
1

Compressive Spectrum Sensing Using a Bandpass
Sampling Architecture

Linda Bai, Student Member, IEEE & Sumit Roy, Fellow, IEEE

Abstract—Fast and reliable detection of available channels
(i.e., those temporarily unoccupied by primary users) is a
fundamental problem in the context of emerging cognitive radio
networks, without an adequate solution. The (mean) time to
detect idle channels is governed by the front-end bandwidth
to be searched for a given resolution bandwidth. Homodyne
receiver architectures with a wideband RF front-end followed by
suitable channelization and digital signal processing algorithms,
are consistent with speedier detection, but also imply the need
for very high speed analog-to-digital converters (ADCs) that
are impractical and/or costly. On the other hand, traditional
heterodyne receiver architectures consist of analog band-select
filtering followed by down-conversion that require much lower
rate ADCs, but at the expense of significant scanning operation
steps that constitute a roadblock to lowering the scan duration.
In summary, neither architecture provides a satisfactory solution
to the goal of (near) real-time wideband spectrum sensing.

In this work, we propose a new compressive spectrum sensing
architecture based on the principle of under-sampling (or bandpass
sampling) that provides a middle ground between the above
choices, i.e., our approach requires modest ADC sampling rates
and yet achieves fast spectrum scanning. Compared to other
compressive spectrum sensing architectures, the proposed method
does not require a high-speed Nyquist rate analog component.
A performance model for the scanning duration is developed
based on the mean time to detect all idle channels. Numerical
results show that this scheme provides significantly faster idle
channel detection than the conventional serial search scheme with
a heterodyne architecture.

Index Terms—Compressive Sensing, Cognitive Radio, Wide-
band Spectrum Sensing, Transceiver Architectures

I. INTRODUCTION

Continued proliferation of wireless services has led to
renewed scrutiny of spectrum utilization. In particular, several
licensed bands, e.g., land mobile and amateur radio, have been
shown to be under-utilized with occupancy rates between 15%
to 85% [1]. Cognitive radios - enabled by emerging software
defined transceiver architectures - is an approach for enhanced
spectrum utilization, by allowing unlicensed users to oppor-
tunistically access licensed bands, when the latter are unused.
The unlicensed or secondary users must sense the spectrum
to detect idle channels (free of incumbents or primary users)
and are allowed to utilize the idle channels, provided they do
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not interfere with the licensed users, i.e., vacate the channel
when a primary user transmission is detected.

Therefore, one of the primary requirements for cognitive
radio is fast and effective detection of idle channels to exploit
the available secondary network capacity [1]. Due to the
large bandwidth (for example, up to 10 GHz) that needs to
be sensed, speedy idle channel detection is a challenging
task. Depending on the bandwidth needs required by the
applications, secondary users may seek to detect one idle
channel or all available idle channels. For detection of one
idle channel, the receiver stops searching as soon as it detects
the first idle channel, whereas in the latter, the receiver will
search the status of all channels in the spectrum of interest. In
this paper, we focus on the second scenario, consistent with
the desire to maximize secondary throughput.

Assume that the entire (one-sided) spectrum of bandwidth
W = N Wc is channelized into an N -set of contiguous
frequency domain channels of bandwidth Wc each. The choice
of receiver architecture is a major factor that influences the
mean detection time of all the idle channels among these
N channels. The heterodyne architecture is the most popular
legacy architecture due to its high selectivity and sensitivity
[2]. Heterodyne receivers use analog bandpass filters for
selecting a Wc-width channel as shown in Fig.1. The output
is then down-converted to baseband and fed into an analog-to-
digital converter (ADC) [3]. The ADC samples at fs = Wc

(to produce the complex baseband signal), at a rate which
is much smaller than the total signal bandwidth N Wc. The
receiver decides the status of the selected channel using one of
several standard detection algorithms described in [4]. After
the status of the selected channel is determined, the receiver
switches to the next channel in sequence. A conventional serial
search scheme (implying a sweep or step-through of the LO
frequency) is used to determine the occupancy status of all the
N channels.

