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Abstract—In network tomography, we seek to infer link status
parameters (delay, congestion, loss rates etc.) inside a network
through end-to-end measurements at (external) boundary nodes.
As can be expected, such approaches generically suffer from
identifiability problems; i.e., status of links in a large number of
network topologies is not identifiable. We introduce an innovative
approach based on linear network coding that overcomes this
problem. We provide sufficient conditions on network coding
coefficients and training sequence under which any logical
network is guaranteed to be identifiable. In addition, we show that
it is possible to locate any congested link inside a network during
an arbitrary amount of time by increasing size of transmitted
packets, leading to raise in complexity of the method. Further, a
probability of success is provided for a random network. OPNET
is used to implement the concept and confirm the validity of the
claims - simulation results confirm that LNC correctly detects
the congested link in situations where standard probing based
algorithm fails.

Index Terms—Network Coding, Network Tomography, Graph
Theory, Finite Field

I. INTRODUCTION

The need for accurate and fast network monitoring method

has increased further in recent years due to the complexity of

new services (such as video-conferencing, Internet telephony,

and on-line games) that require high-level quality-of-service

(QoS) guarantees. This would help network engineers and

Internet Service Providers (ISP) to keep track of network uti-

lization and performance. The term network tomography was

coined by Vardi [1] to encompass these class of approaches

that seek to infer internal link parameters and identify link

congestion status.

Current network tomography methods can be broadly cate-

gorized as follows[2]:

• Node-oriented: These methods are based on cooperation

among network nodes on an end-to-end route using con-

trol packets such as ping or traceroute[3]. The challenges

of such node-oriented methods arise from the fact that

many service providers do not own the entire network

and hence do not have access to the internal nodes[4].

• Path-oriented: In networks with a defined boundary, it

is assumed that access is available to all nodes at the edge

(and not to any in the interior). A boundary node sends

probes to all (or a subset) of other boundary nodes to

measure packet attributes on the path between network

end-to-end points. Clearly, these edge-based methods do

not require exchanging special control messages between

interior nodes. The primary challenge of such end-to-end

probe data [5],[6] to estimate link level status is that of

identifiability, as will be discussed later.

As the Internet evolves towards decentralized, uncooper-

ative, heterogeneous administration and edge-based control,

node-oriented tools will be limited in their capability. Accord-

ingly, in this work we only focus on path-oriented methods

which have recently attained more attention due to their ability

to deal with uncooperative and heterogeneous (sub)networks.

In path-oriented network tomography, probes are sent be-

tween two boundary nodes on pre-determined routes (typically

the shortest path) between the nodes. For some parameters like

delay or failure status, an additive linear model adequately

captures the relation between end-to-end and individual link

attributes, and can be written as [7], [8]

y = Rx (1)

where x ∈ R
L is the L-vector of individual link attributes.

The J × L binary matrix R denotes the routing matrix for the

network graph corresponding to the measurements and y ∈
R

J is the measured J-vector of end-to-end path attributes.

Let us assume that the only desired solutions in this frame-

work are binary vectors x whereby xi = 1(0) indicates if the

corresponding link is congested (not congested). While this is

a simplifying assumption - that only congested link experience

significant delay and is indicated by a corresponding entry

of large magnitude in x, whereas the other entries of x

are relatively small, corresponding to low delays for non-

congested links, it has been adopted for modeling in the

literature, notably by [9].

In Eq. (1), typically, the number of observations J � L,

because the number of accessible boundary nodes is much

smaller than number of links inside the network. Thus the

number of variables in Eq. (1) to be estimated is much larger

than number of equations in the linear model [10], leading

to generic non-uniqueness for any solution to Eq. (1),i.e.,

inability to uniquely specify which links are congested [11].

A potential solution to the above problem comes from

the physics of the problem. Essentially, for a well-designed

network there are few simultaneously congested links. That

means the maximum number of simultaneously congested

links inside the network is limited (at most k). This observation

allows an important side constraint to be imposed on any

solution to Eq. (1) - namely, we are interested in binary
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(a) (b)

Fig. 1. An example of graph where end-to-end probe sending methods fail. In
end-to-end measurement methods, probes are sent from one boundary node to
the others. (a)Network topology (b)Spanning trees rooted at boundary nodes

vectors with at most k non-zero entries in x. In this work,

we concentrate on k = 1; i.e. only a single congested link

exists inside the network. This is the simplest possible class

of identifiability problems and yet is sufficiently challenging

as our investigations will show. A network is defined to

be 1-identifiable if congestion status of a single link inside

the network can be inferred from the measurements at the

receiver(s) [12].

