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Abstract

In network tomography, we seek to infer the status of parameters (such as delay) for links inside

a network throughend-to-endprobing between (external) boundary nodes along predetermined routes.

In this work, we apply concepts from compressed sensing for network topologies that are expanders,

to the delay estimation problem. We first show that a relativemajority of network topologies arenot

expanders for the existing error bounds. Motivated by this,we relax this bound leading to evidence

that for 30% more networks, the link delays can be estimated.We provide simulation performance

analysis of delay estimation based onl1 minimization, showing that accurate estimation is feasible for

an increasing proportion of networks.

Index Terms

Network Tomography, Delay Estimation, Compressed Sensing, Expander Graphs,l1 minimization

I. INTRODUCTION

Monitoring of link properties (delay, loss rates, etc.) in networks continues to be an integral

requirement within any network management framework as part of monitoring its utilization

and performance. The need for accurate and fast monitoring schemes has escalated in recent

years due to the increasing popularity of new resource-consuming services (such as video-

conferencing, Voice over IP, and online games) that requirequality-of-service (QoS) guarantees

[2]. The primary objective of this paper is to demonstrate how compressed sensing ideas may

be applied to derive a fast delay monitoring algorithm that outperforms other schemes.

Authors are with the Department of Electrical Engineering,University of Washington, Seattle, WA, 98195 USA. e-mail:

{firooz,sroy}@u.washington.edu

A preliminary version of our results appears in [1]. This submission is distinct due to the fuller discussion of (k > 1)-
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The termnetwork tomographywas used in [3] to encompass a class of approaches that seek to

infer the internal link status from end-to-end measurements [4], [5], [6]. A useful classification

of network tomography methods for our purposes is as follows[7]:

• Cooperative Internal Nodes: This method assumes that internal nodes on probe routes

respond tocontrol packets. For example, active tools such as a ping or a trace route,

measure and report attributes of the round-trip path from a sender to the internal node

based on probe packets [8]. Beside complexity, the challenges of such methods arise from

the fact that service providers do not own the entire networkthat is being probed and hence

do not have access to the desired internal nodes for appropriate configuration [9], [10].

• End-to-End: In networks with a definedboundary, it is assumed that access is available

to (all) nodes at the edge (but not to any in the interior). A boundary node sends probes to

all (or a subset of) other boundary nodes to measure packet attributes on the path between

network end points. These edge-based methods do not requireexchanging control messages

with any interior nodes. The primary challenge confrontingsuch end-to-end probe-based

link status estimation is that of identifiability, as discussed below [11], [12], [2].

As the networks evolve toward more decentralized, uncooperative, and heterogeneous ad-

ministrative (sub)domains, the availability of cooperative interior nodes is increasingly limited.

Hence, end-to-end network diagnostic tools attract increasing attention. In end-to-end network

tomography, probes are sent between boundary nodes onpredeterminedroutes; typically, these

are usually the shortest paths between the nodes based on existing routing protocols.

For parameters such as delay, an additive linear model adequately represents the relationship

between a measured path and an individual link delay [13], [14], i.e.,

y = Rx, (1)

wherex is the n × 1 (unknown) vector of the individual link mean delay. Ther × n binary

matrix R is the routing matrix for the network graph corresponding tothe paths chosen for

the probes (note: each row of the matrix correspond to a path), andy ∈ R
r is the measured

r-vector of end-to-end path delays. Although the focus of this paper is link delay, our approach

readily applies to any other link attributes (such aslog of packet loss rate), allowing such a

linear relationship with end-to-end measurements.

Link delay estimators based on Eq. (1) can be classified as follows:
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1) Deterministic: The delays are considered unknown but constant. Because the link delay

is typically time varying, such approaches are suitable forperiods of local “stationarity”

where such an assumption is valid.

2) Stochastic: The delay vectorx is specified by a suitable a-priori parametric probability

distribution; the method then estimates the unknown parameters of the model. For exam-

ple, [15], [13], [14], [16] assumed that link delay follows aGaussian or an exponential

distribution.

Both modeling approaches have their pro’s and con’s. Stochastic models are usually more

computationally intensive than deterministic ones [17] asthey suffer from overmodeling (too

many parameters for the data). Moreover, in many scenarios,one is typically interested in only

the few links that are congested (i.e., suffer excessive link delay). Deterministic models are better

suited to exploit this (side) information; our method fallswithin this class.

In Eq. (1), usually, the number of observationsr is much less than the number of variablesn

(i.e.,r ≪ n) because the number of accessible boundary nodes is much smaller than the number

of links inside the network. Thus, the number of variables inEq. (1) to be estimated is much

larger than the number of equations [16], leading to the generic nonuniqueness of solutions to

Eq. (1), i.e., the inability to uniquely determine link delay [15] from end-to-end measurements.

However, the problem of identifying only the (few) links with large delays (a.k.a congested

links1) suggests the possibility of improved mechanisms to solve the under-determined system

in Eq. (1), provided that thesparsityof the desired solution can be exploited. In other words,

we are interested in solutionsx with only a few - uptok large entries. If the other entries

are small, we refer to such vector asnearly k-sparse, and if they are exactly zero we call it

exactlyk-sparse. Clearly, if vectorx is exactlyk-sparse, it is also nearlyk-sparse. For the sake

of simplicity, we use the termsnearly k-sparseandk-sparseinterchangeably in the sequel. A

network is calledk-identifiable if for everyexactlyk-sparse delay vectorx, Eq. (1) is uniquely

solvable.

Compressed sensing has been proposed recently for network tomography [18], [18], [19],

[20] as part of methods that vary significantly in their underlying assumptions and utility for

practical networking scenarios. Authors in [18] used compressed sensing to estimate link delays

1A congested link is one with a significantly elevated delay compared to the rest of the links in the network.
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of the unobserved links on an end-to-end path when measured data is available on a subset of

links. Xu et. al. [19] applied compressed sensing by performing a standard random walk over

a sufficientlyconnected graph to take measurements. However, this is at variance with typical

network scenarios where the measurement matrix (i.e., routing matrix) is already given. Besides,

most networks are not sufficiently connected [21], [22]. In this work we assume that the routing

path between any pair of boundary nodes is predetermined–usually by shortest path algorithm–

without any constraint on the underlying network topology.