For the heterodyne receiver architecture, the time to detect
idle channels has two components - a) the integration time Ti

required by the detection algorithm once a channel has been
selected for investigation; and b) the duration for switching to
a new channel Tsw during scanning, that is largely determined
by the design/operation of the LO [5]. Denote Ni as the
number of samples required for meeting desired detection
accuracy in each channel for a given detection algorithm,
then Ti ≈ Ni/Wc. The mean detection time for the het-
erodyne receiver to determine status for all channels is thus
Td,serial = N(Ti + Tsw). For example, for Wc = 200 kHz,
N = 1024, Ni = 1000, and Tsw ≈ 50µs as in [6], then
Ti = 5 ms, and Td,serial ≈ 5.17 sec.
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Fig. 1. Block diagram of the heterodyne and homodyne receiver architectures

On the other hand, in homodyne receiver architectures such
as that in Fig.1, the wideband RF received signal is sampled
directly by an ADC, followed by subsequent digital signal
processing for channelization and determination of channel
status. For digital signal processing, the power spectrum is
obtained by squared magnitude of the N -point FFT for the
wideband signal. Each bin in the power spectrum represents
the estimated power in the corresponding channel, and is
compared with a power threshold to determine the status of
the channel [7]. An estimate of the (mean) time to determine
status of all N channels is obtained by noting that the total
number of samples needed is N · Ni, when Ni samples are
required for each channel. Since the sampling rate of the ADC
for the complex baseband signal is N ·Wc, the acquisition time
is (N ·Ni)/(N ·Wc) = Ni/Wc. Note that signals in all the N
channels are acquired in parallel and hence the analog circuit
switching time Tsw is avoided, yielding an acquisition time
that is independent of N . Denote Tdsp as the latency due to
the subsequent signal processing operations such as the FFT
in generating the spectrogram. Hence the time to determine
status of all channels for such a homodyne architecture is
Td,sdr = Ni/Wc+Tdsp. For the spectrum sensing task above,
the detection time for all the idle channels with the software
defined radio architecture (i.e., the homodyne architecture)
is approximately 31 ms, with Tdsp = Ni · 26µs, where
26µs is the typical processing time for a 1024-point FFT
[8]. Thus, software defined radio (SDR) based transceivers
can potentially achieve faster detection by two orders of
magnitude, at the expense of an ultra-fast (multi-GHz) ADC
for Nyquist sampling of the wideband signal, that considerably
increases the power consumption and IC complexity [9].

In this work, we unveil a new, compressive architecture
based on sub-Nyquist 1 sampling ADCs. Our proposal thus
treads a middle ground by combining the strengths of the
two architectures, in terms of achieving fast detection, while

1The sampling is sub-Nyquist relative to the rate required to sample the
(bandpass) spectra treated as a low pass signal.

requiring a lower rate ADC.

II. RELATED WORKS

A. Brief Review of Compressive Sensing

Compressive sensing (CS) is a well-known technique to
reconstruct a sparse N -dimensional signal vector x from an
M -dimensional representation y = ΦΨx ( M ≪ N ) [10],
where the N × N matrix Ψ is the sparsifying basis. In the
spectrum sensing scenario, Ψ is the Inverse Fourier Transform
matrix, and x represents the amplitude spectra in the frequency
domain. There exists a mature literature regarding appropriate
choices of the observation matrix Φ, whose elements are typi-
cally i.i.d Gaussian or Bernoulli variables [10]. An appropriate
choice of Φ must satisfy the Restricted Isometry Property
(RIP), formally defined as follows [11],

Definition 1: Restricted Isometry Property A matrix Φ
satisfies RIP with parameter (k, δk) if

(1− δk)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δk)∥x∥22 (1)

for all k-sparse vectors x, where k-sparsity means there are
at most k non-zero elements in the vector x.

Given Φ satisfies RIP with (2k, δ2k) and 0 < δ2k <
√
2−

1, the k-sparse vector x is reconstructed using

minimize ∥x∥1
subject to y = ΦΨx (2)