As illustration, consider the network graphs in Fig. 1 and

suppose that one of the links l2 or l7 is congested (and

all others are uncongested). Fig. 1-b shows all the possible

shortest paths to all other boundary nodes starting with a

source (boundary) node in the network. Obviously, a probe

either goes through both l1 and l7 or neither. This results

in two identical columns (columns 4 and 5) in the network

routing matrix as follows:

1 2
1 3
1 5
2 3
2 5
3 5











1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1











(2)

It is evident that it is not possible to identify which of l2
or l7 is the congested link using end-to-end measurement. In

general, it is proved by Xi et. al. in [13] that a network is 1-

identifiable if and only if there are no two identical columns

in the network routing matrix.

However, suppose that in place of shortest path routing,

we are allowed to route packets from n1 to n2 through a

longer path that includes l2, l4. It is now possible to distinguish

between congestion status of links l2 and l7. This exemplifies

an intrinsic limitation for end-to-end measurement methods

based on shortest path routes (or any fixed routing); probes

transmitted along such paths contain only minimum informa-

tion. If it were possible to exchange probes between boundary

nodes via other (non-shortest) paths, it would improve network

identifiability. However, this is often impractical in path-

oriented methods that have fixed routing tables.

We accordingly propose a new approach - based on linear

network coding - to achieve the same purpose of enhanced

identifiability. The basic idea of linear network coding is

to allow an intermediate node to linearly combine packets

received on its incoming links and broadcast the result on

all of its outgoing links. Due to the broadcasting nature of

network coding, a transmitted probe will traverse almost every

path between two boundary nodes. Thus, probes received

at the destination(s) contain the most information possible

about the inside of the network. In addition, because of

the linear combination of packets at the intermediate nodes,

the packet received at the destination can be written as a

linear combination of packets sent out by the source. In this

manuscript, we will study the effect of link failure on packets

received at the destination(s), when the source packets are

given. The key idea of our work is to show there is coding that

uniquely changes packets received at the destination when a

link goes congested. Moreover, we will show how to design

such a code. Since in a network coding paradigm, interior

nodes affect the outgoing packets (in contrast to store-and-

forward routing), tomography using network coding can be

thought of as a combination of node-oriented and path-oriented

methods; thereby reaping the advantages of both.

Network coding has received considerable attention in re-

cent years for its potential to achieve the theoretical upper

bound (max-flow, min-cut) of network resource utilization.

Our intent in this work is to redirect network coding concepts

towards a novel application; network status monitoring for

graphs hitherto assumed un-identifiable by other means(such

as network in Fig. 1). Similar works in this matter include Ho

et al. in [12]. However, their approach is based on a multicast

tree to find the congested link. This implies the method is

restricted to probing, for which they use the shortest path

between source-destination pairs. As mentioned, monitoring

methods based on shortest path routing suffers from un-

identifiability problem. Our approach differs from those of

[12] and [14] in that we present how to construct a training

sequence to locate a congested link within the network. More-

over, we specify conditions on network coding coefficients of

intermediate nodes under which the network is 1-identifiable.

This allows us to calculate probability of identifiability when

nodes pick their NC coefficients randomly (also known as

random network coding). We also show that time to identify

the congested link can be reduced by increasing the size

of NC packets1. Our specific contributions in this work are

summarized as follows:

1) We provide conditions under which network coding can

be used to locate a single congested link in any logical

network - i.e. a network containing no nodes with degree

two [12].

2) We provide how to generate a training sequence to locate

a congested link inside the network.

3) We provide a relation between length of training se-

quence needed (time to identifiability) and size of net-

work coding packets (complexity of method) to establish

1It is noteworthy that our method can be combined with the approach
proposed in [14] to infer loss rate within a network.

1096



a fundamental speed/complexity tradeoff.

4) We provide a lower bound for probability of success of

our method in a random graph.

