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Abstract—OFDMA is the basis of future broadband access,
due to its many inherent advantages such as scalability and
fine granularity for multi-user access. OFDMA-Aloha combines
the flexibility of OFDMA with basic Aloha’s collision resolution
mechanism over sub-carriers, in an attempt to reduce packet
collisions and achieve faster retransmission. However, this comes
at the expense of a larger slot size, due to lower channel rates
per subcarrier. The above gives rise to a fundamental question:
whether to use a single wide-band Aloha channel and retransmit
via random back-off in next K time slots, or to retransmit
immediately in one of K narrow-band sub-channels which are
each 1/K slower (OFDMA-Aloha)? We answer this question, by
analyzing the two protocols: Aloha and OFDMA-Aloha under
the same total bandwidth and load conditions. We first derive
the exact distribution of the packet access delay of OFDMA-
Aloha in the saturated case. Then, we extend the analysis to
the unsaturated case and derive the mean queue length and
packet delay by decomposing the system of interfering queues
into multiple independent queues utilizing the symmetry in
our system. Our results show that if the network is already
saturated, channelization does not bring substantial reduction in
the collision rate to the point where it outweighs the effect of
expanded slot size. In this case the single channel Aloha performs
better than OFDMA-Aloha especially when the gap between the
number of channels and the number users is large. On other
hand, when the network is lightly loaded, OFDMA-Aloha enjoys
smaller packet delays, but not for long as it saturates faster than
the single channel Aloha.

Index Terms—OFDMA, Aloha, multi-channel MAC, fast re-
trial algorithm.

I. INTRODUCTION

ORthogonal Frequency Division Multiple Access
(OFDMA) is the radio access technology used in

new cellular systems such as 3GPP Long Term Evolution
(LTE) and IEEE 802.16 (WiMax). In OFDMA systems, the
total bandwidth is divided into many channels by clustering
OFDM sub-carriers into sub-bands (sub-channels). Then,
multiple users are allowed to access different sub-bands
simultaneously. An example of this channelization is done
in LTE by grouping 12 OFDM sub-carriers into a 180 kHz
sub-channel which gives about 100 sub-channels in a 20 MHz
channel. This is in contrast to IEEE 802.11a/g wireless LANs
which are also based on OFDM, but only give access to the
whole 20 MHz channel to one user at a time. Furthermore,
switching between different sub-channels is instantaneous due
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to the nature of OFDMA. This instantaneous channelization
plus the fact that all sub-channels are orthogonal provide a
new degree of freedom to the MAC layer.

Typically in OFDMA-based cellular networks, the base
station controls access to all sub-channels within the cell
and coordinates with adjacent cells in order to limit inter-
cell interference. However, this centralized approach is not
suitable for emerging heterogeneous networks where small
cells like femtocells are expected to play an important role in
offloading traffic and increasing the capacity of the network.
Femtocells consist of a small access point designed to serve
few users in a small indoor area. Since they are deployed in
ad-hoc locations by end users and appear/disappear frequently,
centralized frequency planning and coordination becomes a
challenging task. A femtocell serves a single user most of the
time and a cluster of adjacent femtocells can be essentially
thought of as multiple users competing for all available sub-
channels in an OFDMA network. Random access protocols
are “natural” choices in such scenarios and are expected to
play an important role in future dense femtocell deployments.

Several random access protocols have been proposed for
OFDMA networks, see for example [1]–[3]. In [1], the authors
proposed an opportunistic multi-channel Aloha in which the
transmission probability is adapted based on the channel state
information in each sub-channel. The objective here is to
exploit the multi-user diversity in a distributed manner and
compare it to the centralized sub-channel allocation. OFDMA-
Aloha was proposed in [2] as a direct extension of the single-
channel Aloha, where instead of waiting for a random backoff
period when a collision occurs in one sub-channel, the node
tries another (randomly selected) sub-channel immediately
subject to a maximum retry limit. Recently [3] extended
the basic idea of [2] to CSMA/CA systems. In OFDMA
CSMA/CA, a node first senses all sub-channels, randomly
selects one sub-channel from the set of idle sub-channels and
then backoffs for a random Collision Avoidance (CA) period
in a way similar to the standard procedure in IEEE 802.11.
The difference is that it decrements the backoff counter by
the number of sensed idle sub-channels in every slot, thus
resulting in faster channel access time.

In this paper, we focus on an OFDMA-Aloha system which
attempts to exploit the flexibility of OFDMA by extending the
basic time-domain backoff procedure employed for standard
ALOHA using a single channel, to the frequency-domain in
the multi-channel scenario. The idea of OFDMA-Aloha was
originally proposed in [2] as a fast-retrial algorithm which
is explained in detail in Section I-A. The authors assumed a
finite network with N users and approximated all new arrivals
plus fast-retransmissions from frequency- and time-domain
retransmissions by an aggregate Poisson model. They derived
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the distribution of the access delay for a fixed number of
channels K . However, their results do not allow a fair compar-
ison between the single channel Aloha versus OFDMA-Aloha
for different values of K . It is not clear from their analysis
whether or not the total system bandwidth is fixed for both
Aloha and OFDMA-Aloha, as would be necessary for a fair
comparison.