Of late, applications of CS to spectrum estimation in cog-
nitive radio has appeared in [12], [13], [14], and [15]. Most
of the previous works focus on algorithm development for
reconstruction, such as [12] and [14], while in this paper, we
emphasize the architectural aspects of compressive detectors
and its impact on performance. Therefore, for baseline, we
compared our architecture performance with the preferred ar-
chitectures in prior art. Various receiver architectures for spec-
trum sensing with sub-Nyquist sampling have been proposed
based on compressive sensing theory. These architectures can
be divided into two classes: non-uniform sampler and random
pre-integrator [16]. Both receiver architectures consist of sub-
Nyquist sampling ADCs to obtain an observation matrix Φ
that satisfies RIP. Nevertheless, these sub-Nyquist sampling
approaches based on CS can provide accurate results only if
most of the channels in the spectrum are idle, i.e., p̄ ≈ 1,
where p̄ denotes the average probability of a channel being
idle. If the number of occupied channels is close to the
number of idle channels, i.e., p̄ ≈ 0.5, current CS-based
reconstruction approaches fail to provide accurate channel
status [16]. In addition, compressive detection incurs high
computational complexity to solve (2), leading to extended
signal processing time. Furthermore, although the sampler in
the ADC operates at a sub-Nyquist rate, the detector actually
requires Nyquist rate analog components as discussed in Sec.
II-B [17]. For the non-uniform sampler, a Nyquist rate clock
is required for the shifters; for the random pre-integrator, a
Nyquist rate random generator is required.
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Fig. 2. Architecture of a non-uniform sampler

Fig. 3. Architecture of a random pre-integrator

B. Non-uniform Sampling and Random Pre-integration: Com-
pressive Detection Approaches

The architecture of a non-uniform sampler is shown in Fig.2
[18][19] where the wideband input signal is sampled at a
sub-Nyquist rate fs = 1

Ts
= NWc

γ by M branches, each
with a different time shift misalignment ϕi, i = 1, ...,M ,
where γ > 1 is the sub-sampling factor. In terms of analog
implementation, the non-uniform sampler operates at a sub-
Nyquist rate, but requires a Nyquist rate clock to synchronize
the shifters on each branch. On the other hand, an example of
a random pre-integrator architecture is shown in Fig. 3 [17].
In a random pre-integrator [20][21], a demodulator multiplies
the received (analog) signal with a random chipping sequence;
the resulting product is integrated over a symbol duration and
sampled at a sub-Nyquist rate on each of the M branches. The
chipping sequence generator is required to work at greater or
equal to the Nyquist rate to produce a Φ with i.i.d. Bernoulli
or Gaussian entries.

Denote the signal processing time for (2) as Tl1, then the
mean detection time for the non-uniform sampler is

Td,CS = (N ·Ni)/(N ·Wc) +NiTl1 = Ni/Wc +NiTl1 (3)

where Tl1 is determined by the computational complexity
of the signal processing algorithms. Using the non-uniform

sampling architecture, the complexity for solving (2) is
O(M2N1.5) [22]. In [23], as M ∼ O((N − p̄N)log(1/(1−
p̄))), Tl1 ∼ O(((1−p̄)N)3). When Ni spectrum snapshots are
reconstructed and averaged to generate the power spectrum,
the digital signal processing time is O(((1 − p̄)N)3Ni) for
both the random pre-integrator and non-uniform sampling
architectures. Note that (2) requires the sensing matrix ΦΨ to
be stored on-chip, yielding a memory requirement of O(MN).
However, the storage required for the non-uniform sampler is
O(M). Since ΦΨ is a subset of the IDFT matrix, only the
indices for the M chosen rows need to be stored, and ΦΨ
can be reconstructed using only the indices.

C. Contributions

Fig. 4. Block diagram of a bandpass sampling architecture for direct down-
conversion

Our work is a synthesis of the notion of Compressive Sens-
ing within a bandpass sampling architecture. The traditional
bandpass sampling receiver chain is shown in Fig.4, where the
complex baseband signal r(t) is sampled at a sub-Nyquist rate
fs = 1

Ts
= NWc

γ to obtain y[n] = r(nTs), where γ > 1 is
the sub-sampling factor [24]. Note that for compactness, only
the analytic signal that occupies the positive frequency spec-
trum, is shown. This architecture achieves frequency down-
conversion by undersampling r(t) (viewed as a wideband
lowpass signal), where the sampling rate is determined by the
bandwidth of the desired bandpass signal (i.e., conforming to
the bandpass Nyquist sampling theorem) instead of the carrier
frequency [25]. Owing to the reduction of the sampling rate,
bandpass sampling simplifies the design of the local oscillator
(LO), leading to better performance than a mixer for down-
conversion [3].
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In Sec.III, a spectrum sensing scheme with a bandpass
sampling architecture is proposed. Here, the entire spectrum
(in principle) can be sensed simultaneously, reducing the need
for LO scanning. The proposed architecture switches between
different (sub-Nyquist) sampling rates to obtain an observation
matrix that satisfies RIP; no Nyquist-rate analog component
is needed. Instead of reconstructing each snapshot of the
amplitude spectra, the power spectrum is reconstructed directly
by l1 minimization, mitigating the delay of intense signal
processing.