5) We implement our proposed method within OPNET

simulator - the first implementation of network coding

within actual network simulator to the best of our

knowledge - and demonstrate the validity of our ideas.

The paper is organized as follows: In Section II, we develop

the principles for applying network coding to tomography for

a logical network. Implementation of linear network coding

(LNC) for such a network in a commercially available simula-

tor (OPNET) is described in Section III for schemes proposed

in Section II. The paper concludes with reflections on future

work in Section IV.

Notations: We use bold capitals (e.g. R) to represent matri-

ces and bold lowecase symbols (e.g. y) for vectors. The i-th
entry of a vector x is denoted by xi. A set of sets is denoted by

a calligraphic capitalized symbol, e.g. P and the i-th element,

which is itself a set, is denoted by regular capital symbol with

i as superscript (e.g. P i).

II. TOMOGRAPHY WITH LINEAR NETWORK CODING

In principle, Linear Network Coding (LNC) is a block code

operating on IP layer frames, implemented by routers inside

the network. The coding is conducted over the finite field

F2q whereby each coded symbol can be represented by q-bits

within an IP layer frame[15]. For the sake of simplicity, we

initially consider a delay-free network as in [16], [17], [18]

in which information reaches every node instantaneously; our

method is readily adapted to a real network where links have

finite (non-zero) delay using the buffering method proposed in

[18]. LNC has been exploited in [19] and [20] to infer network

topology. Consistent with these approaches, we assume that in

addition to LNC coefficients at each node, destination nodes

are aware of the entire network topology.

We model a communication network consisting of direc-

tional links connecting transmitters, switches, and receivers as

an directed graph G(V, E) where V is a set of vertices and E
is a set of directed edges. Only networks with logical topology

are considered here; i.e. degrees of all (interior) nodes in the

network (except sources and destinations) are greater than

or equal to three, since networks with degree 2 nodes are

well-known to be un-identifiable by any end-to-end probing

techniques.

A. Network Code Design

Consider a source s ∈ V and a destination d ∈ V pair in

the network. For a given network graph G(V, E), all nodes

apart from the source-destination pair v ∈ V −{s, d}, support

LNC. In LNC [18], The signal Yl on an outgoing link l ∈ E
for node v is a linear combination (in finite field F2q ) of the

signals Yj on the incoming links of v, i.e.,

Yl =
∑

{j∈E|d(j)=v}

γjYj , v = o(l), l ∈ E (3)

where o(l) and d(l) represent origin and destination nodes of

link l ∈ E, respectively. Operations (addition and multiplica-

tion) in Eq. (3) are in finite field F2q (for more details refer

to [21]).

Let N be the number of paths from s to d and P(d) be the

collection of all those paths. The i-th element P(d), P i(d),
is the i-th path between s and v. Further suppose that the

source s has K outgoing links e1, e2, ..., eK and the symbol

αk is sent over the ek, k = 1, 2, . . . , K . Let Pek
(d) denote

the collection of paths from source to destination that share

the kth outgoing link from the source, i.e.,

Pek
(d) = {P i(d) : ek ∈ P i(d) s.t. o(ek) = s} (4)

If the source sends a symbol α ∈ F2q over P i(d), the

destination would receive

y[n] = α
∏

l∈P i(d)

γl = αβi(G) (5)

where γl ∈ F2q is the coefficient of the link l on path P i(d)
and βi(G) ∈ F2q is the product of LNC coefficients of all

links lying on the i-th path from source to destination, P i(d).
The argument G in βi(G) highlights the dependency of βi

on topology G. Now, suppose s sends the symbol αk[n]
over the k-th outgoing link ek, k = 1, . . . , K in time slot

n (which implies in turn that αk[n] traverses over all paths

P i(d) ∈ Pek
). Since network coding is a linear operation,

the destination receives, by (5) the following super-imposed

symbol in time slot n :

y[n] =

K∑

k=1

αk[n].
∑

P i(d)∈Pek

∏

l∈P i(d)

γl (6)

Eq. (6) can be rewritten as the vector product

y[n] = αT [n] β(G) (7)

where

α′T

k [n] = [

|Pek
| times

︷ ︸︸ ︷

αk[n] . . . αk[n]], αT [n] = [α′T

k [n]]Kk=1 (8)

and

βT (G) = [
∏

l∈P i(d)

γl]
N
i=1 = [βi(G)]Ni=1 (9)

We call β(G) the total network coding vector of the graph

G. If M symbols that constitute a packet are sent in M time

slots, the destination receives:

yM×1 = AM×N β(G)N×1 (10)

where A is a M × N matrix whose nth row is αT [n],
the training symbols sent in time slot n (8). It follows by

construction that columns of A corresponding to Pek
are

equal, for k = 1, 2, ..., K .

