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Abstract—In network tomography, we seek to infer link
parameters inside a network (such as link delays) by sending
end-to-end probes between (external) boundary nodes. The main
challenge here is to estimate link-level attributes from end-to-end
measurements. In this paper, based on the idea of combinatorial
compressed sensing, we specify conditions on network routing
matrix under which it is possible to estimate link delays from
measurements of end-to-end delay. Moreover, we provide an
upper-bound on the estimation error.

I. INTRODUCTION

The monitoring of link properties within a network (such as
delays and loss rates) has been stimulated by the demand from
network engineers and Internet Service Providers (ISP) for
network management tasks. For instance, fault and congestion
detection or traffic monitoring would help to keep track of
network utilization and performance. The need for accurate
and fast network monitoring methods has increased further
in recent years due to the complexity of new services (such
as video-conferencing, Internet telephony, and on-line games)
that require high-level quality-of-service (QoS) guarantees. In
1996, the term network tomography was coined by Vardi [1]
to encompass this class of methods that seek to infer internal
link parameters and identify link congestion status.

Current network tomography methods can be broadly cate-
gorized as follows [2]:

o Node-oriented: These methods are based on cooperation
among network nodes on an end-to-end route using
control packets. For example, active probing tools such
as ping or traceroute, measure and report attributes of
the round-trip path (from sender to receiver and back)
based on separate probe packets[3]. The challenges of
such node-oriented methods arise from the fact that many
service providers do not own the entire network and hence
do not have access to the internal nodes[4].

« Path-oriented: In networks with a defined boundary, it
is assumed that access is available to all nodes at the edge
(and not to any in the interior). A boundary node sends
probes to all (or a subset) of other boundary nodes to
measure packet attributes on the path between network
end-to-end points. Clearly, these edge-based methods do
not require exchanging special control messages between
interior nodes. The primary challenge of such end-to-end
probe data [5],[6] to estimate link level attribute is that
of identifiability, as will be discussed later.

As the Internet evolves towards decentralized, uncooper-
ative, heterogeneous administration and edge-based control,
node-oriented tools will be limited in their capability. Accord-
ingly, in this work, we only focus on path-oriented methods
which have recently attained more attention due to their ability
to deal with uncooperative and heterogeneous (sub)networks.

In path-oriented network tomography, probes are sent be-
tween two boundary nodes on pre-determined routes; these
are typically the shortest paths between the nodes. For some
parameters such as delay, which is the main concern of this
manuscript, a linear model can adequately capture the relation
between path delays (from end-to-end measurements) and
individual link delays, and can be written as [7], [8]

y = Rx (D

where x is the n x 1 vector of individual link delays. The
r X n binary matrix R denotes the routing matrix for the
network graph, and y € R” is the measured r-vector of end-
to-end path delays. Solution approaches based on Eq. (1) can
be categorized as follows:

1) Deterministic models: Here the link attributes, such as
link delay, are considered as unknown but constant; the
goal of network tomography is to estimate the value of
those constants. Since the link delay is typically time
varying in any network, this approach is suitable for
periods of local ‘stationarity’ where such an assumption
is valid.

2) Stochastic model: Here, it is supposed that the link
vector x is specified by a suitable probability distri-
bution. The goal of network tomography is to identify
the unknown parameters of the probability model. For
example, many works assume the link attributes follow
a Gaussian distribution or an exponential distribution
[91, [7], [8]. Further, the observations are assumed to
occur in the presence of an independent additive noise
or interference term ¢ [10]; thus the observation equation
is modified to y = Ax + €.

There exist challenges with both modeling approaches.
Stochastic approaches in literature are Bayesian in nature, re-
quiring a prior distribution. If incorrectly chosen, this can lead
to biases in the resulting estimations. Furthermore, stochastic
models are usually more computationally intensive than deter-
ministic ones [11]. On the other hand, deterministic models,
the one we conform to, suffer from generic identifiability
problems; this will be discussed subsequently in more detail.



In Eq. (1), typically, the number of observations r < n,
because the number of accessible boundary nodes is much
smaller than the number of links inside the network. Thus the
number of variables in Eq. (1) to be estimated is much larger
than number of equations in the linear model (rank(R) <
n)[10], leading to generic non-uniqueness for any solution to
Eq. (1); in other words, it is impossible to uniquely specify
link delays [9].