In Sec.IV, the performance of the proposed architecture is
analyzed. The mean detection time, the computational com-
plexity, and the required memory for storing the observation
matrix are compared with the non-uniform sampler and the
random pre-integrator. In addition, the detection rate and the
false alarm rate for the proposed scheme is analyzed. A
low detection rate will cause interference to primary users,
while a low false alarm rate is necessary for a high spectral
utilization rate. Numerical results for the mean detection time
are presented as a function of the number of channels to
be sensed. Impact of Signal-to-Noise Ratio (SNR) and p̄ is
explored. Finally, in Sec.V, the proposed scheme is validated
using real-world spectrum measurements obtained in Aachen,
Germany.

III. SYSTEM DESCRIPTION

A. System Model

Assume that the band of interest consists of N equi-spaced
channels; the central frequency of the ith channel is fi =
iWc − Wc

2 , where Wc is the bandwidth for each channel. A
binary variable, Oi is used to denote the status of the ith

channel, where Oi = 0(1) means the channel is busy (idle).
We invoke an independent Bernoulli model for channel status,
that is supported by real-world data as described in [26], i.e.,

Pr(Oi = 1) = pi, i = 1, ..., N (4)

Thus, the average signal power P̄s,i in the ith channel is
described as a Bernoulli variable, with Pr(P̄s,i = 0) = pi
and Pr(P̄s,i = P̄r,i) = 1 − pi, where pi is the probability of
the ith channel being idle. P̄r,i is the signal power in the ith

channel at the receiver when the channel is occupied by the
primary user. The average idle channel probability over the
entire band is given by p̄ = 1

N

∑N
i=1 pi.

B. Compressive sensing architecture

Denote the received signal as r(t) whose bandwidth W =
N Wc. The discrete-time Fourier transform Y (f) of the signal
y[n] sampled at the rate fs is related to R(f), the Fourier
transform of r(t), by the well-known result

Y (f) =
1

Ts

∞∑
k=−∞

R(f − kfs) (5)

An example is illustrated in Fig.5 where the complex
baseband signal r(t), comprising of 12 channels each of
bandwidth Wc, is sampled at a (sub-Nyquist) rate of fs =

Fig. 5. Sub-Nyquist rate sampling: a signal with 12 channels sampled at
5Wc

5Wc. As shown in Fig.5, aliasing occurs in the spectra of
the sampled signal due to the sub-Nyquist sampling rate;
the sixth channel folds back onto the first channel, since
f6 − fs = 11

2 Wc − 5Wc = 1
2Wc = f1. Clearly, when a

signal is sub-sampled with rate fs, all frequency components
{fi± kfs}, k = 0, 1, . . . present in the signal alias back onto
the same frequency fi ∈ [0, fs], where [0, fs] is the first
Nyquist zone. Letting fs = N

γ Wc, where N
γ is an integer, the

relationship between Yi, i = 1, ..., N
γ , (the Fourier coefficients

of y[n] on the interval [0, fs]) and Ri, i = 1, ..., N , (the
Fourier coefficients of r[n] sampled at Nyquist rate NWc on
the interval [0, NWc]) is

Y =

 Y1

...
YN

γ

 =
1

γ
Φ

R1

...
RN

 =
1

γ
ΦR (6)

where the N
γ × N matrix

Φ =



(N
γ −1)0′s︷ ︸︸ ︷

1 0 0 ... 0 1 0 0 ... 0 1 0 0 ...
0 1 0 ... 0 0 1 0 ... 0 0 1 0 ...
0 0 1 ... 0 0 0 1 ... 0 0 0 1 ...

...
0 0 0 ... 1 0 0 0 ... 1 0 0 0 ...