This work applies the concepts ofexpander graphsto the network tomography problem along

with compressive sensing based link delay estimation [23],[24], [25], [26]. This is achieved

by fundamentally relating the network routing matrix to a bipartite graph. If the bipartite graph

is an expander graph, then one can usel1 minimization to solve Eq. (1), that has polynomial

complexity inn, independent ofk [27]. We derive the proposed delay estimation algorithm for

network topologies that are expanders for the casek = 1 initially largely for illustrative purposes.

The remainder of the paper then focusses on the generalk > 1 case.

A. Contributions and Organization

Our specific contributions are as follows: we first establisha novel connection between network

delay tomography and binary compressed sensing via the notion of expander graphs. Next, for

1-identifiable networks, we relax the existing result for expansion fromǫ ≤ 1/6 to ǫ ≤ 1/4

(Lemma 1). Further, we extend our result for expander graphsto include networks that are

union of sub-graphs which are themselves expanders in Theorem 2. We then provide simulation

results to show that in general (k > 1), a large proportion of networks (more than 60%) do

not satisfy the conditions for being an expander. Hence, we derive new results that broaden the

set of potential expanders at the cost of accepting a bigger error margin in reconstruction for

the generalk case (Theorem 3). We derive estimation error bounds forl1 minimization link

delays that are validated by simulation results. Our simulation evidence shows that the proposed

delay estimator achieves predicted accuracy for a larger fraction of networks, compared to the

state-of-the-art in the literature [28], [29].

The rest of the paper is organized as follows: Section II relates the routing matrix of a network

to bipartite graphs. Section III establishes a connection between link delay estimation and binary

compressed sensing and identifies conditions on the networkrouting matrix under which a given
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network isk-identifiable. We evaluate our findings using simulations inSection IV. The paper

concludes with reflections on possible future works in Section V. In the Appendix we provide

proof of the theorems.

Notations: We use bold capitals (e.g.R) to represent matrices and bold lowercase symbols

(e.g. x) for vectors. Thei-th entry of a vectorx is denoted byxi. For the matrixR, N (R)

denotes its null space, and superscriptt denotes its transpose. A set is denoted by a normal

capitals (e.g.V ) and a set of sets is presented by calligraphic capitalized symbol, e.g.R which

is the set of all end-to-end paths in the network2. |R| is the cardinality (number of elements) in

the set. An empty set is denoted by∅. deg(v) indicates degree of the nodev in a graph, defined

as number of nodes it is connected to.

For any setS ⊂ {1, 2, 3, ...n}, Sc represents the complement. Also, for any vectorx ∈ R
n,

vectorxS ∈ R
n has entries defined as follows:

(xS)i =











xi if i ∈ S

0 o.w.
. (2)

If x ∈ R
n, the lp-norm ofx is defined as follows:

‖ x ‖p=

(

n
∑

i=1

xp
i

)
1

p

. (3)

II. ROUTING MATRIX AND BIPARTITE GRAPH

As is customary, a network consisting of bidirectional links connecting transmitters, switches,

and receivers can be modeled as an undirected graphN(V,E), where V (E) is the set of

vertices (edges). Throughout this manuscript, boundary nodes are depicted as solid circles, while

intermediate nodes are presented using dashed circles. We use network depicted in Figure 1 to

illustrate the subsequent definitions.

In this section, we show that the routing matrix of any network can be represented as abi-

adjacency matrixof a suitably definedbipartite graph. This will help connect the problem of

network identifiability withexpander graphs, a special subset of bipartite graphs.

Definition 1. A bipartite graph is one whose vertices can be divided into two disjoint sets,X

and Y , so that every edge connects a vertex inX to one inY [30].

2Each path is itself set of nodes and edges of the network.
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Fig. 1. A network with 4 boundary nodes, 2 intermediate nodesand 5 links

A bipartite graph is usually represented as a tripleG(X, Y,H), whereH ⊂ X × Y is a set

with paired elements fromX andY . The vertex setsX andY are the left and right sides of the

graph, respectively. A bipartite graphG(X, Y,H) can be represented by itsbi-adjacencymatrix

A = [aij], whereaij = 1 if node i ∈ Y is connected to nodej ∈ X, and is zero otherwise,

i.e.,

aij =











1 (j, i) ∈ H

0 (j, i) /∈ H
, (4)

A = [aij ].

Note that in the definition of the bi-adjacency matrixA, rows ofA correspond toY , which

is the right-hand side of the graph; columns ofA correspond toX, which is the left-hand side

of the graph. This convention is used throughout the paper.

Assume that a given networkN(V,E) has a total ofn links (i.e., n = |E|), andR is the

(given) set of paths between the boundary nodes of the network andr = |R|. Let Rr×n denote

the routing matrix, where there exists an isomorphism between the setR and the corresponding

routing matrixR. For example, for the 1-identifiable network3 in Figure 1, suppose the following

routing matrix is given:

R =

l1 l2 l3 l4 l5

P1 : n2  n6

P2 : n1  n5

P3 : n1  n2

P4 : n5  n6















1 0 1 1 0

0 1 1 0 1

1 1 0 0 0

0 0 0 1 1















,
(5)

3A network with no degree-two nodes is known to be 1-identifiable.
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Fig. 2. Bipartite graph corresponding to given routing matrix in Eq. (5)

which is equivalent to the following set of pathsR:

R = {l1l3l4, l2l3l5, l1l2, l4l5}. (6)

Rr×n can be viewed as a bi-adjacency matrix of a bipartite graphG(X, Y,H), whereX = E

(set of links in the network) andY = R (set of given paths in the network). There exists a

connection between a node inX and a node inY if a path inR includes the corresponding link

in E. Figure 2 presents the bipartite graph for the network in Figure 1 with the routing matrix

R in Eq. (5).

Note that the above routing matrix, or its equivalent set of paths, is not a complete set of

routes for the network in Figure 1 (e.g., it does not include the path fromn1 to n6, which is

l2l3l4). However, it is a fundamental premise in network tomography that the routing matrix is

already chosen and may not be changed. Hence, we initially seek to investigate the following

question: Assuming that the routing matrix is given, when isit possible to identify or estimate

link delays?