The primary contributions of this paper are as follows. First,
we provide a delay analysis of OFDMA-Aloha in the saturated
case which is helpful to study the limits of the protocol under
various system settings. Here, the exact distribution of the
packet access delay is derived in terms of the number of
channels K , number of users N and other system param-
eters. Our results allow us to study the scalability of the
OFDMA-Aloha protocol with varying number of channels and
compare it to the single channel Aloha under fixed system
bandwidth and load conditions. Second, we derive the mean
queue length and mean packet delay in the unsaturated case
using an approximate queuing analysis. For this, we utilized
the symmetry in the network to decompose the system of
interfering queues into multiple independent queues which
can be studied using standard queuing theory. The analysis
reveals an interesting phase transition in the performance of
OFDMA-Aloha (compared to Aloha) when going from the
unsaturated to the saturated region. The major results are
organized into two main sections- the analysis of the saturated
case is presented in Section II and the queuing model and
analysis of the unsaturated case are presented in Section III.

A. System Model and Assumptions

The basic operation of OFDMA-Aloha is depicted in Fig.
1. The total system bandwidth is divided equally into K
channels (or sub-channels in OFDMA terms). We assume a
collision channel model where transmission errors can only
occur because of collisions, i.e. we ignore noise and other
channel imperfections. A node with a packet to transmit,
selects a channel randomly from the K channels and transmits
at the beginning of the next slot. If a collision occurs, the
node tries to retransmit the packet on a different channel
immediately in the next slot. If the packet collides again, the
node persists in retransmission until a maximum number of
retrials M is reached, at which time the node backs off for a
random amount of time and resets its fast-retry counter. This
fast retrial feature is what differentiates OFDMA-Aloha from
standard multi-channel Aloha.

For a consistent and fair comparison between OFDMA-
Aloha with K channels and the single channel Aloha, we an-
alyze the two systems under the same total channel bandwidth
and net arrival rates. We use the subscript 1 to denote Aloha
and subscript 2 to denote OFDMA-Aloha. The system model
in both cases is depicted in Fig. 2. We assume a (usual) noise-
free collision channel with total bandwidth B (total channel
rate R bits/second) and fixed packet size L. The network
consists of N users, each with an infinite buffer. Both MAC
protocols are slotted and packet transmission is only allowed
at the slot boundary. Time is discretized into mini-slots of
duration τ corresponding to the packet transmission time over
the full bandwidth, i.e., τ = L/R seconds. All time related
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quantities are defined in multiples of the mini-slot τ . With
this, the slot duration becomes τ1 = τ seconds in Aloha and
τ2 = Kτ seconds in OFDMA-Aloha because the rate of each
sub-channel is R/K . The queuing model is described in more
detail in Section III.

For tractability, we employ the Delayed First Transmission
(DFT) model which is widely used in the literature [4]. Under
this model, the same transmission probability is used for all
packets, whether new or old. That is, a newly arriving packet
is forced to wait for the same random backoff period as any
other retransmitted packet. Fig. 3 and Fig. 4 show the two
MAC protocols under the DFT model. The consequence of
this model is that when all users are busy, the transmission
probability of each user is fixed in all time slots. Using
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Fig. 3. OFDMA-Aloha MAC flow chart under the DFT model.
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Fig. 4. Aloha MAC flow chart under the DFT model.

this DFT assumption, upon a new arrival, the node moves
immediately into the backoff mode. In the backoff mode,
the node transmits (or retransmits) the Head of Line (HOL)
packet with probability p or delays it to the next slot with
probability 1 − p. The transmission probabilities are p1 and
p2 for Aloha and OFDMA-Aloha respectively. Finally, we
assume the number of users N is strictly greater than the
number of channels K in OFDMA-Aloha; otherwise, the
bandwidth becomes underutilized.

II. SATURATED CASE ANALYSIS

In the saturated case, we assume all buffers are always
full, such that every successful packet is replaced immediately
with a new packet. In this case, the quantity of interest is the
throughput or equivalently its reciprocal: the packet access
delay d. One approach to the analysis of such system is to
construct a Markov chain representing the state of the system
in any slot and finding the state transition probability matrix.
While the system state for Aloha in the saturated case is
trivial, we need an M + 1 dimensional Markov chain to

represent the state of the system in OFDMA-Aloha. If mi

is the fast-retry counter at user i, then the system state is
given by n = (n1, n2, · · · , nM , nbk) where nj , j = 1, · · · ,M
represents the number of users with fast-retry counter m = j
and nbk represents the number of users in the backoff state, i.e.
their fast-retry counters have exceeded M . This Markov chain
is difficult to analyze even for the simplest case of N = 2.

By utilizing the symmetry in the system, we carry out a
much simpler analysis using state flow graph techniques [5].
Since all users are statistically identical, we derive the quantity
of interest by analyzing the state flow graph of the Markov
process representing packet transmission in a typical, tagged
user. The steady state distribution and moments of the process
are derived using transform analysis of the state flow graph
described in [5]. This approach has been used previously, for
example for the analysis of Tone Sense Multiple Access in
[6] and for an approximate queuing analysis of Aloha in [7]
and CSMA/CD in [8]. We start by illustrating this technique
for Aloha in order to facilitate the exposition of the more
complicated OFDMA-Aloha system.