(7)
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For example, let N = 10, and γ = 2. Then

Y1 =

4∑
i=0

r(i/fs) =

4∑
i=0

r(iγ/NWc)

=
4∑

i=0

r(2i/NWc) (8)

Since

R1 =
9∑

i=0

r(i/NWc) (9)

and

R5 =

9∑
i=0

r(i/NWc)e
j2π
10 5i

=
4∑

i=0

r(2i/NWc)−
4∑

i=0

r((2i+ 1)/NWc) (10)

it follows that Y1 = 1
2 (R1 + R5). Therefore, each element

in Y is the average of the amplitude spectra over a block of γ
channels in R. Let R = S +V, where S = [S1, . . . , SN ]T

is the signal component and V = [V1, . . . , VN ]T is the
noise component, E(|Si|2) = P̄s,i, and E(|Vi|2) = P̄v,i,
where P̄s,i (P̄v,i) is the average signal (noise) power in the
ith channel, respectively. Then (6) can be written as

Y =
1

γ
Φ(S+V) (11)

The sequences Si, Vi are assumed to consist of indepen-
dent variables (corresponding to different channels) that are
mutually independent. It is natural that E(Vi) = 0 and for
symmetric signal constellations,

E(Si) = 0 (12)

as well. Then Ri and Rj are independent, ∀ i ̸= j, and
E(Ri) = E(Si)+E(Vi) = 0, E(|Ri|2) = P̄s,i + P̄v,i. Typ-
ically the time samples r[n] are complex Gaussian variables,
whose Fourier coefficients Ri ∼ CN(0, (P̄s,i+P̄v,i)/2), i =
1, . . . , N [27]. The expectation of the power in the mth block
is

E(YmY ∗
m) = E(

1

γ2
|

γ∑
j′=1

Rj′ |2)

=
1

γ2
E(

γ∑
j′=1

|Rj′ |2 +
∑
j′1 ̸=j′2

Rj′1
R∗

j′2
)

=
1

γ2

γ∑
j′=1

P̄s,j′ + P̄v,j′ (13)

where P̄s,j′ and P̄v,j′ are the average signal power and noise
power in the j′th channel in the mth block, respectively.

We propose to use the bandpass sampling architecture
shown in Fig.5 to sense the spectrum K times, each for a
different sub-Nyquist sampling rate, in order to obtain a Φ
that satisfies the RIP. An equivalent architecture is shown in
Fig.6 where the incoming signal is fed into K branches. The

kth branch consists of an ADC sampling at NWc

γk
, followed by

a square-law device and an integrator. Note that instead of the
multi-branch architecture, a single branch detector as in Fig.5
that sequentially switches between different sampling rates is
also feasible. However, the resulting mean detection times
are different. Clearly, the multi-branch architecture yields a
reduced sensing duration due to the inherent parallelism, at
the cost of chip complexity. Our analysis for mean detection
time in Sec.IV is based on the single branch architecture.

The measurement Yk,n for the kth sampling rate and the
nth snapshot is used to create the spectrogram, denoted by a
N
γk

× 1 vector wk,n, where wk,n(i) = γ2
k|Yk,n(i)|2, n =

1, . . . , Ni, are i.i.d corresponding to different snapshots. Now

E(wk,n) = Φk

 P̄s,1 + P̄v,1

...
P̄s,N + P̄v,N

 (14)

where Φk is constructed according to (7),

V ar(wk,n(i))

= E((wk,n(i))
2)− (E(wk,n(i)))

2

= E(|
∑γk

j′=1 Rj′ |4)− (
∑γk

j′=1(P̄s,j′ + P̄v,j′))
2

= (
∑γk

j′=1(P̄s,j′ + P̄v,j′))
2 (15)

For i1 ̸= i2,

Cov(wk,n(i1),wk,n(i2))

= E((wk,n(i1))(wk,n(i2)))

−(E(wk,n(i1)))(E(wk,n(i2)))

= 0 (16)

The averaged power over Ni snapshots

w̄k =
1

Ni

Ni∑
n=1

wk,n (17)

has a chi-square distribution with 2Ni degrees of freedom.
When the number of samples Ni is large, we can use the
Central Limit Theorem to approximate w̄k as Gaussian [7],
i.e., w̄k ∼ N(E(wk,n),Σk/Ni), where the variance matrix
Σk = diag(V ar(wk,n(1)), . . . , V ar(wk,n(

N
γk
))). There-

fore, for the K sampling rates, w̄1

...
w̄K

 =

 Φ1

...
ΦK


 P̄s,1

...
P̄s,N

+ n (18)

Denote w̄CS =

 w̄1

...
w̄K

, ΦCS =

 Φ1

...
ΦK

, sCS =

 P̄s,1

...
P̄s,N

, leading to the compact form

w̄CS = ΦCSsCS + n (19)
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Fig. 6. Block diagram of the compressive detection scheme with bandpass
sampling

where

ΦCS =

1 2 3 4 5 ...