A network administrator is typically interested in identifying
only the (few) links with large delays (or high packet lost
rate) at any given time; this information allows a pathway to
solve the underdetermined system in Eq. (1) provided that
the sparsity can be exploited. In other words, that we are
interested in identifying solution vectors x with only a few
large entries (say, up to k). We refer to such vectors as k-sparse
vector. We will show that by using the concept of expander
graphs and compressed sensing, k-sparse delay vectors may
be successfully estimated, provided some conditions on the
routing matrix of a network are met. The estimates obtained
satisfy a desirable property, i.e. the difference between the true
delay and the estimate (solution from Eq. (1)) goes to zero.
We call such networks k-identifiable. In addition, we show
that if network is k-identifiable, Eq. (1) can be solved using
a LP optimizer.

Our specific contributions in this work are summarized next:

o We establish a connection between network tomography

and binary compressed sensing using expander graphs
which has received significant interest during the past few
years.

« We provide conditions on the routing matrix of networks

for which the network is k£ =1-identifiable.

o We provide an upper-bound on estimation error on link

delay when network in 1-identifiable.

As is customary, a network consisting of bidirectional
links connecting transmitters, switches, and receivers can be
modeled as an undirected graph N(V, E) where V is the set
of all vertices (nodes) and E the set of all edges (links). Let
B C V be a subset of accessible boundary nodes that can
act as probe sources and sinks; a set of measurements y are
obtained by end-to-end probing, given by Eq. (1).

The paper is organized as follows: Section II relates routing
matrix of a network to bipartite graphs. Section III relates
links delay estimation to binary compressed sensing and gives
condition on network routing matrix under which a given
network is 1-identifiable. While this is the simplest possible
class of identifiability problems (compared to the general
k > 1 case), it is sufficiently illuminating as our investigations
will show.The paper concludes with reflections on future work
in Section IV.

Notations: We use bold capitals (e.g. R) to represent matri-
ces and bold lowercase symbols (e.g. x) for vectors. The i-th
entry of a vector x is denoted by z; and Superscript ¢ shows
matrix transpose. A set is denoted by a calligraphic capitalized
symbol, e.g. R.

For any set S C {1,2,3,...n}, we use S° to denote the
complement of S. Also, for any vector x € R", vector xg is

Fig. 1. A network with 4 boundary nodes, 2 intermediate nodes and 5 links

a vector with entries defined as follows:
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II. ROUTING MATRIX AND BIPARTITE GRAPH

In this section we show how the routing matrix of a
network can be interpreted as a bi-adjacency matrix of a
suitably defined bipartite graph. This helps make a connection
between the notion of network identifiability and expander
graphs, a subset of bipartite graphs. In Figure 1, a toy network
with 4 boundary nodes and 2 intermediate nodes is depicted.
Throughout this work, boundary nodes are depicted as solid
circles while intermediate nodes are presented using dashed
circle.

A bipartite graph is one whose vertices can be divided into
two disjoint sets X and Y such that every edge connects a
vertex in X to one in Y. A bipartite graph is usually presented
as a triple G(X,Y, H) where H C X x Y is a set of edges
between two parts. Sets X and Y are called left side and right
side of the graph, respectively. A bipartite graph G(X,Y, H)
can also be represented with a matrix A = [a;;], known as
bi-adjacency matrix, where a;; = 1 if node ¢ in X is connected
to node j in Y, or equivalently if (¢,j) € H and it is zero
otherwise.

Suppose a network N (V| E) is given. Let n be the number
of links in this network (n = |E|), R the given collection
of paths between boundary nodes, where r is the cardinality
of R (i.e., total number of paths between boundary nodes).
Further, let R, ., be the routing matrix corresponding to
the set R. These are equivalent in the sense of containing
the same information about existing paths between boundary
nodes inside the network.

For the network in Figure 1, suppose the following routing
matrix is given:

Lol I3 Uy s
N9 ~~ Ng 1 01 1 0
R= nj~ ns 01101 3)
ny ~ N9 1 1 0 0 O
ns ~ Ng 0 0 0 1 1

which corresponds to collection of paths R as follows:
R = {lilsls, lalsly, 1112, 1415} €]

Note that the above routing matrix or the equivalent set of
paths is not a complete routing matrix of network in Figure
1. For instant it doesn’t include the path from n; to ng which
is l2l3ly. However, a fundamental underlying assumption in



Fig. 2. bipartite graph corresponding to given routing matrix in Eq. (3)

network tomography is that the routing matrix is fixed and
may not be changed; the goal is to use this given routing
matrix to estimate links parameters (delay is our case) inside
the network. The design problem, i.e. where the selection
of paths (equivalently choice of routing matrix) is a free
variable such that the network is 1-identifiable, is left for future
investigation.

R, x» can be thought of a bi-adjacency matrix of a bipartite
graph G(X,Y, H) where X = FE, set of links in network
N(V,E), and Y = R, the set of given paths in the network.
A node in X is connected to a node in Y if the path in Y
goes through the corresponding link in X. Figure 2 presents
the corresponding bipartite graph of network in Figure 1 with
routing matrix R in Eq. (3).

