E, R, H)>.
proof: See Appendix.

®It can also denote the number of paths going through botls inland; in the networkN(V, E) with the routing matrix
R.
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C. k-identifiability
In this subsection, we extend our results to gengralentifiable networks that is defined as

follows:

Definition 3. A k-identifiable expandeN (V| E') is a network whose routing matrR is the bi-
adjacency matrix of a bipartite grapfi(.X, Y, H) consisting ofi;-regular subgraph&:(X;, Y, H;)
with the following properties

e X =UX;and X; N X; =0 fori#j

« H=UH,

o d;F#djfori#j

« G(X;,Y, H,) is a (2k, d;, e)-expander withe <

The following theorem gives the expected estimation errbem/1 optimization is used to

recover links delay in &-identifiable network.

Theorem 3. Let N(V, E) be ak-identifiable expander network with a set of patRsand a
corresponding routing matriR. Assume thak is the true (unknown) delay vector of(V, E)

andy = Rx are the end-to-end delay measurements.st’dbe a solution to the following LP

optimization:
min || x" || (13)
s.t.
Rx' =y
Then
Bl = 1] < SOy % (14

Proof: See Appendix.
First note that Eq. (14) reduces to Eq. (11) fo= 1. Second, for most well-designed wired
network, we have: < |R| (number of congested links is much less than number of erhdo

paths in the network) and hence we have:

Ell x =x" [h] < f(€) I xse 1 - (15)
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IV. EVALUATION RESULTS

In Section Ill, Theorem 3, we showed that if the routing matrfi a network is the bi-adjacency
matrix of the union of disjoint expander graphs, that netwisr k-identifiable. Moreover, we
can estimate internal link delay using an LP optimizer in 8@). However, a legitimate 'big-
picture’ question arises: How many networks actually $atthe conditions of Theorem 2;
i.e., how many are:-identifiable expanders? In this section, we generate ranihbernet-type
networks to study this question. Our simulation resultsasti@at our relaxation increases number
of networks which satisfy expansion property by almost 30%.

For those networks that ark-identifiable expander—i.e., their routing matrix satsfile
condition in Definition 3—we determine the average nornealiestimation error when there is
k congested link in the network and show that the average ri@@daestimation error remains
within an acceptable range. Next, we compare our algorithith & recently developed delay

tomography algorithm and show that the proposed algoritfetdy a lower estimation error.

A. Generation of Networks with Random Topology

We use Inet version 3.0 [41], [42]- an Internet topology gatwe software (at ASlevel)—
to generate random graphs with the given power law and a fixedber of boundary nodes
’. We create networks containing 5000 nodes with 5, 8, 10, 62,ahd 20 boundary nodes,
respectively. The output of Inet, which contains the setedfhbors of each node in the generated
graph, is fed to matgraph toolbox in MATLAB [43] for modificah. We first create a routing
matrix containing the shortest paths between any boundaaig pairs in the network. Then we
delete all nodes and links that do not contribute to any ofaheve paths, since if a link is
not covered by any end-to-end path, it is not identifiablee Tdmaining networks constitute our

random set. In Figure 5, six examples of random networks apécted.

B. Networks and Expansion Property

For the routing matrices of these random networks, we firgtreme how many of them satisfy

the k-identifiability expansion conditions in Definition 3. Fdre network with a fixed number

6Autonomous System.

"Boundary nodes are nodes with degree one which act as oegtiints for probes in our problem.
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(d) (€) (f)

Fig. 5. Output of Inet after our modification in MATLAB with Y& (b) 8 (c) 10 (d) 12 (e) 16 (f) 20 boundary nodes. Nodes

with degree 1 represents injection nodes

of boundary nodes, fifty different topologies are createabld@ | shows the percentage of them
that satisfy thet-identifiability expansion property fok = 1,2, 3.

To show the impact of our relaxation efin Lemma 1 and Theorem 3, in Table I, we also
provide the percentage of networks that @rédentifiable, usinge < 1/6. As one can see,
by moving the bound omr from 1/6 to 1/4, the number of networks satisfying the expansion
property increases by almost 30%. In other words, 30%-afentifiable networks are within
1/6 < e<1/4.