1 0 0 0 0 ...
0 1 0 0 0 ...
...
1 0 0 0 0 ...
...
0 0 0 0 0 ...



n = 1, ..., N
(n modN

γ1
) = 1

(n modN
γ1
) = 2

...
(n modN

γ2
) = 1

...
(n mod N

γK
) = 0

(20)
Define N

γ0
= 0, then ΦCS(i, j) = 1, if ∃ 0 ≤ l ≤ K −

1, s.t.
∑l

k=0
N
γk

< i ≤
∑l+1

k=0
N
γk

, and j mod N
γl+1

= i −∑l
k=0

N
γk

; otherwise ΦCS(i, j) = 0.

The additive noise n ∼ N(ΦCS

 P̄v,1

...
P̄v,N

 ,ΣCS). Be-

cause w̄k1 and w̄k2 are derived from samples from different
time slots, ∀ k1 ̸= k2, Cov(w̄k1(i1), w̄k1(i2)) ≈ 0, ∀ i1, i2,
yielding ΣCS ≈ 1

Ni
diag(Σ1, . . . , ΣK).

Because Pr(P̄s,i = 0) = pi, the average number of non-
zero elements in sCS is (1 − p̄)N . It is proved in [28] that
if (1 − p̄) ≪ 1, and N

γ1
, . . . , N

γK
are the first K ∼ O((N −

p̄N)logN−p̄NN) prime numbers with (1 − p̄)N ≤ N
γ1

<

. . . < N
γK

, then ΦCS satisfies RIP. Note that a lower bound for
p̄ is required for choosing K, since ∀ 0 < plow < p < 1, if
ΦCS satisfies RIP for (2(1−plow)N, δ2N(1−plow)), it satisfies
RIP for (2(1 − p)N, δ2N(1−plow)). Detection of the channel
status O = [O1, . . . , ON ]T in (4) is done by first solving
for the signal powers from the following convex optimization
problem

minimize ∥ŝ∥1
subject to ∥w̄CS −ΦCS ŝ∥2 ≤ ϵ (21)

where Pr(∥n∥2 ≤ ϵ) ≥ λ, λ ≈ 1. Then each element in
ŝ = [P̂s,1, . . . , P̂s,N ]T is compared to a power threshold β to
determine if the channel is occupied, i.e., P̂s,i > β ⇒ Ôi =
0.

IV. PERFORMANCE ANALYSIS

In this section, the performance of the proposed compres-
sive spectrum sensing architecture with bandpass sampling is
analyzed. The mean detection time and the storage required
for the observation matrix is compared with the non-uniform
sampler and the random pre-integrator in Table I.

A. Mean Detection Time and Computational Complexity

The mean detection time for the proposed compressive
sensing architecture consists of three parts: integration time,
time for switching ADC sampling rates, and latency for
computation of the spectrogram. Since Ni samples are used
in determining status for each folded channel in w̄k, the total
number of samples needed equals NiN/γk. Hence, the total
integration time for the kth sampling rate is NiN

γk

γk

NWc
=

Ni/Wc and for the entire sensing process is KNi/Wc. Denote
the switching time between two different sampling rates as
Tsw. The spectrogram w̄k for each sampling rate can be
generated during the analog circuit switching time, because the
FFT size for each sampling rate is N

γk
≪ N, k = 1, . . . , K,

and the signal processing time for FFT and averaging is
negligible compared to Tsw. Therefore, the major component
of the latency for computation of ŝ is the signal processing
time Tl1 required by (21). Thus the mean detection time for
the proposed sensing scheme is

Td,bps = K(Ni/Wc + Tsw) + Tl1 (22)

The number of rows M of ΦCS in (20) is KCL, where
CL is the average of the first K prime numbers no smaller
than N(1 − p̄). In [28], it is proved that CL ∼ O((N(1 −
p̄))(logN−p̄NN)ln((N− p̄N)logN−p̄NN)). As K ∼ O((N−
p̄N)logN−p̄NN), M ∼ O(CL(N − p̄N)logN−p̄NN). l1 min-
imization is applied to compute the averaged power spectrum
directly, instead of the individual amplitude spectra for each
snapshot. Thus the computational complexity associated with
(21) is O(M2N1.5), independent of Ni, leading to shorter
signal processing time compared to the non-uniform sampler
and the random pre-integrator.