III. EXPANDER GRAPHS AND NETWORK IDENTIFIABILITY

In recent years, a new approach–Compressed Sensing–for estimating ann-dimensional (signal)

vectorx from a lower-dimensional representation has attracted much attention [26], [31], [25].

For any signalx ∈ R
n, the reduced dimension representation is equal toy = Ax, where

m × n matrix A (m << n) is referred to as themeasurement matrix. The main challenge in

traditional compressed sensing is to constructA with the following desirable (and conflicting)

properties: (a) achieve maximum possible compression (m/n small) and yet allow (b) an accurate

reconstruction ofx from y whenx is known to be sparse using (c) a fast decoding algorithm

October 7, 2012 DRAFT



8

[32], [33], [34], [35]. For example, whenA is a binary matrix,m = O(k log n
k
) suffices when

x is nearlyk-sparse.

As discussed above, the routing matrix of a network is the measurement matrix for delay

tomography application, and in most scenarios it is predetermined. The main issue, therefore, is

to determine whether it is anappropriatemeasurement matrix for compressed sensing, i.e., if

it satisfies objective (b) above. In the simulation section,we show that the existing conditions

for the measurement matrix,A, do not apply to most of the routing matrices. Motivated by

this observation, we aim to revisit these conditions and modify them so that they become more

suitable to the network tomography problem. Then, we use linear program (LP) optimization to

solve Eq. (1).

A. Expander Graphs

Definition 2. A bipartite graphG(X, Y,H) with a left degreed (i.e., deg(v) = d ∀ v ∈ X) is a

(φ, d, ǫ)− expander if for any Φ ⊂ X with |Φ| ≤ φ, the following condition holds:

|N(Φ)| ≥ (1− ǫ)d |Φ|, (7)

whereN(Φ) is a set of neighbors ofΦ 4. φ and ǫ are the ”expansion factor” and the ”error

parameter,” respectively.

Roughly speaking, in an expander graph, the degree of connectivity for a collection of nodes

(with cardinality of up toφ) on the left-hand side (X) expands by that factor on the right-

hand side (Y ) [36]. Expander graphs are well-studied; authors in [37], [38], [39] show how to

construct a(φ, d, ǫ) − expander graph. In a key result, Berinde and Indyk in [40], [27] show

that the bi-adjacency matrix of a(2φ, d, ǫ)− expander graph can be used as the measurement

matrix for aφ-sparse signal, forǫ ≤ 1
6
.

The parameterǫ in an expander graph is a design variable that is related to recovery error.

The existing results requireǫ ≤ 1/6, which, as we will show, does not apply to most of the

networks . In a network tomography problem, the measurementmatrix is pre-determined, so we

need to enlarge the bound onǫ as high as possible to increase the likelihood that it leads to an

identifiable network.

4Neighbors ofΦ are nodes which are connected to at least one of the nodes inΦ.
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The bipartite graph given in Figure 2 coordinates with the 1-identifiable network in Figure

1 with the routing matrix in Eq. (5). It is easy to see that thisbipartite graph is an expander

for ǫ = 1/4. Motivated by this example, we relax the existing result forǫ ≤ 1/6 to ǫ ≤ 1/4.

In the simulation results (Section IV-B), we show that this relaxation increases the number of

k-identifiable networks that satisfy the expansion propertyby 30%. In other words, for more

than 30% ofk-identifiable networks, we have1/6 < ǫ ≤ 1/4. For networks that satisfy the

expansion property, LP optimization can be used to solve thetomography problem.

The analytical results are first derived for 1-identifiable networks because it is easier to give

intuitive explanation. Then we generalized the result tok-identifiable networks with arbitraryk.

In Section IV, we present simulation results to indicate that the proposed algorithm to recover

a nearlyk ≥ 1-sparse vectors provides an acceptable estimation error.

B. 1-Identifiability

The following lemma provides an upper bound on the error of recoveringx from its lower-

dimensional projectionAx whenA is a bi-adjacency matrix of a(2, d, ǫ)-expander graph and

ǫ ≤ 1/4.

lemma 1. Let A be a bi-adjacency matrix of a(2, d, ǫ)-expander graph withǫ ≤ 1/4. Consider

any two vectors,x andx′, with the same projection under the measurement matrixA, i.e.,Ax =

Ax′. Assume thatx is 1-sparse. Further, without loss of generality, suppose that ‖ x′ ‖1≤‖ x ‖1.

Let S be the set of the largest (in magnitude) elements ofx. Then,

‖ x′ − x ‖1≤ f(ǫ) ‖ xSc ‖1, (8)

where

f(ǫ) =
2(1 + 2ǫ)

1− 2ǫ
, ǫ ≤

1

4
. (9)

Proof: See Appendix.

The results from the previous lemma show that under some conditions, the link delay in a

network may be estimated as the unique solution to Eq. (1). The following theorem relates the
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problem of delay estimation in a networkN(V,E) to results on expander graphs withǫ ≤ 1/4

and shows that Eq. (1) can be solved forx using LP optimization.

Theorem 1. Let N(V,E) be a network with a set of pathsR and a corresponding routing

matrix R. Suppose thatG(E,R, H) is a bipartite graph with bi-adjacency matrixR. Assume

that x is the true (unknown) delay vector ofN(V,E) and y = Rx is the (given) end-to-end

delay measurement. Letx′ be a solution to the following LP optimization:

min ‖ x′ ‖1 (10)

s.t.

Rx′ = y.

Then

‖ x− x′ ‖1≤ f(ǫ) ‖ xSc ‖1, (11)

if G is a (2, d, ǫ)-expander withǫ ≤ 1
4
.

Proof: See Appendix.

If the routing matrixR is a bi-adjacency matrix of a(2, d, ǫ)-expander graph (ǫ ≤ 1/4), then

the equationy = Rx has a unique solution for nearly 1-sparse delay vectorx and it can be

found using the LP optimization in Eq. (10). In the simulation results we will show that almost

70% of the networks are expanders withǫ ≤ 1/4. In other words, for 70% of the networks the

delay vector can be estimated using the LP optimization.