C. Delay Estimation: Simulation Experiments

Theorem 3 says that if the routing matrix of a network sassfiadentifiable expander
conditions, then link delays in the network can be estimatsiig Eq. (13). To examine the
accuracy of the proposed delay estimation method, for eatlvank created in Section IV-A,

we calculate the average normalized estimation error folirkds as follows. % reference links
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TABLE |
FOR NETWORKS WITH FIXED NUMBER OF BOUNDARY NODESCOMPARING THE PERCENTAGE OF WHICH ARE
K-IDENTIFIABLE EXPANDERS FORk = 1,2, 3 WITH € < % AND € < %

5 8 10 12 16 20
p o1 e< % 80% | 82% | 76% | 72% | 74% | 72%
e< % 38% | 52% | 42% | 40% | 32% | 30%
Lo e< % 0% | 60% | 62% | 56% | 50% | 50%
e< % 0% | 0% | 30% | 20% | 24% | 22%

-3 e<: | 0% | 0% | 0% | 56% | 50% | 46%
e< % 0% | 0% | 0% | 0% | 0% | 22%

are selected and assigned a delayl@ims to denote congestiok,= 1,2, 3. All other links in
the network are assumed to experience i.i.d exponentigtyilolited delays with average i.e.,
1

A(t) = Eexp(—%) vieE, (16)

where f,(t) is the delay for linkl and € [0,1] to denote that these links do not undergo
congestion.

We exploit the proposed LP optimization in (10) to estimat& delays. For the network, the
normalized estimation error for each congested link ingidenetwork is calculated as follows:

norm. err = 1 X=Xz (17)
| [|2
wherex andx are the true and estimated delay vectors respectively.

Figure 6 presents the average normalized estimation efnenwhere aré congested links
inside the network fok = 1,2,3 and LP optimization Eq. (10) is used to estimate the delay. As
expected, the average normalized estimation error foerifft . (vectorx is nearly k-sparse)
mimics the expected trend from Eq. (14). An interesting okst@n in in Figure 6 is the fact
that for £ > 1, the average normalized estimation error has a decreasing &nd for large
networks, it is almost the same asfin= 1 case. The reason is that, as one can infer from Table
I, the probability of being a:-identifiable expander is higher for large networks than alkm
ones fork = 2,3. This is acceptable because for small networks, with a fembuer of links,

probability of having more than one congested link is negley
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Fig. 6. Average normalized estimation error in networkss$ging conditions given in Theorem 2 when there &rdeficient
link within the network for different average delayin Eq. (16).

D. Delay Estimation: Cumulative Distribution Function

In this section, we compare our results with those produgethé CF-estimator, one of the
recent and novel delay estimators proposed in [28]. We deothie cumulative probability of the
normalized estimation error using both methods and showth®eproposed method provides
less probability of error.

Let x be the actual delay of the links axdbe the output of the delay estimator. We aim to

calculate the following CDF:

<9). (18)

Figure 7 presents the CDF of the normalized estimation estoen there areé: congested
links inside the network fok = 1,2,3 and¢ € [0, .5]. For each CDF, 200 random netwdtkse
generated and for each generated network, link delays aignasl as we describe in Section
IV-C. As one can see, the proposed algorithm outperform£thalgorithm due to the fact that
it uses sparsity information.

As one can see the proposed algorithm outperforms CF digoriThe reason is that it uses
sparsity as its side information. It is worth mentioning iagiat to provide QoS in a network,

either it is for multimedia streaming, gaming or any othee lapplication, links with high delays

8.,e{0,.1,.2,1}.
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Fig. 7. Cumulative distribution function of estimation@rfor (a} = 1 (b)k = 2 (c)k = 3. The proposed algorithm outperforms
CF method.

are more important. Hence tlie minimization given in Eq. (13) focus on finding thelinks

with the highest delays and it results in a better estimation

V. CONCLUSION

In this manuscript, we investigate the application of exjgrgraphs and compressed sensing
to network tomography. As shown in the paper by examples mndlation evidence, the current
results on expander graphs do not apply to most of the neswétknce, we modify some of
the results to be more suitable for the delay estimation IpmebWe show that the number
of Internet-topology-based networks satisfying new cbods is increased by 30%. For those
networks, we compare delay estimation based on compreessthg (proposed algorithm) with
one of the state-of-the-art delay estimation algorithmshim literature. The simulation results
show that compressed sensing provides better estimatenl|dss estimation error.