Fig.7 illustrates the mean detection time for serial search
with the heterodyne architecture, non-uniform sampler, ran-
dom pre-integrator, and the proposed bandpass sampling archi-
tecture with Wc = 200 kHz, Tsw = 50µs, and Ni = 1000.
As shown in [23], Tl1 ≈ ((1 − p̄)N)3µs. p̄ is chosen to
be 0.9 so that the spectrum satisfies the sparsity requirement
of CS. The results show that the bandpass sampling archi-
tecture consistently outperforms the serial search scheme for
heterodyne architecture, by reducing analog circuit switching
steps. For the bandpass sampling architecture, as N increases,
an increased number of sampling rates is required, leading
to the increased mean detection time. For the non-uniform
sampler and the random pre-integrator, as N increases, the
digital signal processing time becomes the major component
in mean detection time, where l1 minimization is applied to
reconstruct the amplitude spectra and is executed Ni times.
When the signal processing duration is longer than the circuit
switching time in the bandpass sampling architecture, the mean
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Non-uniform sampler Random pre-integrator Bandpass sampling
Mean detection time Ni/Wc +NiTl1 Ni/Wc +NiTl1 K(Ni/Wc + Tsw) + Tl1

Nyquist rate analog component Yes Yes No
Storage (projection matrix) O((N − p̄N)log(1/(1− p̄))) O(N(N − p̄N)log(1/(1− p̄))) O((N − p̄N)logN−p̄NN)

TABLE I
COMPARISON BETWEEN CS-BASED ARCHITECTURES

detection time of the non-uniform sampler and the random pre-
integrator exceeds that of the bandpass sampling architecture,
because K ≪ N .
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Fig. 7. Mean detection time of the serial search, non-uniform sampler,
random pre-integrator and the proposed bandpass sampling architecture

In terms of storage requirements, only the sub-sampling
factors γk, k = 1, . . . , K need to be stored in memory, and
the matrix ΦCS can be generated on-line according to (20).
The storage required is smaller than the non-uniform sampler
and the random pre-integrator.

B. Detection performance and receiver operating character-
istics

The detection performance is influenced by the average
SNR of all the channels. Assume a known signal is used for
calibration, where the average SNR of the occupied channels
is used for performance analysis. Denote the support of sCS

as Λ = {i : P̄s,i > 0}. The input SNR is given by

ISNR =

√
(
∑

i∈Λ P̄s,i)2√
(
∑

i∈Λ P̄v,i)2
= C0

∥sCS∥2
ϵ

(23)

where C0 is determined by N and p̄. The post-
reconstruction SNR is given by

RSNR =
∥sCS∥2

∥sCS − ŝ∥2
(24)

where ŝ is output from (21) and sCS consists of the actual
signal powers. It is proved in [11] that with probability λ ∼ 1,
∥ŝ − sCS∥2 ≤ C1ϵ, where C1 = 2α

1−ρ , ρ =
√
2δ2L̄

1−δ2L̄
, α =

2
√

1+δ2L̄√
1−δ2L̄

, and L̄ = (1 − p̄)N [11]. Denote C = C0C1.

Therefore,

ISNR ≤ C ×RSNR (25)

The post-reconstruction SNR is C times worse than the
input SNR. Denote Pd and Pfa as detection rate and false
alarm rate, respectively. Since Pd-Pfa performance is propor-
tional to RSNR and RSNR is bounded at least by a function
of δ2L̄ and ISNR in (25), the detection rate Pd and the
false alarm rate Pfa are determined by δ2L̄ and ISNR, where
δ2L̄ ∼ O( 2N(1−p̄)

K log2N(1−p̄)N) according to [28].
To gain additional insight into the impact of δ2L̄ on the

detection performance, the overall receiver operating charac-
teristics for the bandpass sampling architecture are shown in
Fig.8(a) and Fig.8(b), with p̄ = 0.95, N = 100, Ni = 1000,
and pi = p̄, i = 1, . . . , N . For K = 3, the sampling rates
used are 5Wc, 7Wc, 11Wc, and for K = 4, an additional
sampling rate 13Wc is used, where all the sampling rates
are smaller than the Nyquist rate 100Wc. P̄s,i are set to
10 and P̄v,i = 1, i = 1, . . . , N , so ISNR = 10dB. The
numerical results of the estimated detection rate P̂d and the
estimated false alarm rate P̂fa are averaged over 500 iterations.
In each iteration, the locations of the occupied channels are
different. As shown in Fig.8(a) and Fig.8(b), the performance
for 4 sampling rates is better than 3 sampling rates, because
δ2N(1−p̄) for K = 4 is smaller than for K = 3, yielding
smaller C in (25).