Note that if the true delay vectorx is exactly 1-sparse (which almost never happens in practice

because links always have nonzero delay), it implies that‖ xSc ‖1= 0, which means thatx′ = x;

i.e., l1-norm minimization in Eq. (10) can recoverx with zero estimation error. In other words,

if the delay of all links in the network is zero except for maybe one link, the delay of that link

can be exactly recovered from the end-to-end delay measurement. However, if the true delay

vector contains links with small but nonzero delays (the more likely scenario), the estimation

error is not zero and the above theorem yields an upper bound.

One of the conditions for expander graphs isd-regularity on the left-hand side. However,

there exists some networks,N(V,E), which are1-identifiable, but their corresponding bipartite

graphs are notd-regular. Hence, the result of Theorem 1 does not apply. An example of such a
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(a) (b)

Fig. 3. A 1-identifiable network whose corresponding bipartite graph is not regular on the left side: (a) Network topology (b)

Corresponding bipartite graph

(a) (b)

Fig. 4. Two subgraphs of the bipartite graph in Figure 3-b which are regular on their left side

network is depicted in Figure 3-(a) with the following routing matrix:

R =
P1 : n1  n2

P2 : n1  n3

P3 : n2  n3















l1 l2 l3 l4 l5 l6

1 1 0 0 1 0

1 0 1 0 0 1

0 0 0 1 1 1















. (12)

The above routing matrix is a bi-adjacency matrix of the bipartite graph presented in Figure

3-(b). This bipartite graph is not regular in the left side because the degree of a node in the left

set is either 1 or 2; hence, it cannot be an expander. However,Figures 4-(a) and (b), respectively,

represent subgraphs ofG with regular left degree 1 and 2; these subgraphs are expander graphs.

The above observation convinces us that the result in Theorem 1 is extendable for networks

whose corresponding bipartite graph is not regular (and is therefore not an expander) but can be

partitioned into subgraphs that are expander graphs.
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Theorem 2. Let N(V,E) be a network with routing matrixR. Let G(X, Y,H) be a bipartite

graph with bi-adjacency matrixR. Suppose thatGi(Xi, Y,Hi), i = 1, 2, ...M , are di-regular

bipartite subgraphs ofG such that

• X = ∪Xi andXi ∩Xj = ∅ for i 6= j

• H = ∪Hi

• di 6= dj for i 6= j

Then,N(V,E) is 1-identifiable ifGi is a (2, di, ǫ)-expander graph withǫ ≤ 1
4
, i = 1, 2, . . . ,M .

Further, the link delay is the solution to LP optimization inEq. (10).

Proof: See Appendix.

For future reference, we refer to the conditions in Theorem 2as 1-identifiability expansion

conditions. If the networkN(V,E) satisfies these conditions, we refer to it as the1-identifiable

expander network.

Note that the 1-identifiable expansion conditions in Theorem 2 imply the following for any

link pair li and lj:

• They belong to differentGi’s and hence have different degreesdi 6= dj.

• They belong to the same subgraphGi, i.e., di = dj. In that case, becauseGi is a bipartite

graph, they satisfy the expansion property in Eq. (7).

We state this observation formally in the following corollary.

Corollary 1. Let N(V,E) be a network with the routing matrixR and a set of pathsR. Let

G(E,R, H) be its corresponding bipartite graph with the bi-adjacencymatrixR. Then, one and

only one of the following statements is true for any two linksli and lj in E, i 6= j:

• deg(li) > deg(lj)

• deg(li) < deg(lj)

• deg(li) + deg(lj)− 4deg(li, lj) ≥ 0

wheredeg(li, lj) is defined as the number of nodes connected to bothli and lj in the bipartite

graphG(E,R, H)5.

proof: See Appendix.

5It can also denote the number of paths going through both links li and lj in the networkN(V, E) with the routing matrix

R.
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C. k-identifiability

In this subsection, we extend our results to generalk-identifiable networks that is defined as

follows:

Definition 3. A k-identifiable expanderN(V,E) is a network whose routing matrixR is the bi-

adjacency matrix of a bipartite graphG(X, Y,H) consisting ofdi-regular subgraphsG(Xi, Y,Hi)

with the following properties

• X = ∪Xi andXi ∩Xj = ∅ for i 6= j

• H = ∪Hi

• di 6= dj for i 6= j

• G(Xi, Y,Hi) is a (2k, di, ǫ)-expander withǫ ≤ 1
4

The following theorem gives the expected estimation error when l1 optimization is used to

recover links delay in ak-identifiable network.

Theorem 3. Let N(V,E) be a k-identifiable expander network with a set of pathsR and a

corresponding routing matrixR. Assume thatx is the true (unknown) delay vector ofN(V,E)

and y = Rx are the end-to-end delay measurements. Letx′ be a solution to the following LP

optimization:

min ‖ x′ ‖1 (13)

s.t.

Rx′ = y.

Then

E[‖ x− x′ ‖1] ≤ f(ǫ)
1

1− k−1
|R|

‖ xSc ‖1, (14)

Proof: See Appendix.

First note that Eq. (14) reduces to Eq. (11) fork = 1. Second, for most well-designed wired

network, we havek ≪ |R| (number of congested links is much less than number of end-to-end

paths in the network) and hence we have:

E[‖ x− x′ ‖1] ≤ f(ǫ) ‖ xSc ‖1 . (15)
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IV. EVALUATION RESULTS

In Section III, Theorem 3, we showed that if the routing matrix of a network is the bi-adjacency

matrix of the union of disjoint expander graphs, that network is k-identifiable. Moreover, we

can estimate internal link delay using an LP optimizer in Eq.(13). However, a legitimate ’big-

picture’ question arises: How many networks actually satisfy the conditions of Theorem 2;

i.e., how many arek-identifiable expanders? In this section, we generate random Internet-type

networks to study this question. Our simulation results show that our relaxation increases number

of networks which satisfy expansion property by almost 30%.

For those networks that arek-identifiable expander–i.e., their routing matrix satisfies the

condition in Definition 3–we determine the average normalized estimation error when there is

k congested link in the network and show that the average normalized estimation error remains

within an acceptable range. Next, we compare our algorithm with a recently developed delay

tomography algorithm and show that the proposed algorithm yields a lower estimation error.