Most of the network parameters such as link delay are, in famt-negative numbers, and by
using this information, it would be better to estimate linksatuses. There are some works in
the literature to recover non-negative signals [23], ane ohour future works is to apply these

theories to delay estimation.
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APPENDIX A
PROOFS OFTHEOREMS
Lemmal:

We first proof the following lemma which characterizes thdl space of bi-adjacency matrix

of an expander graph and will be used to bound the error ingib@very ofx from its compressed
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projectiony.

lemma 2. Let G(V1, V4, E) be a(2,d, ¢)-expander withe < 1/4 and A,,,, be its bi-adjacency
matrix. Assumew lies in the null space oA (i.e., Aw = 0) and let.S be any singleton set of

coordinates of thew, i.e., S = {i}, i € {1,...,n}. Then

. (19)

Iws [li< 2€ || we

Proof:
Let A’ be the submatrix ofA containing rows fromN(.S). Since|S| = 1 and graph is left

d-regular,

A'wg |1=|| Aws ||i=d || ws |1. We have

O=|A'w|; = ||A'ws+A'ws | (20)
> | Alws [l — || A'wse [
— | ws [l — || A'wse ||y -

Each set of two nodes in the left part has at leq43$t— ¢)d neighbor nodes on the right side
(expansion definition). Since each node at the left has de§jraumber of common nodes on
the right hand sidé€ is at most2d — 2(1 — €)d = 2ed. That means each column &f (except

the one corresponding t8) has at mosRed number of "1”s, yielding,
| A'wge [[1< 2¢ed || wee ||y - (22)

Therefore

0>d| ws | —2ed || wse

1, (22)

which means
| ws [[1< 2¢ || wse |1 - (23)

°Nodes on the right which are connected to both nodes on thédefd side.
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The above argument is valid @ is a (2, d, ¢)-expander graph. We now show that it implies
e < 1/4. let & be a set of any two nodes on the left hand side of (thel, ¢)-graph. By the
definition of expander graphs we have:

N(®) > 2(1 — €)d. (24)

If the two nodes in® are connected to exactly the same nodes on the right handtkate is

no way to distinguish between them. In other words, if the hwdes are connected to the same

nodes on the right hand side, the bi-adjacency makriis rank deficient. To avoid thaf we

need N (®) to be strictly greater thad, i.e., N(®) > d + 1. That mean2(1 — ¢)d must be at

leastd + 1. Hence, we have the following upper bound ©on
e < E

2

For an upper bound that is independentdofwe find the infimum of right hand side and

(25)

chooser to satisfy that case. Clearly we have
d—1

d:iZ%fA... 2 i’ (26)
implying thate < 1%,
U
Now, let vectorw be in null space ofA, i.e.,w € N'(A). Using Eq. (8) we have:
[ws i < 2| wse |y (27)

[ ws [[1 +2¢ || ws |1 < 2€ || wse [|1 +2€ || ws |1
2¢
14 2¢

lws [l < w |y -

10and also to satisfy the concept of expansion,

“Note that we exclude case df= 1, since each bipartite graph which is left 1-regular an¢b) > 2 is an expander graph.
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Now, lety = x' — x. Clearlyy € N'(A) and we have:

Ixl = x|k (28)

= [ x4+y)slh+ I x+y)se [l

= || xs+ys |+ xsc +¥se |lx

> [[xsli—lyslh+1lyse i =[] xse |1

1+ Iyl =21 ys
4e
1+ 2¢

= lxll =21 xse

v

Il =2 [ xse [y +(1 = ) [y [l

where in the last equality, Eq. (27) is used. Therefore weehav

| x"=x[[i=]y [h< f(e) I xse [|1, (29)

where f(e) = 2429,

Theoreml.:

Let x' be the solution to optimization problem in Eq. (19). It medRs’ = Rx and ||
x" ||1<|| x |l1- On the other handr is a (2, d, ¢)-expander graph with the bi-adjacency matrix
R. Consequently Eq. (9) in Theorem 1 holds foand x'.

Theorem2:

We prove the theorem for the case in wh@hX, Y, H) has only two expander subgraphs. The
general case can be easily extended following the same veay: (X, Y, H;) with | X | = m,
and Gy(Xs,Y, Hy) with | X5| = n — m, be twod;-regular ¢; # d,) subgraphs of7(X,Y, H)
with bi-adjacency matriceR; and R, respectively. Without lost of generality, let rename the
elements inX such thatR = [R; Ry].

Now supposew € R" belong to null space oR; w = [w}w}].

Let S be any set oft = 1 coordinates ofw. Further, letR’ be submatrix ofR containing

rows from N(.S). We consider two following cases:
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Case 1:S C {1,2,...,m}:
In this caseS represents a node (X, Y, H;) which is a(2, d;, €)-expander by assumption.