Now, if a link is severely congested, packets are significantly

delayed and assumed lost at the destination. Hence, we can

model the network with link l in congestion state by its edge

deleted subgraph denoted by Gl(V, El) (for previous definition
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(a) (b)

Fig. 2. (a) Intermediate nodes are presented using dashed circle. LNC
coefficient of each link is shown in a box next to the link. (b) Ge1

: link
e1 is congested. Dashed arrow represents deleted link from network G.

of an edge deleted subgraph refer to [22]). The total network

coding vector of the graph Gl, denoted by β(Gl), is related

to the vector β(G), defined in (9) as follows. Clearly, if the

congested link doesn’t belong to i-th path from source to

destination, P i(d), it will not affect packets going through

those paths. That means the i-th entry of β(Gl) equals i-th
entry of β(G) and it is zero if P i(d) includes the deficient

link, i.e.,

βi(Gl) =

{

βi(G) if l /∈ P i(d)

0 o.w.

(β(Gl))
T = [βi(Gl)]

i=N
i=1 (11)

where βi(G) is the i-th entry of β(G) and l is the congested

link.

Now suppose, s sends αk[n] over path Pek
in time slot n

given link l is congested. The destination node receives

yl[n] =

K∑

k=1

αk[n].
∑

P i(d)∈Pek

βi(Gl) (12)

in time slot n. Using (11) and (12), the following vector form

equation can be derived when link l is in congestion and probes

are sending in M contiguous time slots:

yl
M×1 = AM×N β(Gl)N×1 (13)

where yl is vector of symbols observed at the destination.

Comparing equations (10) and (13) shows that for given matrix

A, the received symbols may change in response to link

congestion. In the next subsection we will prove that this

occurs if β(G) and A satisfy certain conditions, leading to the

potential for identifying the congested link. We next provide

an illustrative example.

Example 1: Consider the topology in Fig. 2 that consists of

4 nodes and 3 paths between the source and destination. The

source has two output links, e1 and e2. Hence, using (11), Pe1

and Pe2
are:

P = {P 1, P 2, P 3} ;Pe1
= {P 1, P 2} ;Pe2

= {P 3} (14)

where the end-to-end paths P 1, P 2, P 3 between the source-

destination are as defined in Fig. 2-a.

Suppose α1 and α2 traverse over e1 and e2 respectively.

Further, suppose symbols are from F22 implying they are

2 bits long. In that case, the output of each intermediate

TABLE I
SYMBOLS RECEIVED AT DESTINATION FOR TOPOLOGY IN FIG. 2 WITH

TRAINING SEQUENCE TRANSMITTED GIVEN IN EQ.(17)

Congested link None e1 e2 l1 l2 l3
1st time slot 0 2 2 3 1 1

2nd time slot 2 3 1 0 1 3

node and the destination is depicted in Fig. 3. Since the

network is considered to be delay-free, all nodes receive their

information instantaneously. From Fig. 3, the received symbol

at destination is

y[n] = α1(1 × 1 + 1× 2 × 2) + α2(3 × 2) = 2α1 + α2 (15)

As defined in (5), βi(G) is defined as product of coefficients

of all links on path P i(d). For example β2(G) is as follows:

β2(G) = 1 × 2 × 2 = 3 (16)

where the operation is over the finite field F22 [21].

Suppose at time slot 1, the source in Fig. 2 sends symbols

α1 = 1 ∈ F22 and α2 = 2 ∈ F22 , respectively. At time slot 2,

it transmits α1 = 3 and α2 = 3. In this case, (10) becomes:

[
y1

y2

]

=

[
1 1 2
3 3 3

]

︸ ︷︷ ︸

training sequence A

.