A. Generation of Networks with Random Topology

We use Inet version 3.0 [41], [42]– an Internet topology generator software (at AS6 level)–

to generate random graphs with the given power law and a fixed number of boundary nodes
7. We create networks containing 5000 nodes with 5, 8, 10, 12, 16, and 20 boundary nodes,

respectively. The output of Inet, which contains the set of neighbors of each node in the generated

graph, is fed to matgraph toolbox in MATLAB [43] for modification. We first create a routing

matrix containing the shortest paths between any boundary node pairs in the network. Then we

delete all nodes and links that do not contribute to any of theabove paths, since if a link is

not covered by any end-to-end path, it is not identifiable. The remaining networks constitute our

random set. In Figure 5, six examples of random networks are depicted.

B. Networks and Expansion Property

For the routing matrices of these random networks, we first examine how many of them satisfy

the k-identifiability expansion conditions in Definition 3. For the network with a fixed number

6Autonomous System.

7Boundary nodes are nodes with degree one which act as injection points for probes in our problem.
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Fig. 5. Output of Inet after our modification in MATLAB with (a) 5 (b) 8 (c) 10 (d) 12 (e) 16 (f) 20 boundary nodes. Nodes

with degree 1 represents injection nodes

of boundary nodes, fifty different topologies are created. Table I shows the percentage of them

that satisfy thek-identifiability expansion property fork = 1, 2, 3.

To show the impact of our relaxation ofǫ in Lemma 1 and Theorem 3, in Table I, we also

provide the percentage of networks that arek-identifiable, usingǫ ≤ 1/6. As one can see,

by moving the bound onǫ from 1/6 to 1/4, the number of networks satisfying the expansion

property increases by almost 30%. In other words, 30% ofk-identifiable networks are within

1/6 < ǫ ≤ 1/4.

C. Delay Estimation: Simulation Experiments

Theorem 3 says that if the routing matrix of a network satisfies k-identifiable expander

conditions, then link delays in the network can be estimatedusing Eq. (13). To examine the

accuracy of the proposed delay estimation method, for each network created in Section IV-A,

we calculate the average normalized estimation error for all links as follows.k reference links
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TABLE I

FOR NETWORKS WITH FIXED NUMBER OF BOUNDARY NODES, COMPARING THE PERCENTAGE OF WHICH ARE

K-IDENTIFIABLE EXPANDERS FORk = 1, 2, 3 WITH ǫ ≤ 1

4
AND ǫ ≤ 1

6

5 8 10 12 16 20

k = 1
ǫ ≤ 1

4
80% 82% 76% 72% 74% 72%

ǫ ≤ 1

6
38% 52% 42% 40% 32% 30%

k = 2
ǫ ≤ 1

4
0% 60% 62% 56% 50% 50%

ǫ ≤ 1

6
0% 0% 30% 20% 24% 22%

k = 3
ǫ ≤ 1

4
0% 0% 0% 56% 50% 46%

ǫ ≤ 1

6
0% 0% 0% 0% 0% 22%

are selected and assigned a delay of10 ms to denote congestion,k = 1, 2, 3. All other links in

the network are assumed to experience i.i.d exponentially distributed delays with averageµ, i.e.,

fl(t) =
1

µ
exp(−

t

µ
) ∀l ∈ E, (16)

wherefl(t) is the delay for linkl and µ ∈ [0, 1] to denote that these links do not undergo

congestion.

We exploit the proposed LP optimization in (10) to estimate link delays. For the network, the

normalized estimation error for each congested link insidethe network is calculated as follows:

norm. err =
‖ x− x̂ ‖2
‖ x ‖2

, (17)

wherex and x̂ are the true and estimated delay vectors respectively.

Figure 6 presents the average normalized estimation error when there arek congested links

inside the network fork = 1, 2, 3 and LP optimization Eq. (10) is used to estimate the delay. As

expected, the average normalized estimation error for differentµ (vectorx is nearlyk-sparse)

mimics the expected trend from Eq. (14). An interesting observation in in Figure 6 is the fact

that for k > 1, the average normalized estimation error has a decreasing trend and for large

networks, it is almost the same as ink = 1 case. The reason is that, as one can infer from Table

I, the probability of being ak-identifiable expander is higher for large networks than a small

ones fork = 2, 3. This is acceptable because for small networks, with a few number of links,

probability of having more than one congested link is negligible.
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(a) (b)

Fig. 6. Average normalized estimation error in networks satisfying conditions given in Theorem 2 when there arek deficient

link within the network for different average delayµ in Eq. (16).

D. Delay Estimation: Cumulative Distribution Function

In this section, we compare our results with those produced by the CF-estimator, one of the

recent and novel delay estimators proposed in [28]. We provide the cumulative probability of the

normalized estimation error using both methods and show that the proposed method provides

less probability of error.

Let x be the actual delay of the links and̂x be the output of the delay estimator. We aim to

calculate the following CDF:

P (
‖ x− x̂ ‖2
‖ x ‖2

≤ δ). (18)

Figure 7 presents the CDF of the normalized estimation errorwhen there arek congested

links inside the network fork = 1, 2, 3 andδ ∈ [0, .5]. For each CDF, 200 random networks8 are

generated and for each generated network, link delays are assigned as we describe in Section

IV-C. As one can see, the proposed algorithm outperforms theCF algorithm due to the fact that

it uses sparsity information.

As one can see the proposed algorithm outperforms CF algorithm. The reason is that it uses

sparsity as its side information. It is worth mentioning again that to provide QoS in a network,

either it is for multimedia streaming, gaming or any other live application, links with high delays

8µ ∈ {0, .1, .2, 1}.
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(a) (b) (c)

Fig. 7. Cumulative distribution function of estimation error for (a)k = 1 (b)k = 2 (c)k = 3. The proposed algorithm outperforms

CF method.

are more important. Hence thel1 minimization given in Eq. (13) focus on finding thek links

with the highest delays and it results in a better estimation.

V. CONCLUSION

In this manuscript, we investigate the application of expander graphs and compressed sensing

to network tomography. As shown in the paper by examples and simulation evidence, the current

results on expander graphs do not apply to most of the networks. Hence, we modify some of

the results to be more suitable for the delay estimation problem. We show that the number

of Internet-topology-based networks satisfying new conditions is increased by 30%. For those

networks, we compare delay estimation based on compressed sensing (proposed algorithm) with

one of the state-of-the-art delay estimation algorithms inthe literature. The simulation results

show that compressed sensing provides better estimation, i.e., less estimation error.

