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Abstract—Carrier sense multiple access (CSMA) protocols
require stations that wish to transmit to first check the shared
medium for ongoing transmissions. However, in wireless networks
stations may not be able to sense transmissions from all other
stations; hence those at different locations can experience differ-
ent amounts of contention, resulting in unfairness and possible
“starvation” (inability to acquire channel access for long periods).
In this paper we model how the 802.11 MAC protocol allocates
bandwidth among multiple saturated flows in a linear topology
when not all senders are within sensing range. We consider a
specific class of topologies consisting of n independent flows,
where each sender can sense k neighbors on either side. Our work
uncovers global interactions among flows leading to startling
sensitivities in node throughput. A new model to predict the
long-term throughput of each flow under saturation is presented
and our model results validated via OPNET simulations.

I. INTRODUCTION

The IEEE 802.11 MAC protocol uses physical carrier
sensing (PCS) and optional RTS/CTS handshaking or virtual
carrier sensing (VCS) to prevent wireless nodes from trans-
mitting simultaneously. If all senders in a network are within
carrier sense range—or if they all communicate with a single
access point and RTS/CTS is used—they should share the
channel fairly in the long run. In this paper, we consider a class
of topologies in which the 802.11 MAC allocates bandwidth
unfairly among the flows. This long-term unfairness is a result
of the unsynchronized CSMA nature of the 802.11 MAC,
and it has been pointed out before in the literature. In the
most basic case, called (here and elsewhere) the “three flows
problem,” a sender is within sensing range of two other senders
that can’t sense each other (one on either side), and it is
prevented from accessing the channel for long periods of time
due to its neighbors’ overlapping transmissions. The scenarios
that we consider here are extensions of this case, consisting
of n senders, arranged linearly such that each can sense at
most k senders on either side. We present a model, based on
the “contention graph” of the network, to predict throughput
for each flow under saturation. While the n = 3, k = 1
case (the three-flows problem) has been modeled before, our
model provides simple yet accurate approximation for any n,
k. We compare our model’s predictions to OPNET simulation
results. We additionally observe, based on both model and
simulation results, that the allocation of bandwidth among

flows can change dramatically if a single flow is added or
removed from the network.

II. THE THREE-FLOWS PROBLEM

In Figure 1, the three sender-receiver pairs support separate,
saturated flows, i.e., we assume each sender has an infinite
queue of MAC-layer waiting packets. The distances between
the senders are such that node 2 can sense the transmissions
of both 1 and 3, but 1 and 3 are out of CS range of each other.
Therefore sources 1 and 3 can be active simultaneously and we
assume that the signal-to-interference ratio at their destinations
is high enough to allow both transmissions to be successful.

The 802.11 MAC protocol (DCF) uses a random binary
exponential backoff procedure to resolve contention: a sender
must wait a “DCF Interframe Space” (DIFS) and then a
random number of “slot times” before it can send each packet
(see [1]). If the count-down is interrupted by a transmission,
the sender freezes the count-down timer until the next trans-
mission. The DIFS, slot time (σ), and minimum contention
windows (CWmin) are fixed values that differ among the
different PHY-layer standards.

In this scenario, flow 2 will get a much lower throughput
than the other two flows, regardless of the specific parameter
values. We consider each sender’s view of the channel as
being composed of busy periods, contention periods and
transmissions; during busy periods there are ongoing trans-
missions from neighbors and the sender must wait, and during
contention periods the sender is waiting out the DIFS or decre-
menting its timer. During contention periods seen by sender
2, it is at a disadvantage due to the fact that it has to contend
with both senders 1 and 3, whereas each of those senders is
contending with only one other sender (2). Furthermore, busy
periods at sender 2 tend to be longer than busy periods at the
other two senders because of overlapping transmissions by 1
and 3, as illustrated in Figure 2. As is discussed elsewhere, the
problem is in essence caused by the fact that senders 1 and
3 are not synchronized in their transmissions. Sender 2 can
fail to see the channel idle for the necessary minimum time
(DIFS), and thus not get to decrement its timer, for many
consecutive transmissions of its neighbors. If neighbors are
not within “communication range” an additional problem may
occur: the protocol standard mandates that if a sender receives
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a neighbor’s packet with errors, it must wait an “Extended
Interframe Space” (EIFS) after the channel is idle, rather than
the usual DIFS. Our simulation results ([2]), as well as results
in [3] show that a longer packet transmission time (due to
low data rate and/or large packet sizes), longer DIFS, or use
of the EIFS (due to being out of communication range of
neighbors) all tend to increase the length of time and number
of consecutive transmissions of neighbors composing the busy
periods seen by sender 2.

CS range

Fig. 1. The “three-flows” problem.
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Fig. 2. Sender 2 has to wait until both senders 1 and 3 have been idle for at
least a DIFS before it can decrement its backoff counter. In the specification
of the 802.11 MAC, the time between a packet arrival at its receiver and
transmission of its ACK is less than a DIFS, so sender 2 will not get to
decrement its timer during this interval.