1
3
1





︸ ︷︷ ︸

β(G)

=

[
0
2

]

︸ ︷︷ ︸

received symbols

(17)

Now suppose link e1 is congested; then Ge1
depicted in Fig.

2-b, represents the graph model for this case. As defined in

(11), for edge deleted subgraph Ge1
, the total network coding

vector is now given by

β(Ge1
) =

[
0 0 1

]T
(18)

The first and second entries of β(Ge1
) are zero because e1 ∈

P 1 and e1 ∈ P 2 (refer to Eq. (11)). For the same symbols

sent by source in case of congested link e1, the destination

receivers

[
y1

y2

]

=

[
1 1 2
3 3 3

]

︸ ︷︷ ︸

training sequence A

.





0
0
1





︸ ︷︷ ︸

β(Ge1
)

=

[
2
3

]

︸ ︷︷ ︸

received symbols

(19)

which is different from the case of no link failure as in

(17). For the same transmitted symbols, Table I contains the

received symbols at destination for all cases of single link

congestion in the network. Such a table may then be used

as a lookup to locate/identify the congested link inside the

network. It follows that in general, the number of transmission

time slots required depends on the choice of q, which can

be treated as a design variable. For example if we increase

number of bits for LNC from q = 2 to q = 3, the topology

in Fig. 3 is identifiable by transmission in just one time slot.

Table III shows received symbol at destination for each link

congestion state with α1 = 1 and α2 = 4. We formalize this

later in Corollary 5.
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(a) (b) (c) (d)

Fig. 3. Output of each intermediate node when source sends symbols α1 and α2 over its outgoing links. For delay-free network this is instantaneous.

TABLE II
SYMBOLS RECEIVED AT DESTINATION FOR TOPOLOGY IN FIG. 3 WITH

TRAINING SEQUENCE TRANSMITTED IN ONE TIME SLOT A = [1 1 4]

Congested link None l1 l2 l3 l4 l5
1st time slot 6 4 2 5 7 1

B. Link Identifiability Results

As explained via the example above, received symbols at the

destination change in the event of a link failure. The following

theorem describes the conditions on training sequence (A)

and LNC coefficients, under which there exists a one-to-one

correspondence between link congestion states and received

symbols at the destination.

Theorem 1: Consider a logical network G(V, E), with a

source-destination pair s ∈ V, d ∈ V . Let N be the number

of paths from s to d, and K the number of outgoing links of

s. Suppose each intermediate node has fixed network coding

coefficients and the total network coding vector for the graph

G is βN×1. Let AM×N be constructed from the training

symbols sent from source to destination over M time slots.

Then, for M ≥ K , there exists a matrix A and vector β such

that G(V, E) is 1-identifiable. Moreover rank of A is K .

Proof: See [23].

The theorem provides sufficient conditions that guarantees

1-identifiability of any logical topology G(V, E) using net-

work coding under certain conditions on the training sequence

and total LNC vector. Under these sufficient conditions, the

congestion states corresponding to different single link failures

results in different symbols received at destination. Therefore,

by having a simple lookup table, it is possible to identify the

congested link in any logical network. The following theorem

shows how to construct a training sequence to locate a single

congested link inside a network.

Corollary 2: Given an acyclic, directed and connected

graph G(V, E) with source node s and destination node d
where s has K outgoing links; Then AM×N can be used as

training sequence to locate a single failed link in G(V, E) if

and only if rank(A) = K .

Theorem 1 talks about possibility of using network coding

in the application of link monitoring when number of time

slots (M ) is greater or equal to number of outgoing links of

the source (K). However, by increasing the number of bits

assigned to network coding coefficients, it is possible to locate

a failure link using fewer number of time slots.

Theorem 3: Assume an acyclic, directed and connected

graph G(V ; E) with source-destination pair s ∈ V and d ∈ V
as before. Let the K outgoing links of s be represented by

e1, e2, . . . eK . Let Ni be total number of paths from s to d that

starts with ei, i.e.,
∑K

i=1 Ni = N . Assume q bits per symbol

are used in network coding and M is number of time slots used

to send training sequence. Further, assume Z = {1, 2, . . . , K}
and ZM is the collection of all partitions of Z with size M ;

ZM = { {H1, H2, ..., HM}| ∪M
i=1 Hi = Z}

Then G(V ; E) is identifiable using NC in field F2q if q satisfies

the following inequality:

q ≥ min
{Hi,i=1,...,M}∈ZM

max
i

∑

j∈Hi

Nj (20)

Proof : See Appendix.