Most of the network parameters such as link delay are, in fact, non-negative numbers, and by

using this information, it would be better to estimate links’ statuses. There are some works in

the literature to recover non-negative signals [23], and one of our future works is to apply these

theories to delay estimation.
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APPENDIX A

PROOFS OFTHEOREMS

Lemma1:

We first proof the following lemma which characterizes the null space of bi-adjacency matrix

of an expander graph and will be used to bound the error in the recovery ofx from its compressed
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projectiony.

lemma 2. Let G(V1, V2, E) be a (2, d, ǫ)-expander withǫ ≤ 1/4 andAm×n be its bi-adjacency

matrix. Assumew lies in the null space ofA (i.e., Aw = 0) and letS be any singleton set of

coordinates of thew, i.e.,S = {i}, i ∈ {1, ..., n}. Then

‖ wS ‖1≤ 2ǫ ‖ wSc ‖1 . (19)

Proof:

Let A′ be the submatrix ofA containing rows fromN(S). Since|S| = 1 and graph is left

d-regular,‖ A′wS ‖1=‖ AwS ‖1= d ‖ wS ‖1. We have

0 =‖ A′w ‖1 = ‖ A′wS +A′wSc ‖1 (20)

≥ ‖ A′wS ‖1 − ‖ A′wSc ‖1

= d ‖ wS ‖1 − ‖ A′wSc ‖1 .

Each set of two nodes in the left part has at least2(1− ǫ)d neighbor nodes on the right side

(expansion definition). Since each node at the left has degree d, number of common nodes on

the right hand side9 is at most2d − 2(1 − ǫ)d = 2ǫd. That means each column ofA′ (except

the one corresponding toS) has at most2ǫd number of ”1”s, yielding,

‖ A′wSc ‖1≤ 2ǫd ‖ wSc ‖1 . (21)

Therefore

0 ≥ d ‖ wS ‖1 −2ǫd ‖ wSc ‖1, (22)

which means

‖ wS ‖1≤ 2ǫ ‖ wSc ‖1 . (23)

9Nodes on the right which are connected to both nodes on the left hand side.
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The above argument is valid ifG is a (2, d, ǫ)-expander graph. We now show that it implies

ǫ ≤ 1/4. let Φ be a set of any two nodes on the left hand side of the(2, d, ǫ)-graph. By the

definition of expander graphs we have:

N(Φ) ≥ 2(1− ǫ)d. (24)

If the two nodes inΦ are connected to exactly the same nodes on the right hand side, there is

no way to distinguish between them. In other words, if the twonodes are connected to the same

nodes on the right hand side, the bi-adjacency matrixA is rank deficient. To avoid that10 we

needN(Φ) to be strictly greater thand, i.e., N(Φ) ≥ d + 1. That means2(1 − ǫ)d must be at

leastd+ 1. Hence, we have the following upper bound onǫ

ǫ ≤
d− 1

2d
. (25)

For an upper bound that is independent ofd, we find the infimum of right hand side and

chooseǫ to satisfy that case. Clearly we have

inf
d=2,3,4...

d− 1

2d
=

1

4
, (26)

implying that ǫ ≤ 1
4

11.

�

Now, let vectorw be in null space ofA, i.e.,w ∈ N (A). Using Eq. (8) we have:

‖ wS ‖1 ≤ 2ǫ ‖ wSc ‖1 (27)

‖ wS ‖1 +2ǫ ‖ wS ‖1 ≤ 2ǫ ‖ wSc ‖1 +2ǫ ‖ wS ‖1

‖ wS ‖1 ≤
2ǫ

1 + 2ǫ
‖ w ‖1 .

10and also to satisfy the concept of expansion,

11Note that we exclude case ofd = 1, since each bipartite graph which is left 1-regular andN(Φ) ≥ 2 is an expander graph.
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Now, let y = x′ − x. Clearlyy ∈ N (A) and we have:

‖ x ‖1 ≥ ‖ x′ ‖1 (28)

= ‖ (x+ y)S ‖1 + ‖ (x+ y)Sc ‖1

= ‖ xS + yS ‖1 + ‖ xSc + ySc ‖1

≥ ‖ xS ‖1 − ‖ yS ‖1 + ‖ ySc ‖1 − ‖ xSc ‖1

= ‖ x ‖1 −2 ‖ xSc ‖1 + ‖ y ‖1 −2 ‖ yS ‖1

≥ ‖ x ‖1 −2 ‖ xSc ‖1 +(1−
4ǫ

1 + 2ǫ
) ‖ y ‖1,

where in the last equality, Eq. (27) is used. Therefore we have:

‖ x′ − x ‖1=‖ y ‖1≤ f(ǫ) ‖ xSc ‖1, (29)

wheref(ǫ) = 2(1+2ǫ)
1−2ǫ

.

�

Theorem1:

Let x′ be the solution to optimization problem in Eq. (19). It meansRx′ = Rx and ‖

x′ ‖1≤‖ x ‖1. On the other hand,G is a (2, d, ǫ)-expander graph with the bi-adjacency matrix

R. Consequently Eq. (9) in Theorem 1 holds forx andx′.

�

Theorem2:

We prove the theorem for the case in whichG(X, Y,H) has only two expander subgraphs. The

general case can be easily extended following the same way. Let G1(X1, Y,H1) with |X1| = m,

andG2(X2, Y,H2) with |X2| = n − m, be twodi-regular (d1 6= d2) subgraphs ofG(X, Y,H)

with bi-adjacency matricesR1 andR2, respectively. Without lost of generality, let rename the

elements inX such thatR = [R1R2].

Now supposew ∈ R
n belong to null space ofR; w = [wt

1w
t
2]

t.

Let S be any set ofk = 1 coordinates ofw. Further, letR′ be submatrix ofR containing

rows fromN(S). We consider two following cases:
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Case 1:S ⊂ {1, 2, ..., m}:

In this caseS represents a node inG1(X1, Y,H1) which is a(2, d1, ǫ)-expander by assumption.