The impact of the ISNR = P̄s,i/P̄v,i on the Pd-Pfa per-
formance is shown in Fig.9. As the ISNR decreases towards
9 dB, P̂d with 4 sampling rates (5Wc, 7Wc, 11Wc, and 13Wc)
begins to decrease rapidly, because the spectrum of R is no
longer sparse for ΦCS with the chosen sampling rates. In
contrast, all the occupied channels are correctly detected for
the 5 sampling rates (5Wc, 7Wc, 11Wc, 13Wc, and 17Wc)
over the 500 iterations for the SNR range shown in Fig. 9.
Therefore, for a given ISNR, the detection performance of
the proposed architecture can be improved by increasing the
number of sampling rates, which imposes a trade-off between
the detection performance and the detection time. The impact
of the sparsity level of the spectrum is shown in Fig.10. For a
smaller p̄, an increased number of sampling rates is required
for ΦCS to satisfy the RIP requirement as discussed in Sec.III,
leading to a longer detection time.

V. EXPERIMENTAL RESULTS

We conducted a performance evaluation of our bandpass
sampling scheme using the (publicly available) measurements
of the power spectrum taken in a modern office building in
Aachen, Germany, in 2007 [29]. The spectral band observed
is 20MHz-1.64GHz (center frequency 770 MHz). The RF
signal was amplified, down-converted to the base band, and
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Fig. 8. Receiver operating characteristics for the proposed bandpass sampling
architecture with K sampling rates
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Fig. 9. Impact of the SNR on the Pd-Pfa performance

processed by an Agilent E4440A spectrum analyzer. The
analyzer produces a 8192-point FFT on the signal, where each
FFT bin represents a 200 kHz resolution width. The magnitude
squared FFT value represents the instantaneous spectrogram
(power spectrum) over a channel. A full scan of the 8192
channels requires about 1.8 second. The average noise level of
the receiver chain is −169 dBm at 1 Hz resolution bandwidth,
which is −116 dBm for the 200kHz channel. The band plan for
spectrum usage in Germany was not available, so the channel
status is first estimated by thresholding the original data at
−111 dBm, corresponding to constant false alarm rate of 10−5.
The data from the final 100 channels at 12 : 37am, 2 : 37am,
4 : 37am, 6 : 37am, and 8 : 37am on Jan.27th, is used as
input for the bandpass sampling architecture.

Among the 100 channels, two channels are occupied as
shown in Fig.11(a) and Fig.11(b). For the bandpass sampling
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Fig. 10. Impact of the sparsity level p̄ on the Pd-Pfa performance

architecture, the 4 sampling rates used are 5Wc, 7Wc, 11Wc,
and 13Wc, and for 5 sampling rates, 17Wc is added. To
enhance signal sparsity, the average noise level of −116 dBm
is removed from the original data, and then added back in
the reconstructed power spectrum for comparison with the
original spectrum. The proposed architecture with K = 4
achieves a P̂d = 1 while P̂fa = 0.01 for all the 5 time slots,
with the same threshold of −111 dBm. With K = 4, the
reconstructed power spectrum for 12 : 37am and 8 : 37am is
shown in Fig.11(a) and Fig.11(b). Although the SNR of the
reconstructed signal is worse than the original signal, both of
the 2 occupied channels can be accurately identified, but a
false alarm occurs in Fig.11(b). As shown in Fig. 11(c), with
K = 5, no false alarm occurs for 8 : 37am , because the
reconstructed SNR is improved according to Section IV.

VI. CONCLUSION

A compressive spectrum sensing architecture with bandpass
sampling is proposed to detect idle channels in cognitive radio.
The bandpass sampling technique enables sub-Nyquist ADCs
and simplifies the receiver circuits design. Compared to other
compressive sensing architecture, the proposed architecture
does not have any Nyquist rate analog circuit components.
Numerical results show that the proposed algorithm achieves
lower mean detection time compared to the serial search
scheme when the channel occupancy rate is low and is a
promising alternative when Nyquist rate ADC is not feasible.
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