Theorem 3 provides a tradeoff between number of time

slots for training sequence (speed of the method) and size

of network coding coefficient (complexity) to make a network

G(V, E) identifiable. In other words, by increasing complexity

of the method (increasing q) it is possible to save some time

slots (decreasing M ). The following example further illustrates

the above theorem.

Example 2: Consider the topology in Fig. 4 that consists of

5 paths between the source and destination; i.e. N = 5. Source

has 3 outgoing links, K = 3, and using the definition of Ni we

have, N1 = 2, N2 = 1, N3 = 2. Suppose we want to locate a

failure link by sending symbols from source to destination in 2

time slots, i.e. M = 2. Theorem 3 helps us find the minimum

number of bits q, that guarantees identifiability in Fig. 4.

Let Z = {1, 2, 3}. Since M = 2, we enumerate all the

2-partitions of Z as given below:

Z2 = { { {1}, {2, 3}}, { {2}, {1, 3}}, { {3}, {1, 2}} } (21)

The outer maximization in Theorem 4 is over {N1 =
2, (N2 + N3) = 3} which is 3; our network is found to be

identifiable with M = 2 and q ≥ 3.

�

As mentioned before, Theorem 3 implies that increasing

the number of time slots used for identifiability of a network

G(V, E) decreases number of bits per symbol for NC coef-

ficients. If number of bits of network coding coefficients are

large enough, it is even possible to locate a congested link

in one time slot. The following two corollaries states these

observations more precisely:
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Fig. 4. A network with 5 nodes and five paths, N=5, paths from source to
destination. Source has K=3 outgoing links. It is possible to locate a failure
link in this network by sending training sequence in 2 time slots if q, number
of bits in NC coefficients, are greater than 3.

Corollary 4: Suppose G(V, E) is identifiable using network

coding with q1 bits per symbol and training sequence in M1

time slots. Then G is identifiable in M2 > M1 time slots using

NC values having q2 bits per symbol where q2 ≤ q1.

Corollary 5: It is possible to locate a congested link in

network G(V, E) in one time slot, if q ≥ N .

In all the results thus far, we have assumed that the network

coding coefficients are fixed and chosen so as to satisfy

the identifiability conditions. What if the nodes choose the

LNC coefficients randomly? In that case, identifiability can be

described as a random event. The following theorem provides

a lower bound for probability of identifiability of a random

graph in such a scenario.

Theorem 6: Let graph G(V, E) be a network with two

nodes s ∈ V and d ∈ V as source and destination respec-

tively. If each intermediate node choose their NC coefficients

uniformly from the elements of F2q , then the probability

that G(V, E) is 1-identifiable is bounded from below by

1 − |E|(|E| + 1)( 1
2q )M

Proof : See [23].

C. Multi-source, Multi-destination Networks

In previous subsections, we established a novel link failure

monitoring method based on single source-destination pair. It

may be possible to send probes between an arbitrary number

of sources and destinations; the identifiability of a network in

such scenarios is discussed next.

Let us consider a logical network G(V, E) with sets S ⊂ V
and D ⊂ V of sources and destinations. Note that we

have access to all nodes in S and D simultaneously and

consequently we may consider them as a super nodes as

presented in Fig. 5 . Hence, a multi-source multi-destination

network can be studied as an equivalent single source, single

destination network by substituting set of source and des-

tinations with a single super node source and destination,

respectively, represented by the new graph G′(V, E). It follows

that if G′ is identifiable (unidentifiable), then so is G because

every edge in G has 1:1 correspondence with an edge in G′.

Fig. 5. In multi-source multi-destination network, sources S can be thought
of a super node. Similarly set of destinations D can be seen as a super node.

Therefore, results in previous section may be extended to a

multi-source multi-destination network G(V, E) in this way.

III. SIMULATION RESULTS

In this Section we briefly describe our LNC simulator [24]

constructed within OPNETTM14.5 aided by Matlab 7.1 that is

used for finite field calculations necessary for network coding.