Similar to proof of Lemma 1,‖ R′wS ‖=‖ RwS ‖1= d1 ‖ wS ‖1. We have

0 =‖ R′w ‖1 = ‖ R′wS +R′wSc ‖1 (30)

≥ ‖ R′wS ‖1 − ‖ R′wSc ‖1

= d1wS− ‖ R′wSc ‖1 .

SinceG1 is left d1-regularR′ hasd1 rows. Using that, we can put an upper bound on‖ R′wSc ‖1

as follows. Letrti be the i-th rows ofR′. Then

‖ R′wSc ‖1 =

d1
∑

i=1

|rtiwSc| (31)

=
d1
∑

i=1

|

|X|
∑

j=1

rijwScj|

(1)

≤
d1
∑

j=1

|X|
∑

i=1

rij|wScj |

=

|X|
∑

j=1

d1
∑

i=1

rij|wScj |

=

|X|
∑

j=1

|wScj |
d1
∑

i=1

rij

=

|X1|
∑

j=1

|wScj |
d1
∑

i=1

rij +

|X|
∑

j=|X1|+1

|wScj|
d1
∑

i=1

rij,

where for inequality(1), we used the triangular inequality and the fact thatrij ∈ {0, 1}. Since

G1(X1, Y,H1) is an (2, d1, ǫ)-expander, each two nodes at the right hand side have at most

2ǫd1 neighbors at the right in common. That means, each column inR′ has at most2ǫd, i.e.,
∑d1

i=1 rij ≤ 2ǫd1 for eachi = {1, 2, ..., |X1|}. On the other hand sinceR′ hasd1 rows,
∑d1

i=1 rij ≤
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d1 for eachi = {|X1|+ 1, 2, ..., |X|}. Using these facts and result in (31) we get:

‖ R′wSc ‖1 ≤

|X1|
∑

j=1

(

|wScj |
d1
∑

i=1

rij
)

+

|X|
∑

j=|X1|+1

(

|wScj|
d1
∑

i=1

rij
)

≤ 2ǫd1

|X1|
∑

j=1

|wScj |+ d1

|X|
∑

j=|X1|+1

|wScj |

= 2ǫ ‖ w1Sc ‖1 +d1 ‖ w2 ‖ .

Substituting above inequality in (30) we have:

0 ≥ d1 ‖ wS ‖1 −2ǫd1 ‖ w1Sc ‖1 −d1 ‖ w2 ‖1 . (32)

Therefore we have the following upper bound

‖ wS ‖1≤ 2ǫ ‖ w1S ‖1 + ‖ w2 ‖1, (33)

which also can be written as below:

‖ wS ‖1≤
2ǫ

1 + 2ǫ
‖ w1 ‖1 +

1

1 + 2ǫ
‖ w2 ‖ . (34)

Case 2:S ⊂ {m+ 1, 2, ..., n}:

By the same argument as Case 1, we have:

0 =‖ Rw ‖1 = ‖ R′w ‖1 (35)

≥ d2 ‖ wS ‖1 − ‖ R′wSc ‖1 .

As in case 1, we can put an upper bound on‖ R′wSc ‖1 as follows.

‖ R′wSc ‖1 ≤

|X1|
∑

j=1

(

|wScj |
d2
∑

i=1

rij
)

+

|X|
∑

j=|X1|+1

(

|wScj|
d2
∑

i=1

rij
)

≤ d1

|X1|
∑

j=1

|wScj |+ 2ǫd2

|X|
∑

j=|X1|+1

|wScj |

≤ d1 ‖ w1 ‖1 +2ǫd2 ‖ w2Sc ‖1 .

Using above inequality and results from Eq. (35), we have thefollowing upper bound for‖ wS ‖1.

‖ wS ‖1≤ 2ǫ ‖ w2Sc ‖1 + ‖ w1 ‖1, (36)

which also can be written as below:

‖ wS ‖1≤
2ǫ

1 + 2ǫ
‖ w2 ‖1 +

1

1 + 2ǫ
‖ w1 ‖ . (37)
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Now suppose for a giveny, two 1-sparse vectorsu andv satisfies equalityy = Ru = Rv. Let

w = u − v andu = [ut
1u

t
2]

t, v = [vt
1v

t
2]
t andw = [wt

1w
t
2]
t. Clearly, the following equalities

hold:

w1 = u1 − v1, (38)

w2 = u2 − v2.

Without loss of generality, let’s assume‖ u ‖1≥‖ v ‖1. We consider two following cases:

Case 1:S ⊂ {1, 2, ..., m}

‖ u ‖1 ≥ ‖ v ‖1 (39)

= ‖ u1 +w1 ‖1 + ‖ u2 +w2 ‖1

= ‖ u1S +w1S ‖1 + ‖ u1Sc +w1Sc ‖1 +

‖ u2 +w2 ‖1

≥ ‖ u1S ‖1 − ‖ w1S ‖1 + ‖ w1Sc ‖1 − ‖ u1Sc ‖1 +

‖ w2 ‖1 − ‖ u2 ‖1

= ‖ u1S ‖1 −(‖ u1Sc ‖1 + ‖ u2 ‖1) +

(‖ w1Sc ‖1 + ‖ w2 ‖1)− ‖ w1S ‖1

SinceS ⊂ {1, 2, ..., m}, we have‖ w2 ‖1 + ‖ w1Sc ‖1=‖ wSc ‖1 and‖ u2 ‖1 + ‖ u1Sc ‖1=‖

uSc ‖1. So Eq. (39) can be simplified as bellow:

2 ‖ uSc ‖1 ≥ ‖ wSc ‖1 − ‖ w1S ‖1 (40)

= ‖ w ‖1 −2 ‖ w1S ‖1 .

by using Eq. (34) we have:

2 ‖ uSc ‖1≥
1− 2ǫ

1 + 2ǫ
‖ w1 ‖1 −

1 − 2ǫ

1 + 2ǫ
‖ w2 ‖1 . (41)

By Eq. (38) and triangular inequality we have:

‖ w2 ‖1≤‖ u2 ‖1 + ‖ v2 ‖1 . (42)
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Applying above inequality to (41) we have:

1 + 2ǫ

1− 2ǫ

[

2‖u1Sc‖1+
1− 2ǫ

1 + 2ǫ

(

‖u2‖1 + ‖v2‖1
)

]

≥‖w‖1 . (43)