Similar to proof of Lemma 1|| R'wg ||—|| Rwg ||1=d; || ws ||1. We have
0=[|R'w [ = [Rws+Rws | (30)

> [[R'ws [ = | R'wse [y

= d1WS— || R,WSc 1 -

Since@, is left d;-regularR’ hasd; rows. Using that, we can put an upper bound|dR'w g-

1

as follows. Letr! be the i-th rows ofR’. Then

dy
I Rwse [ = D [riwse] (31)
d1 |X|
= ZIZWSCJI
=1 =
(1) dl ‘X|
< DD riglwsy
j=1 i=1
|X| dy
= 2D miluss
j=1 i=1
|X| d1
- Sy
|X1| |X|
= Ziwsc Zw Z\wsw\Zw
j=|X1]+1

where for inequality(1), we used the triangular inequality and the fact thatc {0,1}. Since
G1(X41,Y, Hy) is an (2,dy, ¢)-expander, each two nodes at the right hand side have at most
2ed; neighbors at the right in common. That means, each colunR’ihas at moseed, i.e.,

S 7 < 2ed; for eachi = {1,2, ..., | X;|}. On the other hand sind®’ hasd, rows,>."  r;; <
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d, for eachi = {|X;| + 1,2,...,|X|}. Using these facts and result in (31) we get:

| X1] | X d1
|| R/WSc 1 S Z ‘wScJ|ZTU Z |w5cj ZTij)
J=|X1|+1 i=1
|X1] |X|
< 2edy Y |wseil+di Y |wsey
Jj=1 J=|X1]+1

= 2¢ || wige [[1 +dy [ wo || -

Substituting above inequality in (30) we have:

0 2 d1 H Wg ||1 —2€d1 || Wige (|1 —d1 H Wo ||1 . (32)
Therefore we have the following upper bound
| ws [h< 2e || wis [[1 + || wa [|1, (33)
which also can be written as below:
2¢
< 34
I ws s s w4 W] (34)
Case 2.5 Cc {m+1,2,...,n}:
By the same argument as Case 1, we have:
O=[|Rw [ = [ R'w| (35)
> dy || ws [l — | R'wse [|s -
As in case 1, we can put an upper bound||oR’wSc as follows.
| X1 | X do
|| R/WSc 1 < Z ‘wSCJ|ZTU Z |w5cj ZTij)
j=|X1]+1 1=1
|X1] | X
S dl Z |’LUScj| + 26d2 Z |w5c]-
i=1 j=1X1|+1

< dy || wy |1 +2eds || Wage

1 -
Using above inequality and results from Eg. (35), we havddhewing upper bound fof] wg ||;.
| ws 1< 2¢€ || wase [[1 + || w1, (36)

which also can be written as below:

2¢
| ws 1< ——= [ wa [[1 +

1
. 37
1+ 2 T Il (37)
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Now suppose for a giveg, two 1-sparse vectora andv satisfies equality = Ru = Rv. Let
w =u—v andu = [uiui]’, v = [vivi]' andw = [w!wl]'. Clearly, the following equalities
hold:

Wi =u — vy, (38)
Wo = Uy — Va.

Without loss of generality, let’s assunfjeu ||;>|| v ||;. We consider two following cases:
Case 1:5 € {1,2,...,m}

fal: > (v (39)
= [Ju+wy |1+ [[ug+ws |1

= || s +wis |1 + || urse + Wige [|1 +

| ug +wo |1
> Jws |l = || wis |1 + || wise |1 — || wise |1 +
| wo |1 — || ug [lx

= [ ws (1 = (|| wise [|x + [ uz [1) +

(Il wise [lv + | wa [|1)— || wis [lx

SinceS C {1,2,...,m}, we have| wy ||; + || wise

1=l wse |1 and || uy ||y + || wise [[1=]|

uge ||1. So Eq. (39) can be simplified as bellow:

2 use i > || wse |1 — || wis |1 (40)
= w2 wisl:.

by using Eq. (34) we have:

1—2¢ 1 —2¢
2 e 1> — . 41
| us H1_1+26 | wa |1 T 2 | wa |1 (41)
By Eg. (38) and triangular inequality we have:
| wa [[i<[lua [li + || v2 1. (42)
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Applying above inequality to (41) we have:

14 2¢ 1— 2e¢
14 2¢

(Ihaolls + [Vl )| =Wl - (43)

Clearly || uge [|1>]| uige |1, || use

12” U2 Hl and” Vge

1>|| v |l1- Therefore, the following

inequalities hold:
3+ 2¢

1—2e

| uge |1 + || vase [[1>] w |1 - (44)

Now let j € S¢. There is a pathp* which goes through linkj and not link inS (since it is a
logical network). Letr,- be the corresponding row f@r in routing matrixR. SinceRu = Rv,

we have:

Iy« = Ip«V 2> V. (45)

Since p* doesn’t go through linkS, its corresponding entry im,- is zero. Hence we have

|| USC

1> rp-u. Therefore we can have the following upper bound for evetyyesf v, Vj € S¢
[ use [1= v; Vj € 5 (46)
By adding up both side of the inequality for glle S¢ we have:

15 | use

12” Vge (|1 - (47)

Clearly | X| > |S¢|. Therefore, the following upper bound is valid far = u — v:

<3+2€
1— 2¢

Case 2.5 C {m + 1,2, ...,n}. By the same argument as case 1 we have:

(3+2€
1— 2¢

Note that setX in G(X,Y, H) is the same a# in network N(V, E). The rest of the proof
for LP optimization is the same as Theorem 1.