A. Aloha Saturation Analysis

The state transition diagram of the packet transmission
process in a typical user in Aloha is shown in Fig. 5. The
state flow graph is constructed from the original state transition
diagram of the process by multiplying each branch between
any two states by the Probability Generating Function (PGF)
of the time (or number of steps) required for the transition.
Under the DFT assumption, a ready packet moves to the
backoff state immediately. In every subsequent slot, the user
transmits with probability p1 and defers transmission with
probability 1− p1. If we denote the probability of successful
transmission by q1, then the packet moves into the success
state with probability p1q1 and stays in the backoff state
with probability (1 − p1) + p1(1 − q1). Each of these two
transitions require one time slot, and hence the PGF is just z
times these probabilities. Upon successful packet transmission,
a new packet moves to the ready state immediately and the
process repeats again.

From the state flow graph, the access delay d1 seen by each
packet in Aloha is the total time required to move from the
”Ready” state to the ”Success” state. The PGF of this delay
D1(z) is the transfer function from state Sr to state Ss in the
flow graph. D1(z) can be obtained using flow graph reduction
methods or directly using Mason’s rule, see [9]:

D1(z) =
p1q1z

1− [(1− p1)z + p1(1− q1)z]
(1)

=
p1q1z

1− (1− p1q1)z

where the average success probability q1 of the tagged user
in Aloha is given by:

q1 = (1 − p1)
N−1

By differentiating D1(z) and evaluating at z = 1 we get the
mean access delay d1 (in mini-slots):

d1 = D′
1(1)

=
1

p1q1
=

1

p1(1− p1)N−1
(2)
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Fig. 5. State flow graph of packet transmission process in Aloha.

B. OFDMA-Aloha Saturation Analysis

Similarly, we show the state flow graph of the packet
transmission process in OFDMA-Aloha in Fig. 6, where p2
and q2 denote the transmission probability and the success
probability respectively. In this case we have M additional
states representing each stage of the fast retry mode. As
in Aloha, a ready packet moves to the backoff state Sbk

immediately. In Sbk, the user transmits with probability p2
and defers transmission to the following slot with probability
1 − p2. When a collision occurs for the first time, the retry
counter is incremented to m = 1, and the packet moves to
state S1. When a second collision occurs in the following
slot, the packet moves to state S2, continuing this way until
the maximum retry limit m = M is reached in state SM. If
a collision occurs in state SM, the user ”gives up” retrying
and falls back into the backoff state Sbk and resets m = 0.
Note that in all the fast retry states: S1, S2, · · · , SM, the user
transmits with probability 1, whereas in the backoff state he
transmits with probability p2.

As before, we find the PGF of the access delay D2(z) in
OFDMA-Aloha by writing down the transfer function from
state Sr to state Ss in the state flow graph using Mason’s rule:

D2(z) =
p2q2z

[
1− (1− q2)

M+1zM+1
]

[1− (1− p2)z − p2(1− q2)M+1zM+1]

× 1

[1− (1 − q2)z]

(3)

We could differentiate D2(z) and evaluate at z = 1 to the
get the mean access delay d2 in OFDMA-Aloha. However,
we follow an easier approach which will prove useful later
in finding the success probability q2. For this, we apply the
transient Markov process analysis described in [5, ch. 4]. Note
that from the perspective of a newly arrived packet, the states:
Sbk, S1, · · · , SM are transient states and state Ss is a trapping,
or an absorbing state. Therefore, the delay seen by the packet
is the total time spent in the transient process which is the
sum of the time spent in the backoff state and all fast retry
states.

To find the average time spent in the transient backoff state,
Tbk, we could find the transfer function from the input state
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Fig. 6. State flow graph of OFDMA-Aloha.

Sr to state Sbk to obtain the PGF of Tbk and then differentiate
to get E[Tbk]. Alternatively, since we are interested in the first
moment, we could find the path transmission gain from Sr to
Sbk using a modified state flow graph with z = 1. Applying
Mason’s rule between state Sr and state Sbk in the modified
flow graph, we get the average time spent in the backoff state:

Tbk =
1

p2 − p2(1− q2)M+1
=

1

Δ

where Δ ≡ p2−p2(1−q2)
M+1. Similarly, we use the modified

flow graph to find the average time spent in the fast retry states:

T1 =
p2(1 − q2)

Δ

T2 =
p2(1 − q2)

2

Δ
...

TM =
p2(1 − q2)

M

Δ

The mean access delay is the total time spent in the transient
process (in mini-slots):

d2 = (Tbk + T1 + T2 + · · ·+ TM)×K

=

(
1

Δ
+

M∑
m=1

p2(1− q2)
m

Δ

)
×K

=
q2 − p2q2 + p2[1− (1− q2)

M+1]

p2q2[1− (1− q2)M+1]
×K (4)
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where the multiplier K signifies that the slot size in OFDMA-
Aloha is K mini-slots.