Clearly ‖ uSc ‖1≥‖ u1Sc ‖1, ‖ uSc ‖1≥‖ u2 ‖1 and‖ vSc ‖1≥‖ v2 ‖1. Therefore, the following

inequalities hold:
3 + 2ǫ

1− 2ǫ
‖ uSc ‖1 + ‖ v2Sc ‖1≥‖ w ‖1 . (44)

Now let j ∈ Sc. There is a pathp∗ which goes through linkj and not link inS (since it is a

logical network). Letrp∗ be the corresponding row forp∗ in routing matrixR. SinceRu = Rv,

we have:

rp∗u = rp∗v ≥ vj. (45)

Since p∗ doesn’t go through linkS, its corresponding entry inrp∗ is zero. Hence we have

‖ uSc ‖1≥ rp∗u. Therefore we can have the following upper bound for every entry of vj ∀j ∈ Sc

‖ uSc ‖1≥ vj ∀j ∈ Sc. (46)

By adding up both side of the inequality for allj ∈ Sc we have:

|Sc| ‖ uSc ‖1≥‖ vSc ‖1 . (47)

Clearly |X| > |Sc|. Therefore, the following upper bound is valid forw = u− v:

(
3 + 2ǫ

1− 2ǫ
+ |X|) ‖ uSc ‖1≥‖ w ‖1 . (48)

Case 2:S ⊂ {m+ 1, 2, ..., n}. By the same argument as case 1 we have:

(
3 + 2ǫ

1− 2ǫ
+ |X|) ‖ uSc ‖1≥‖ w ‖1 . (49)

Note that setX in G(X, Y,H) is the same asE in networkN(V,E). The rest of the proof

for LP optimization is the same as Theorem 1.

�

Proof of Corollary1:

N(V,E) with the routing matrixR is a 1-identifiable expander. By definition 3, that means

bipartite graphG(X, Y,H) with the bi-adjacency matrixR is a union of leftdi-regular bipartite

graphs,G(Xi, Y,Hi) such that:
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• X = ∪Xi andXi ∩Xj = ∅ for i 6= j

• H = ∪Hi

• di 6= dj for i 6= j

• G(Xi, Y,Hi) is a (2, di, ǫ)-expander withǫ ≤ 1
4

Now let consider two linksli and lj. If deg(li) 6= deg(lj), then clearly one of the first two

statements in Corollary 4 would be true. Ifdeg(li) = deg(lj) = di they belong to the same

subgraph, say,G(Xi, Y,Hi). By the last condition in Definition 3,G(Xi, Y,Hi) is a (2, di, ǫ)-

expander. Now letΦ = {li, lj}. By the definition of the expander graphs in Definition 2, the

following holds forΦ:

|N(Φ)| ≥ (1− ǫ)d|Φ| = 2(1− ǫ)d. (50)

By Theorem 2 maximum value possible forǫ is 1
4
. Therefore minimum value for the right hand

side of the above inequality would be achieved ifǫ = 1
4

and that is:

|N(Φ)| ≥
3

2
d. (51)

deg(li, lj) is defined to be number of nodes connected to bothli and lj . We can calculate total

number of nodes connected to at least one ofli and lj as follows:

|N(Φ)| = deg(li) + deg(lj)− deg(li, lj) = 2d− deg(li, lj). (52)

Substituting above equality in Eq. (51) results in

d− 2deg(li, lj) ≥ 0, (53)

which can also be written as follows:

2d− 2deg(li, lj) = deg(li) + deg(lj)− 4deg(li, lj) ≥ 0. (54)

�

proof of Theorem3:

We first assume thatR is a bi-adjacency matrix of a(2k, ǫ, d)-expander graph and prove that

following lemma which characterizes the null space ofR.

Lemma 3: Assumew lies in the null space ofRr×n (i.e., AR = 0) and letS be any set of

coordinates of thew with |S| ≤ k, S ⊂ {1, ..., n}. Then

E[‖ wS ‖1] ≤
2ǫ

1− k−1
r

‖ wSc ‖1 . (55)
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Proof:

Let R′ be the submatrix ofR containing rows fromN(S). By definition of wS, we have

‖ RwS ‖1=‖ R′wS ‖1. Hence,

0 =‖ R′w ‖1 = ‖ R′wS +R′wSc ‖1 (56)

≥ ‖ R′wS ‖1 − ‖ R′wSc ‖1

= β ‖ wS ‖1 − ‖ R′wSc ‖1,

whereβ is a random variable showing the number of paths that uniquely belong to only one of

thek links. Now let take the expected value from the both side of inequality (56) and we drive:

0 ≥ E[β ‖ wS ‖1 − ‖ A′wSc ‖1] (57)

= E[β ‖ wS ‖1]− E[‖ A′wSc ‖1]]

= E[β]E[‖ wS ‖1]− E[‖ A′wSc ‖1].

The last equality is valid becauseβ is independent of null spaceR. Next, we will calculate

E[β].

Assume a particular pathP goes over one of the links. This means that in the bipartite graph

with bi-adjacency matrixmathbfR, P belongs to one of the links. The probability that it does

not belong to any otherk − 1 links is (1− 1
|R|

)k−1. Since there arek links and each belong to

d paths (recall that the lemma assumesd-regularity) there must bedk total paths where some

of them are common between different links. On the other hand, each path uniquely belongs

to one of the links with probability(1 − 1
|R|

)k−1. Therefore,β has a binomial distribution and

hence the average number of unique paths can be calculated as:

E[β] = dk(1−
1

|R|
)k−1 ≈ dk(1−

k − 1

|R|
), (58)

where the approximation is from the first two terms of the Taylor series and it is valid when

|R| ≫ 1.

By the same argument as in proof of lemma 2, we have‖ A′wSc ‖1= 2kdǫ ‖ wSc ‖1. By

substituting these recent findings in Eq. (56), we can derivethe following inequality:

E[‖ wS ‖] ≤
2ǫ

1− k−1
|R|

‖ wSc ‖1 (59)
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The above inequality is similar to Eq. (23), except for the expected value part; i.e.E. The

rest of the proof is similar to proof of Theorem 1 and Theorem 2by substituting‖ x − x′ ‖1

with E[‖ x− x′ ‖1].

�

October 7, 2012 DRAFT