The simulation results from applying the proposed link failure

monitoring scheme to the network in Fig. 1 (which is not

identifiable by end-to-end measurements) is presented. Finally,

we apply the method to the network graph for the University

of Washington’s Electrical Engineering department network of

servers and present identifiability results.

A. Simulation Environment

Ours is the first known implementation of Network Coding

(NC) within OPNET. OPNET was selected because of its

wide acceptance as a network modeling tool within both the

academic and commercial communities [25].

We employed network coding at transport layer (instead of

IP layer) largely for convenience - it readily allows adding

hidden data within the TCP/UDP frame in OPNET, which is

invisible to the end-user and to the simulation statistics [24].

Any binary vector of length q, can be interpreted as an element

in F2q , the finite field with 2q elements. In our network coding

implementation, we assign a q-bit field called LNC field within

the TCP/UDP header, for linear network coding. Only the

contents in LNC field is used for network coding operation.

In addition, a 1-bit flag within TCP/UDP header determines if

the packet is a network coding packet. Once a router receives

a packet, it identifies the packet type by looking at the 1-bit

flag embedded in TCP/UDP header. If the packet is a network-

coded packet, the data in LNC field is extracted and queued

at a buffer for a predetermined amount of time after which

they are combined and the router clears the buffer. The result

of linear combining is written in LNC field of the outgoing

packet which is forwarded on all of the outgoing links via

unidirectional broadcast.

B. Validation

Fig. 6 demonstrates a test scenario that was run to validate

our findings - this topology (same as in Fig. 1) is not

identifiable using end-to-end probe monitoring. The arrows

indicate the network coding graph which overlays the 100

Mbps Full Duplex connection between routers. Linear NC

coefficient assigned to each link - γl in Eq. (3)- are shown

in a box next to the link. Table III presents received values
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TABLE III
SYMBOLS RECEIVED AT DESTINATION FOR TOPOLOGY IN FIG. 6 WITH

TRAINING SEQUENCE GIVEN IN EQ. (22).

Congested link None l1 l2 l3 l4 l5 l6 l7 l8
1st time slot 2 0 0 0 3 3 1 0 1
2nd time slot 0 2 3 1 1 3 3 1 2
3rd time slot 0 2 1 3 1 2 3 2 1
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(a) (b)

Fig. 6. Topology given in Figure 1 which is not identifiable using end-to-end
measuring (a)Snapshot of network coding simulation; NC coefficients, in F

22

(γl), for each link is shown in a box next to the link (b)Snapshot of simulation
when l3 is congested.

at destination for different link congestion states when the

training sequence given by elements of matrix A is used; it is

the lookup table used by destination (node 5) to identify any

congested link in the network.

A =





1 1 1 2 2
1 1 2 1 1
1 1 3 3 3



 (22)

Further tests of our approach was conducted on a larger graph

resembling that of the University of Washington’s Electrical

Engineering network shown in Fig. 7. Thirteen subnets (rep-

resented by the numbers 1-13) are all connected through Full

Duplex Ethernet links to backbone routers (represented as A,

B, C and D), which then connect to the rest of campus. Fig.

7-(a) depicts the network coding coefficients of each node and

the training sequence used is given below.

A =

[
5 5 2 5 2 1 5 3 5 4 3 6 7
4 7 4 1 2 7 7 1 2 2 6 4 2

]

Fig. 7-(b) shows the received symbols at destination (node

A) for different link congestion scenarios. Symbols next to

each link represent values at the destination when that link is

congested. Destination node A uses these symbols to uniquely

locate any congested link in the network; i.e. UW EE network

is seen to be identifiable under proposed network coding

monitoring.

IV. CONCLUSION

This work has presented a novel approach to link status

monitoring based on a deterministic approach that exploits

Fig. 7. UW Electrical Engineering network topology. Network coding
coefficients of each link, in F

23 (γl), is presented in a circle next to that
link. Numbers next to each link shows received symbols at destination when
the link is congested.

LNC at the internal nodes in a network. The key problem

of identifiability for such approaches was highlighted and

various insights provided regarding this concept. New suffi-

cient conditions were derived for successfully identifying a

congested link in any logical network, and trade-offs between

length of training slots and size of the network coding alphabet

established. Finally, the method is verified by implementation

within OPNET to confirm the validity of the claims.
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