Next, we find the probability of success q2 for the tagged
user in OFDMA-Aloha. Denote by pt the average transmission
probability of any user in any slot and the set of all states by
S = {Sbk, S1, · · · , SM}:

pt =
∑
i∈S

Pr[user transmits | state i] Pr[state i]

= p2 × pbk + 1× pf (5)

where pbk and pf are the probabilities of being in the backoff
mode (state Sbk) and the fast retry mode (states S1, · · · , SM)
respectively. To find pbk and pf , we utilize the above transient
process analysis. pbk is the proportion of time spent in the
backoff mode and is given by:

pbk =
E{time spent in the backoff state}

E{total time spent in the transient process}
=

Tbk

d2

=
q2

q2 − p2q2 + p2[1− (1− q2)M+1]
(6)

Similarly, pf is the proportion of time spent in the fast retry
mode and is given by:

pf =
E{time spent in all fast retry states}

E{total time spent in the transient process}

=

∑M
m=1 Tm

d2

=
p2[1− (1− q2)

M+1]− p2q2
q2 − p2q2 + p2[1− (1 − q2)M+1]

(7)

Now, suppose that the tagged user selects channel c for
transmission. Since all remaining N -1 users are statistically
identical and channel selection is uniform with probability
1/K , the probability of success of the tagged user on this
channel is given by:

q2 =

(
1− pt × 1

K

)N−1

(8)

Substituting pbk and pf in (5) and (8), we get the following
non-linear relation between the packet success probability and
the system parameters in OFDMA-Aloha:

q2 =

[
1− 1

K

(
p2[1− (1− q2)

M+1]

q2 − p2q2 + p2[1− (1 − q2)M+1]

)]N−1

(9)
which can be solved numerically for q2 to derive the mean
access delay d2 in (4).

In the analysis above, we assumed the DFT model in Fig.
3 and Fig. 4. For Aloha in the saturated case, this assumption
does not pose any significant difference, and hence we can
use the result for d1 in (2) without this assumption. From this
we can state the following result for the original OFDMA-
Aloha in Fig. 1. If we allow unlimited number of fast retrials
(M = ∞), the access delay in OFDMA-Aloha is always larger
than the access delay in Aloha regardless of the number of
channels, as quantified in the following proposition:

Proposition 1. Let d∞2 be the mean access delay in OFDMA-
Aloha with K channels and with M = ∞, i.e. unlimited

number of fast retrials. Let d1 be the mean access delay in
Aloha with the same total bandwidth and with transmission
probability p1 = 1/N where N is the number of users. If all
users are saturated, then:

d∞2 ≥ d1 ∀ K > 1 (10)

with the equality satisfied only when K = N .

Proof: Note that when M = ∞ in OFDMA-Aloha
without the DFT assumption (Fig. 1), every user transmits with
probability 1/K in every slot until the packet is successfully
transmitted. This means no time-domain backoff will be
encountered. In this case, the success rate of the tagged user
in each slot is q2 = (1 − 1/K)(N−1) and the mean access
delay is 1/q2 slots. In terms of mini-slots, the mean access
delay is given by:

d∞2 =
1

q2
×K

=
K

(1− 1
K )(N−1)

(11)

From the first and second derivatives of (11) with respect to
K , we see that d∞2 is strictly convex on the interval (1,∞)
and attains its minimum value at K = N . At this value of K ,
d∞2 = d1, the mean access delay of Aloha with p1 = 1/N
given by (2):

d1 =
N

(1− 1
N )(N−1)

C. Numerical and Simulation Results

In order to verify our analytical results, we simulated the
two MAC algorithms using the flow charts in Fig. 3 and
Fig. 4. The simulation environment represents the abstract
system model described in I-A. We present numerical and
simulation results for OFDMA-Aloha with K = 5, 10 , 15
and M = 10, 20. In all cases, the transmission probabilities
of all users were fixed and the load line is varied by changing
the number of users. Since we are studying a “symmetric”
system of N homogeneous users, we set the transmission
probability (attempt rate) of Aloha to p1 = 1/N . For a fair
comparison, we set the transmission probability in OFDMA-
Aloha to p2 = K/N which is K times the attempt rate of
Aloha because the slot size is K times larger. Also, p2 = K/N
gives identical performance to Aloha during the initial startup
phase when all users are in the backoff state. For the numerical
evaluation, we used the fzero routine in MATLAB to compute
the numerical solution of d2 in (4). In all cases of interest
(K < N ), the numerical results agree very well with the
simulation results.

The mean access delay in the saturated cased is shown in
Fig. 7 for M = 10. The results show that the single channel
Aloha always performs better than OFDMA-Aloha when all
users are saturated. This can be interpreted as follows; the key
idea behind OFDMA-Aloha is to reduce the retransmission
time by reducing the collision probability. This is achieved
at the expense of an expanded slot duration due to the lower
channel rate. The reduction in the collision rate has to be
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significant to overcome this expense and this is only achieved
with larger number of channels, i.e K close to N . For example
at N = 20, the access delay of OFDMA-Aloha with K = 15
is very close to that of Aloha. However, as the gap between K
and N increases, the reduction in the collision rate decreases
and the impact of the expanded slot duration becomes more
dominant. This suggests that OFDMA-Aloha might be helpful
for lightly loaded network with low collision rates. We will
study this case in the next section.