III. RELATED WORK

The three-flows problem and variations have been con-
sidered by other researchers under several names, e.g.,
the“exposed terminal problem”([4],[5]). The issue of asyn-
chronization as a cause of unfairness under 802.11 has been
noted specifically in [6] and [7]. In [7], the author describes
the problem in greater detail with the idea of “neighborhood
capture,” in which a set of senders can essentially seize the
channel for long periods of time. The author notes that in
chain network topologies where the CS range is smaller than
the length of the chain, nodes in the middle are disadvantaged
for two reasons: they have more contenders than the end nodes,
and some of their contenders can transmit simultaneously. The
lack of synchronization between the contenders who can’t
hear each other implies that in certain topologies these middle
nodes get almost no throughput. The author discusses the
implications of this problem in different topologies, noting,
for example, that in a ring of four senders in which two

opposite senders can transmit simultaneously but adjacent
senders cannot, once one pair of senders are active, the
other two can be squeezed out for relatively long periods of
time. Thus the lack of synchronization can cause periods of
starvation for one or the other pairs of flows, even though the
topology is not biased to favor any particular set of flows.

Our work, inspired by [7], advances the state-of-art by
presenting a model for a specific set of topologies to estimate
the channel share of each flow with any number of senders.
A handful of other researchers have presented models for
similar scenarios. In [8] a detailed analysis of the three-flows
problem is presented, which aims to predict throughput of
each flow under saturation. Their model uses a Markov chain
that keeps track of backoff timers of all (three) senders, an
approach that is intractable as the number of sender-receiver
pairs scales. Boorstyn et al ([9]) presented a general method
for modelling CSMA networks based on a continuous-time
Markov chain whose state description consists of the set of
active nodes; this approach has been adopted by others, such
as [10]. The significant advantage of the Markov description
in [9] and [10] — which we adopt — is the effectiveness of
their state representation, which only grows at a modest rate
with network size. Our work applies the state representation
in [9] to the class of linear 1-hop topologies, but our approach
differs from theirs in several ways. Their model uses a Poisson
packet arrival rate and exponential transmission rate, whereas
we use a saturated traffic model. Their approach uses queueing
theory to calculate the probability of being in each state, and
uses an iterative method to compute the maximum possible
throughput for each node. However, our approach is based
mainly on combinatorial techniques to analyze a model for
the n linear flow case; we develop this model based upon the
observation that the middle sender in the three-flows problem
is essentially starved. In [10], the starvation of the middle node
is noted for a limiting case, but no further analysis is presented
for extended topologies.

Garetto el al present a modelling approach in [11], [12],
that in theory allows for the calculation of throughput for any
node in any 802.11 multiflow network where not all nodes can
sense each other. However, obtaining results in our model is
significantly simpler as it is based on observations about node
interactions in linear arrangements of 1-hop flows. Our model
also makes apparent the effect of adding or removing a flow in
these topologies, which is not as immediately apparent from
their model.

Graph models have often been used to incorporate con-
straints on nodes or links that can transmit simultaneously, as
we do here. For instance, [13] introduces a “flow contention
graph,” in which each flow is represented by a vertex and
an edge is placed between two vertices if the corresponding
nodes cannot be active at the same time (due to interference
or contention in the CSMA algorithm). Only one flow in each
clique 1 can be active at a time, and further, it must be the

1In graph theory, a clique is set of vertices for which there are edges
between every pair in the set.
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only one transmitting in all of the cliques it belongs to. In
[14], the problem of finding the maximum possible number
of simultaneous transmissions in a network graph is shown to
be equivalent to the problem of finding the number of edges
in a graph that aren’t connected by another edge, a problem
which we solve here for the particular class of graphs under
consideration. In [15], a conflict graph (based on links rather
than flows) is presented; they define a “usage vector” that
gives the fraction of time that each link in the network can be
active, noting that the usage for each link can be computed by
summing the fraction of time given to each of the independent
sets that the link belongs to in the conflict graph. They note
that finding the optimal throughput of a network is equivalent
to finding the size of the largest independent set (called the
independence number) of a graph.

Our approach shares some of the techniques in [13], [14],
and especially in [15] in its use of the link conflict graph and
calculation of throughput by summing over fraction of time
allocated to maximal independent sets. However, our method
for calculating the fraction of time allocated to each maximal
independent set is based on our observations about the three-
flows problem. While similar observations have been noted
before (see for example, [10]), we believe we are the first to
use these observations to derive actual throughput results and
validate them via credible simulations.

IV. THROUGHPUT ESTIMATION IN LINEAR TOPOLOGIES

We consider a general extension of the three flow case: there
are n independent saturated flows and each sender is within
sensing range of k flows on either side. Our approach makes
use of the conflict graph for the network, as discussed in [13],
[15] and elsewhere. Two nodes can transmit simultaneously
(without collision or interference) if and only if they are not
connected in the conflict graph.2 Two examples (n = 5, k = 1
and n = 5, k = 2) and their corresponding conflict graphs
are shown in Figure 3. A set of nodes that can transmit
simultaneously forms an “independent set” ([9], [12], [10],
[15]) in the conflict graph; an independent set which can’t
have any more nodes added to it is maximal. In Figure 3a, the
maximal independent sets are (1,3,5), (1,4), (2,5), and (2,4).
In Figure 3b, the maximal independent sets are (1,4), (1,5),
(2,5) and (3). In the three-flows problem (n = 3, k = 1), the
maximal independent sets are (1,3) and (2).