III. EXPANDER GRAPH AND NETWORK IDENTIFIABILITY

In this section we establish a connection between identifia-
bility in a network N (V| E) to the recently developed concept
of compressed sensing using expander graphs.

A. Expander Graphs

In recent years, a new approach for obtaining a succinct ap-
proximate representation of n-dimensional vectors (or signals)
has gained significant attention - compressive sensing [12],
[13], [14]. For any signal x, the representation available is
equal to Ax, where the measurement matrix A has dimension
m X n matrix (m << n). The traditional reconstruction
problem in compressive sensing is to obtain an estimate of
x from this lower-dimensional or compressed version, given
some side information about x, notably it’s sparsity, i.e. the
number of significant (non-zero) entries.

The main challenge is to embed A with desirable properties
(assuming it to be a design variable), such as maximum
possible compression or it’s ability to support fast approximate
recovery efficiently, subject to error bounds)[15], [16], [17],
[18]. However the problem we face here is the dual problem;
since the measurement matrix (equivalently, the routing ma-
trix) is already pre-determined, the question to be answered
is whether the (given) routing matrix supports compressive
sensing. To the best of the authors knowledge, there is no
study in the literature regarding this.

The measurement matrix in tomography is a binary matrix
that can be considered as a bi-adjacency matrix of a bipartite

graph. Berinde and Indyk in [19] show that bi-adjacency
matrix of special bipartite graphs, called expander graphs, can
be used as measurement matrix.

Definition 1. A (¢,d,¢) — expander is a bipartite simple
graph G(X,Y, H) with left degree d (i.e. deg(v) = dVv € X)
if for any ® C X with |®| < ¢ the following condition holds:

IN(®)| > (1 —€)d|D| (5)

where N (®) is set of neighbors of ®. Parameters ¢ and e
are referred to as “expansion factor” and ”error parameter”,
respectively.

Roughly speaking, in an expander graph, the degree of any
set of nodes in the left hand side (X) is ‘expansive’, i.e.
they connect to a sufficiently large number of nodes in the
right hand side (Y'). Expander graphs are well-studied in the
literature with a number of works describing how to construct
such a (¢, d, ) —expander graph. Interested readers may refer
to [20], [21], [22].

Berinde and Indyk in [23], [19] show that bi-adjacency
matrix of a (2¢,d,e) — expander graph can be used as
measuring matrix for a ¢-sparse signal. Therefore, to show a
given network N (V, E') with routing matrix R is 1-identifiable
it is enough to show that the corresponding bipartite graph with
bi-adjacency matrix R is a 2-expander graph. The error ¢ of
an expander graph is a design parameter which is related to
recovery error from the compressive measurements. Berinde
and Indyk derive their results for € < Tla However, in order to
potentially identify as large a class of (binary) measurement
matrices, we choose € to be as large as possible, at the expense
of increasing the re-construction error. In other words, higher
e expands the space of expander graphs which in turn map
to routing matrices that are Il-identifiable. We next quote
a theorem (the proof is omitted due to space constraints)
characterizing our key result and show via an example that the
bipartite graph in Figure 2 is an expander graph for e = 1/4.

Theorem 1. Let G(X,Y, E) be a (2,d,¢€)-expander graph
with bi-adjacency matrix A. Further assume w lies in null
space A (Aw = 0) and let S be any set of k = 1 coordinates
of w. Then

[ ws 1< 2¢ || wse |1 (6)

proof: See [24].

The following theorem places an upper bound on error of
recovering x from its linear projection Ax when A is a bi-
adjacency matrix of an (2, d, €)-expander graph.

Theorem 2. Consider any two vectors X, X', such that they
have the same projection under measurement matrix A; i.e.
Ax = AX'. Further, suppose || X' |1<|| x ||1. Let S be the
set of k =1 largest (in magnitude) coefficients of x. Then

| x" —x[1< fle) || xse | (7)

1+2¢

where f(€) = 5755




Hlustrative Example: We show that the routing matrix of
network depicted in Figure 1 can be used as a measurement
matrix, as it is the bi-adjacency matrix of the bipartite graph
in Figure 2 and this bipartite graph is a (2,2, 1/4)-expander
graph. For instance, let ® = {ly,l}. In that case, N({l1,l2})
which is the set of nodes connected to {l1,ls} is:

N{l1,l2}) = {P1, P2, P3} ®)

implying that |N({l1,l2})] = 3 and inequality (5) holds as
equality.