To investigate the effect of the fast retry limit M , we
compare the access delay of OFDMA-Aloha with 3 different
values of M in Fig. 8 for K = 15. Clearly, higher values
of M perform worse because they permit more fast retrials
which result in higher number of collisions in the saturated
case.

III. UNSATURATED CASE ANALYSIS

In the unsaturated case, some user buffers may be empty,
and hence will not contend for channel access. This necessi-
tates a queuing analysis of the system. As depicted in Fig. 2,
our system model consists of N queues served by one server
(channel). Due to channel contention, the service time of each

queue depends on the state of all other queues. The state of the
system is thus an N-dimensional vector q = (q1, q2, · · · , qN ),
where qn is the queue size of the nth queue. A direct brute-
force analysis of this system is intractable due to the large state
space, and approximate analysis is necessary. This problem of
interfering or interacting queues in multiple access networks
has been studied extensively over the past 30 years with
various approximation techniques proposed in the literature,
see for example [10] and the references therein.

A notable approximation technique is based on decom-
posing the multi-queue system into N independent queuing
systems and capturing the interaction between the interfering
queues in the service time distribution using some simplifying
assumption. One approach is to assume that each user operates
at its steady state independently of all other users and is busy
with probability ρ < 1. In this case, the distribution of the
service time of a typical, “tagged” user can be expressed
as a function of the busy probabilities of all other users.
Because of the symmetry and fairness of the protocol, the
busy probabilities of all other users is identical to that of the
tagged user. Therefore, the service time distribution of the
tagged user can be expressed as a function of its own busy
probability. Then, by applying classical queuing models on
the tagged user’s queue, we can obtain a relation between the
busy probability and the service time distribution. These two
relations can be used to solve the system for the quantities of
interest. This approach has been used for a queuing analysis
of Aloha in [7] and CSMA/CD in [8].

Utilizing the general idea above, we proceed to compare
the two systems: Aloha and OFDMA-Aloha with unsaturated
load. Particularly, we derive the mean packet delay which is
the sum of the queuing delay and the access delay. For clarity
of exposition, we split the analysis into two parts: a contention
analysis and a queuing analysis and then we combine the
results to solve for the quantity of interest. First, we state
our queuing model and assumptions.

A. Queuing Model and Assumptions

In addition to the general system assumptions stated earlier,
we further invoke the following in our queuing analysis:

1) A discrete-time queuing model is used to model each
of the two systems: Aloha and OFDMA-Aloha with
respective slot sizes τ1 = τ second and τ2 = Kτ
seconds as illustrated in Fig. 2.

2) The common arrival process is Bernoulli with parameter
λ with respect to the mini-slot τ , i.e. in every mini-slot
a packet arrives with probability λ and does not arrive
with probability 1− λ.

3) The service discipline is First Come First Serve (FCFS)
with late arrival mode. This means a packet arriving to
an empty queue must wait for the next slot to get service.

Next, we define several quantities needed in the analysis. All
discrete-time related quantities are expressed in slots where
the slot size is defined for each system accordingly. We use
subscript i = 1 for Aloha and i = 2 for OFDMA-Aloha.

1) Ti: the total time spent by a packet in the system.
2) Xi: the service time of the Head of Line (HOL) packet

in the queue; from the instant it reaches the HOL until
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it is successfully transmitted. The probability generating
function (PGF) of Xi and its first two moments are
defined as follows:

Xi(z) ≡
∞∑
k=0

Pr[Xi = k]zk

xi = E[Xi] = X
′
i(1)

x
(2)
i = E[X2

i ] = X
′′
i (1) +X

′
i(1)

3) Qi: the number of packets in the queuing system (in-
cluding the HOL packet) at the boundary of an arbitrary
slot and its PGF is defined as follows:

Qi(z) ≡
∞∑
k=0

Pr[Qi = k]zk

4) Λi: the number of packets that arrive in a slot and its
PGF and first two factorial moments are defined as
follows::

Λi(z) ≡
∞∑
k=0

Pr[Λi = k]zk

λi = E[Λi] = Λ
′
i(1)

λ
(2)
i = E[Λi(Λi − 1)] = Λ

′′
i (1)

With the above assumptions, the queuing models for the
two systems are described below.

• Queuing Model for Aloha: Because the slot duration in
Aloha matches with the mini-slot (τ1 = τ ) in the common
arrival process, no more than one packet can arrive in
a slot, hence the arrival process in this system is also
Bernoulli with parameter λ1 = λ. This system can be
modeled as Geo/G/1 queuing system because the packet
inter-arrival time is geometrically distributed with mean
1/λ1.

• Queuing Model for OFDMA-Aloha: The slot size in
OFDMA-Aloha is (τ2 = Kτ ). The number of packets
that can arrive in one slot is Binomially distributed with
parameters (K ,λ). To simplify the analysis, we assume
that all packets arriving in a slot arrive in a batch at the
end of the last mini-slot of this slot (late arrival model),
see Fig. 9. This approximation is needed because we will
derive the mean packet delay of this discrete queuing
system in terms of the slot time τ2 and later convert
it to mini-slots by multiplying by Kτ . With the batch
arrival model, the inter-arrival time is still geometrically
distributed and we have a batch arrival Geo/G/1 system
which is denoted by GeoX/G/1, see [11]. The PGF and
the first two factorial moments1 of this arrival process in
this case are given by:

Λ2(z) = (1 − λ+ λz)K

λ2 = Kλ

λ
(2)
2 = (1− 1

K
)λ2

2

1The first factorial moment of a random variable X with a PGF X(z) is
defined as x = E[X] = X

′
(1) and the second factorial moment is defined

as x(2) = E[X(X− 1)] = X
′′
(1).