+ X)) | use

1>l w (48)

+ [ X)) T age [[i=]] w ] - (49)

Proof of Corollary1:

N(V, E) with the routing matrixR is a 1-identifiable expander. By definition 3, that means
bipartite graphG (X, Y, H) with the bi-adjacency matriR. is a union of leftd;-regular bipartite
graphs,G(X;,Y, H;) such that:
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e X =UX;andX;NX; =0fori+#j

« H=UH,

o d;F#djfori#j

« G(X;,Y, H,) is a(2,d;,¢)-expander withe < 1

Now let consider two linkd; and ;. If deg(l;) # deg(l;), then clearly one of the first two
statements in Corollary 4 would be true. dég(l;) = deg(l;) = d; they belong to the same
subgraph, say7(X;, Y, H;). By the last condition in Definition 3¢z(X;,Y, H;) is a (2,d;, €)-
expander. Now lett = {/;,/;}. By the definition of the expander graphs in Definition 2, the
following holds for ®:

IN(@®)| > (1 - )d|@] = 2(1 - e)d. (50)

By Theorem 2 maximum value possible fors i Therefore minimum value for the right hand

side of the above inequality would be achieved # i and that is:

[N (@) >

N W

d. (51)

deg(l;,1;) is defined to be number of nodes connected to Botnd/;. We can calculate total

number of nodes connected to at least oné @ind/; as follows:
|IN(®)| = deg(l;) + deg(l;) — deg(l;,1;) = 2d — deg(l;, 1;). (52)
Substituting above equality in Eq. (51) results in
d — 2deg(l;,1;) > 0, (53)
which can also be written as follows:
2d — 2deg(l;,1;) = deg(l;) + deg(l;) — 4deg(l;, ;) > 0. (54)

proof of TheorenB:

We first assume thaR is a bi-adjacency matrix of &%k, ¢, d)-expander graph and prove that
following lemma which characterizes the null spaceRof

Lemma 3. Assumew lies in the null space oR, ., (i.e., AR = 0) and letS be any set of

coordinates of thev with |S| <k, S C {1,...,n}. Then

2¢
— | wse |1 (55)

B[ ws 1] < —

T
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Proof:
Let R’ be the submatrix oR containing rows fromN(S). By definition of wg, we have

| Rws ||1=|| R'wg ||:. Hence,

0= R'w i = | R'ws+R'ws

1 (56)

> [[R'ws |1 — | R'ws:

1
= Bllws = [ R'wse ||,

where3 is a random variable showing the number of paths that unygoellong to only one of

the £ links. Now let take the expected value from the both side efjuality (56) and we drive:

0 > E[B | ws | — | Aws.

) &7
= EB| ws 1] - E[| A'wse [1]]
= E[BE[]| ws [h] — E[l| A'wse [l1].

The last equality is valid becaugeis independent of null spadg. Next, we will calculate
E[3].

Assume a particular patR goes over one of the links. This means that in the bipartigglgr
with bi-adjacency matrixnathbf R, P belongs to one of the links. The probability that it does
not belong to any othet — 1 links is (1 — ‘—}u)k—l. Since there aré links and each belong to
d paths (recall that the lemma assunmaesegularity) there must bék total paths where some
of them are common between different links. On the other haadh path uniquely belongs
to one of the links with probability1 — ﬁ)k—l. Therefore,3 has a binomial distribution and
hence the average number of unique paths can be calculated as

1 k—1
- @ W),
where the approximation is from the first two terms of the dayderies and it is valid when
IR|> 1.
By the same argument as in proof of lemma 2, we hjauk’'w .

E[8] = dk(1 )t s dle(1 — (58)

1= 2kde || Wge ||1 By
substituting these recent findings in Eq. (56), we can ddheefollowing inequality:

2¢
Efl ws ||| € ——= | wse

R

1 (59)
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The above inequality is similar to Eq. (23), except for th@ewnted value part; i.€€. The
rest of the proof is similar to proof of Theorem 1 and Theorery2substituting|| x — x’ ||
with E[|| x — x" ||1].
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