The null space of matrix in Eq. (3), having dimension one,
is given as below:

w=[ —-10 —1 1] 9)

Since € = 1/4, by Theorem 1, the following inequality holds
for bi-adjacency matrix of bipartite graph in Figure 2:

| ws [[1<0.5 || wse |1 (10)

For example, let S = {1}. Then wg and wge can be written
as follows:

1 0
0 -1
ws=|0| wge=] 0 (11)
0 -1
0 1
Thus, || ws ||1=1 and || wge ||;= 3 and inequality (10) is
satisfied.

Assume that the (unknown) true delay vector is

x=1[0.1 0.1 1 0.1 0.1] (12)

Then the measured vector using the measurement matrix in
(3) equals

Rx =[2.2 2.2 0.2 0.2] (13)
Since Aw = 0, the set of all possible solutions is
1 1
1 -1
X =x+aw= 1 |+« 0 (14)
1 -1
1 1
For o = .05, the corresponding estimate x’ is
x' =1[0.125 0.075 1 0.075 0.125]" (15)

Since € = 1/4, we have f(e) = 1.5. Let S = {3}, then
from Theorem 2 we have:

I —x|i=1 < f() | xs |1 (16)
= 15x(1+.14+.14+.1)
= 6
u

B. Delay Estimation

The following theorem shows how to estimate delay in a
given network N (V| E) using the results of expander graphs.
In addition, it proves that end-to-end measurement equation in
(1) can be solved using a LP optimizer.

Theorem 3. Let N(V, E) be a network with set of paths R
and corresponding routing matrix R. Suppose G(E, R, H) is
a bipartite graph with bi-adjacency matrix R. Assume x* is
the true delay vector of N(V, E). Let x be a solution to the
following LP optimization:

min || x ||; a7
s.1.
Rx = Rx*

Then
[ x—x" i< f(e) || xse |1

if G is a (2,d, e)-expander with € < %.

proof: See [24].

First note that if the true delay vector x is l-sparse, it
implies || xse ||1= 0 which means /;-norm minimization in
Eq. (18) can recover signal completely with zero estimation
error. However, if the true delay vector contains links with
small but non-zero delays (the more likely scenario), then the
estimation error is not zero and the above theorem places an
upper bound on estimation error.

It should be mentioned that in general, the reverse of
Theorem 3 is not true; i.e. there exist networks N (V, E') which
are 1-identifiable but their corresponding bipartite graph is not
an expander graph. An example of such a graph is depicted
in Figure 3-a. The bipartite graph of its routing matrix is
presented in Figure 3-b. As can be seen, this bipartite graph is
not regular (the degree of a node in left set is either one or two)
in its left side which means it cannot be an expander graph
(note: regularity is part of definition of an expander graph).
However, Figure 4-(a) and (b), respectively, present subgraphs
of G with regular left degree one and two and each of these
subgraphs is an expander.

The above observation suggests the extension in Theorem
3 for networks whose corresponding bipartite graph is not
regular (and therefore not expander) but consists of expander
sub-graphs.

Theorem 4. Let N(V, E) be a network with routing matrix
R. Let G(X,Y,H) be a bipartite graph with bi-adjacency
matrix R. Suppose G;(X;,Y, H;), i = 1,2,...M be d;-regular
bipartite subgraphs of G such that:

e X =UKX;

e« H=UH,

. di;«édjfori;éj

Then, N(V, E) is 1-identifiable, if each of G; is an (2,d;, €)-
expander graph for e < i. Further, link delays may be estimate
as the solution to LP optimization in Eq. (18)

proof: see [24].



(a)

(b)

Fig. 3. An example of network which is 1-identifiable but its corresponding
bipartite graph is not an expander graph (a) Network topology (b) Its
corresponding bipartite graph

o
0@
(b)

Fig. 4. Two subgraphs of bipartite graph in Figure 3-b which are regular in
their left side

Basically, the above theorem says that a network N (V, E)
with routing matrix R is 1-identifiable if every two links /; and
l; in the network either a) have different degrees in bipartite
graph G (meaning they belong to different expander graphs)
or b) they satisfy the expansion property in Eq. (5).

IV. CONCLUSION

This work presented a novel approach for estimating inter-
nal link delays in a network from end-to-end measurements
obtained via probing between boundary nodes. Using the idea
of binary compressed sensing, which has received significant
attention in the past few years, we provide both a method
for such identification and an upper bound on recovery error.
Sending probes between nodes on the boundary of a network
clearly comes with the cost of increasing traffic inside the
network. How to design the routing matrix of a given network
to minimize the number of injected probes needed while the
network remains 1-identifiable remains an important future
work.
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