Arrival

τ
2
 : slot for OFDMA-Aloha

time

Arrival Arrival

Batch Arrival

τ
2
 : slot for OFDMA-Aloha

time

Fig. 9. Bernoulli arrivals vs. batch arrivals.

B. Contention Analysis

We first start with the contention analysis of Aloha to obtain
X1(z), the service time distribution, of the tagged user in
terms of the busy probability: pb, or equivalently the idle
probability p0 = 1 − pb . Using the fact that only busy
users contend for channel access, we repeat the state flow
graph analysis given in the previous section, but this time
multiplying the transmission probability of each user by its
busy probability (1 − p0). Following the same approach we
used to derive the access delay in (1), we get

X1(z) =
p1q1z

1− (1− p1q1)z
(12)

and by differentiating and setting z = 1 we get the mean
service time in Aloha:

x1 =
1

p1q1
(13)

The success probability q1 in this case is given by:

q1 = [1− (1 − p0)p1]
N−1 (14)

where p1 is the transmission probability in the Aloha system.
Similarly, we use the state flow graph in Fig. 6 to derive

the service time distribution X2(z) of OFDMA-Aloha:

X2(z) =
p2q2z

[
1− (1− q2)

M+1zM+1
]

[1− (1− p2)z − p2(1− q2)M+1zM+1]

× 1

[1− (1− q2)z]

(15)

and its mean service time:

x2 =
q2 − p2q2 + p2[1− (1 − q2)

M+1]

p2q2[1− (1− q2)M+1]
(16)

Note that this is the same as the mean access delay d2 given in
(4) in the saturated case. However, the probability of success
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here is given by:

q2 =

[
1− (1 − p0)

1

K

×
(

p2[1− (1− q2)
M+1]

q2 − p2q2 + p2[1− (1− q2)M+1]

)]N−1 (17)

From equations (13-16), we see that the mean service time
of each system can be expressed as a function of the idle
probability p0 of the tagged user in addition to the system
parameters: M , K , N , p1 and p2.

C. Queuing Analysis

Second, we utilize known results from discrete-time queu-
ing theory to obtain another relation between the service time
and the idle probability p0 in each system. In both Geo/G/1
and GeoX/G/1 systems, the PGF of the queue size at the
boundary of an arbitrary slot is given by, see [11]:

Qi(z) =
(1− ρi)Xi[Λi(z)]

Xi[Λi(z)]− z
(18)

where ρi = λixi is the load or the utilization of the server.
This relation is only valid for ρ < 1. From this, we get:

p0 = Pr[Qi = 0]

= 1− ρi

= 1− λixi (19)

Therefore, we have two independent relations which can be
used to solve for the success probability qi in each system
in terms of the system parameters and the arrival rate. We
substitute (13) and (19) into (14) to get the success probability
in Aloha:

q1 =

[
1− λ1

q1

]N−1

(20)

Similarly, we substitute (16) and (19) into (17) to the get
success probability in OFDMA-Aloha:

q2 =

[
1− λ2

Kq2

]N−1

(21)

Once the success probability qi is obtained for each re-
spective system, the first and second moments of the service
time, can be derived from their PGFs in (12) and (15) for
Aloha and OFDMA-Aloha respectively. Once the service time
distribution is determined, the queuing system is actually
solved. From (18), we get the mean queue size:

E[Qi] =
λ2
i x

(2)
i − λiρi + λ

(2)
i xi

2(1− ρi)
+ ρi (22)

Applying the discrete-time version of Little’s theorem, we get
the mean packet delay:

E[Ti] =
E[Qi]

λi
(23)

Finally, we stress that this approximate queuing analysis is
based on the assumption that every user operates at steady
state independently of all other users. This assumption is
violated in two cases. The first is when the number of users
is small because in this case the interaction among the users

is strong and the above approximation is poor. The second
is when the mean number of arrivals in a slot exceeds the
mean service rate, i.e ρ > 1. In this case, the steady state
probability distribution does not exist as all queues saturate
and all users will be busy with probability 1. When this
happens, no solution can be found for the probability of
success in (20) and (21) and the above analysis cannot be
used. The maximum admissible arrival rate before the system
saturates defines the stability of the system as discussed in the
following subsection.

D. Stability Analysis

A queuing system is said to be stable if ρ = λx < 1,
where λ is the mean arrival rate and x is the mean service
time. In buffered multiple access systems, the mean service
time x depends on the interaction among all competing queues
which makes their stability very difficult to characterize. The
general stability region of even the simplest multiple access
systems like Aloha has not been fully understood except for
few simple cases and several approximate bound. However,
for Aloha with homogeneous users, i.e. all users having the
same arrival rate λ1 and the same transmission probability
p1 = 1/N , then the necessary and sufficient condition for
system stability was derived by Tsybakov and Mikailov [12]
as follows:

λ1 < λmax
aloha =

1

N
(1− 1

N
)N−1 (24)

This stability result was generalized in [13] for any arrival
vector λ and any transmission probability vector p as

λi < pi

N∏
j �=i
j=1

(1 − pj), ∀ i = 1, · · · , N

The stability bound of OFDMA-Aloha is difficult to express
algebraically because it involves the unknown zeros of (21)
which must be found numerically. However, for the settings as-
sumed in this analysis, it can be shown that the stability region
of OFDMA-Aloha is strictly smaller than the corresponding
region for Aloha. This indicates that OFDMA-Aloha saturates
faster than Aloha under the same arrival rate as highlighted in
the following proposition.

Proposition 2. In OFDMA-Aloha with N homogeneous users,
K channels, a finite number of fast retrials M and a trans-
mission probability p2 = K

N , the maximum admissible arrival
rate λmax

ofdma for which the system does not saturate, satisfies:

λmax
ofdma < λmax

aloha =
1

N
(1− 1

N
)N−1 (25)

for all 1 < K < N and M ≥ 1.

Proof: The proof hinges on using the dominant system
approach introduced in [14] and extended in [13]. Denote
by S1 our original N -queue OFDMA-Aloha system with the
queuing model described before. Define another OFDMA-
Aloha system S2 which is identical to S1, with the same arrival
rate λ2 and the same transmission probability p2 = K/N .
The only difference is that when a queue becomes empty in
S2, it continues to transmit ”dummy” packets with the same
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transmission probability p2. Dummy packets can result in
collisions, but the successful transmission of a dummy packet
does not reduce the queue size. Therefore, S2 always has
larger queue size than S1 if both start from the same initial
conditions, i.e. S2 dominates S1. Clearly, if S2 is stable then
our original system S1 is also stable.

The mean service time of the dominant system is given by
(16), but its success probability q2 is given by (9) because it
is indistinguishable from OFDMA-Aloha under saturation, i.e.
p0 = 0. Substituting (16) in (9), we get:

q2 =

[
1− 1

Kq2x2

]N−1

or equivalently,

x2 =
1

Kq2(1− q
1/(N−1)
2 )

For a stable queuing system, we must have λ2x2 < 1, giving
the following stability bound for λ under OFDMA-Aloha:

λ2 < Kq2(1− q
1

N−1

2 )

Kλ < Kq2(1− q
1

N−1

2 )

λ < q2(1− q
1

N−1

2 ) (26)

where q2 is the solution of (9). Define

h(x) = x(1− x
1

N−1 ), 0 < x < 1

It can be shown that h(x) is maximized at x0 = (1− 1
N )N−1.

In addition, h′(x) > 0 for 0 < x < x0 and h′(x) < 0 for
x0 < x < 1 and hence:

max
0<x<1

h(x) = h(x0)

=
1

N
(1− 1

N
)N−1

It is sufficient for our purpose to prove that x0 = (1− 1
N )N−1

is not a solution of (9). In the Appendix, we show that if
p2 = K/N then there exist a solution q∗2 of (9) and it is
strictly less than x0, hence

λmax
ofdma = h(q∗2) < h(x0) = λmax

aloha

E. Numerical and Simulation Results

For the unsaturated case, we compare Aloha versus
OFDMA-Aloha with K = 10 , 20 and M = 10. We fix
the number of users at N = 30 and vary the load line by
increasing λ which gives λ1 = λ for Aloha and λ2 = Kλ for
OFDMA-Aloha. We use the same transmission probability as
in the saturated case: p1 = 1/N for Aloha p2 = K/N for
OFDMA-Aloha.

The mean packet delay is plotted in Fig. 10. When the load
is very low, there is no queuing delay and very few collisions
occur in both systems. In this case, the mean packet delay
is just the initial backoff time under the DFT assumption.
The expected backoff period is the same in both systems:
1/p1 = N mini-slots in Aloha and 1/p2 = N/K ×K = N

mini-slots in OFDMA-Aloha. For relatively small λ, OFDMA-
Aloha enjoys smaller packet delays as compared to Aloha.
Also, within OFDMA-Aloha, smaller values of K perform
better than larger values. This is because the collision rate
is relatively low and fewer channels are sufficient to absorb
the load and reduce the number of collisions. The fast retrial
feature of OFDMA-Aloha works best in this region and
achieves faster retransmission time. However, increasing the
number of channels increases the slot duration without any
further reduction in the number of collisions, and hence results
in slightly larger delay.

When the load increases beyond Aloha’s saturation line at
λmax

aloha, both systems become saturated and the delay grows
without bound. However, we note that for smaller values of
K , OFDMA-Aloha saturates faster than larger values and also
faster than Aloha, a result expected from proposition 2. When
the system saturates, we cannot find a numerical solution and
the simulation returns very large numbers. We omit these large
numbers from the plot in order not to obscure the other results.
This behavior near the saturation line is somehow expected
because we have seen from the analysis in section I-A that
OFDMA-Aloha with smaller values of K performs the worst
in saturation. To verify this, we plot the mean service time
of the two systems in Fig. 11 and the average load ρ in Fig.
12. Note that in these two figures, no analytical results are
shown for values of λ near Aloha’s saturation line because
no solutions could be found here as explained before. This is
particularly evident in Fig. 12 where the analytical results are
missing when ρ approaches 1.

In all cases, the mean service time beyond Aloha’s satura-
tion line converges to a constant which equals the mean access
delay that was derived in the saturated case, see (2) for Aloha
and (4) for OFDMA-Aloha as shown by the solid horizontal
lines in Fig 11. Therefore, the behavior of the two MAC
protocols in the unsaturated case is exactly opposite to that
of the saturated case. This confirms our earlier reasoning that
the reduction in the collision rate in OFDMA-Aloha has to be
significant enough to overcome the effect of the expanded time
scale. When the collision rate is relatively low, a small number
of channels is sufficient to absorb the load and improve the
retransmission time. However, when the collision rate is very
high, e.g. in saturation, channelization only helps to expand the
time scale and hence performs worse than the single channel.

From the above, we see that the performance of the two
MAC protocols undergoes a phase transition when going from
the unsaturated region to the saturated region. This phenomena
was also reported in the past in the analysis of multi-channel
Aloha by Yue and Matsumoto in [15, chapter 2]. Multi-channel
Aloha allows a collided node to switch to another random
channel, but only after a random back-off period, so it does
not have the fast retrial feature of OFDMA-Aloha. We note
though, that their analysis is for nodes with single-packet
buffer size and is substantially different from our approach.

IV. CONCLUSION

OFDMA-Aloha is a new MAC protocol that promises
to exploit the channel switching flexibility of OFDMA. By
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allowing collision resolution over the frequency as well as
time domains, the protocol attempts to reduce the packet
retransmission time. However, this comes at the great expense
of expanded time scale, or larger slot size due to lower channel
rates. We showed that when the network is already saturated,
channelization does not bring substantial reduction in the
collision rate to the point where it outweighs the effect of
expanded slot size; single channel Aloha performs better than
OFDMA-Aloha especially when the gap between the number
of channels and the number users is large. On other hand,
when the network is lightly loaded, OFDMA-Aloha enjoys
smaller packet delays, but not for long as it saturates faster
than the single channel Aloha. This suggests the need for
further study on the stability region of OFDMA-Aloha as it
may help develop practical adaptive algorithms for the future.

APPENDIX

Here we show that all solutions of eq (9) in the interval
(0, 1) are strictly less than x0 = (1 − 1/N)N−1 when p2 =
K/N .

Proof: The proof is tedious, but straightforward. Substi-
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tute p2 = K/N and rewrite (9) as follows:

0 = (N −K)q2(1− q
1

N−1

2 )

+
[
1− (1− q2)

M+1
]
(K −Kq

1
N−1

2 − 1)

Define z = q
1

N−1

2 , and for convenience define n = N − 1,
m = M + 1, and a = N −K . Then, we have the following
polynomial:

g(z) = azn(1− z) +K −Kz − 1

− (1 − zn)m(K −Kz − 1)

Note that n > 1, m > 1, 1 < K ≤ n and 1 ≤ a ≤ n from the
assumptions in this paper. For our purpose, it is sufficient to
show that g(z) has at least one real root in the interval (0, z0)
and no real roots in (z0, 1) where z0 = 1− 1/N .

First, we show the existence of the solution and in particular,
we show that there is a real root in (0, z0). Let z1 = 1/N .

g(z1) = a(
1

N
)n(1 − 1

N
)

+ (K − K

N
− 1)

[
1− (1− (

1

N
)n)m

]

Since K
N < 1 and K ≥ 2, all above terms are positive and

g(z1) > 0.

g(z0) = (1 − K

N
)(1 − 1

N
)n

− (1 − K

N
)

[
1− (1− (1 − 1

N
)n)m

]

= − (1− K

N
)(1− w)

where w is the term:

w = (1 − 1

N
)n +

[
1− (1− 1

N
)n
]m

For m ≥ 2, w < 1 and g(z0) < 0. Hence, by the
Intermediate Value Theorem, g(z) must have a zero in (z1, z0)
or equivalently g(z) has at least one real root in (0, z0).



MUTAIRI et al.: DELAY ANALYSIS OF OFDMA-ALOHA 99

Next, we show that there are no real roots of g(z) in (z0, 1).
Taking the first derivative of g(z):

g′(z) = anzn−1 − a(n+ 1)zn

+mn(K −Kz − 1)zn−1(1− zn)m−1

+K(1− zn)m −K

Defining w1 = (1 − zn)m−1 and w2 = (1 − zn)m and after
some algebra, we can write g′(z) as:

g′(z) = − zn−1(ah1 +mnw1h2)

−K(1− w2)

where:
h1 = (n+ 1)z − n

and
h2 = Kz + 1−K

It can be shown that h1 and h2 are always positive for z ∈
[z0, 1] and K ∈ (1, n]. Since 0 < w1, w2 < 1 and a, n m are
all positive, g′(z) < 0 and hence g(z) is decreasing on [z0, 1].
Since g(z0) < 0 (from above analysis) and g(1) = −1, g(z)
has no real roots in (z0, 1).
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