The basis for our model is the description of the system at
any time by a state of active nodes which form a maximal
independent set. To make this precise, we say that a node is
“active” starting from the point at which it begins a successful
transmission until another sender within sensing range begins
a successful transmission; it is also considered active when
all its neighbors within sensing range are being silenced by
their neighbors. An illustration is as follows: in the three-
flows case, if sender 2 is currently transmitting, the system is
considered to be in state (2) until either sender 1 or 3 begins

2In the specific cases that we consider, in which there is one flow and one
sender on each link, we use the terms “node”, “link”, “sender”, and “flow”
interchangeably. Each corresponds to one vertex in the conflict graph.

transmitting, at which point it is considered to be in state (1,3).
This makes sense because, although senders 1 and 3 do not
begin transmitting exactly at the same time, it is guaranteed
that when one of them takes the channel, the other only has
to wait until its countdown timer expires to begin transmitting
successfully.

As discussed above, the idea of representing the system as a
sequence of states of active or transmitting nodes, where each
possible state is an independent set in the conflict graph, is not
a new concept. The analysis in [9], which has been adapted
in [12] and [10], uses a Markov chain over sets of active
nodes. Also, the method of summing over fraction of time
given to independent sets in a link conflict graph to calculate
throughput was used in [15].

CS range
CS range

CS range
CS range

Fig. 3. Examples of the considered topologies and their conflict graphs: (a)
for the n = 5, k = 1 topology, and (b) for the n = 5, k = 2 topology.

The key approximation of our model is that the system
spends all of its time in the largest-size states and that all states
with lower cardinality get zero time. This is more accurate
when the protocol parameters are such that a “middle sender”
will tend to see longer busy periods due to the simultaneous,
non-synchronized transmissions of its two neighbors. This
behavior is noted in [10] and illustrated with three-flows
problem, where, using exponential (µ) transmission rates and
Poisson arrivals (λ), they show that as λ

µ → ∞, sender 2
(the node not in a largest-size independent set) gets throughput
approaching 0.

In our extended topologies, there are many “middle” nodes
which can sense two senders who can’t sense each other. Our
approximation is based on the following argument: for the
system to transition from a largest-size state to a smaller one
would require two active nodes who can’t hear each other to
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be idle simultaneously for a sufficient length of time for a
“middle” node to decrement its timer to zero. On the other
hand, it is not uncommon for a sender to become active if it
has only one active neighbor. So for instance, in the n = 5,
k = 1 topology, the transition from state (1, 3, 5) to state (2, 5)
would be a low-probability event—it requires that sender 2
win the channel from its two neighbors who can’t hear each
other. However, once in state (2,5) it is easy to transition back
to state (1,3,5), since this requires only that either sender 1
or 3 wins the channel back from sender 2. Therefore, we can
expect the time spent in state (2,5), and more generally, in
any smaller-size state, to be small. Therefore we expect the
throughput to be very low for any node which is not part of
one of the largest states.3

We also make the approximation that the system spends
equal amounts of time in each of the largest-size states. A
detailed argument, which explicitly models the sequence of
states as a Markov chain, is presented in [2]. The argument
is based on the idea that sender i is equally likely to yield
the channel to any sender that is within sensing range and
that does not sense any other active senders. For instance, in
the n = 5, k = 2 topology, state (1,5) is equally likely to
transition into states (1,4) and (2,5). In the n = 6, k = 2
topology, state (1,6) is equally likely to transition into states
(1,5), (1,4), (2,6), or (3,6).

Estimation of Node Throughput: Based on the above, we
derive the following results. Let L = �n−1

k+1 � + 1 be the size
of the largest maximal independent set. Clearly the number
of such largest sets is the number of ways to choose L items
from a list of n such that the chosen items are all at least k+1
places apart. We denote this number bn,k. In the case k = 1
and n even, there are n

2 +1 (=L+1) sets. In the general case,
we derived an expression for bn,k by first considering the case
where each of the L items is selected as close as possible to the
top of the list, i.e., the first item is at position 1, the second at
position k+2, etc. This leaves U = n− ((L − 1)(k + 1) + 1)
empty positions at the bottom of the list. Thus there are
U + 1 possible positions for the last item; considering then
the possible positions for the next-to-last item leads to the
recursive expression bn,k =

∑U
i=0 b((L−2)(k+1)+1+i),k (see

[2]). In the case that k + 1 divides n − 1, then U = 0, so
there is only one largest state, and the nodes in this state are
active almost all of the time. In the case where k +1 does not
divide n−1, there are more than one largest state. For example,
if n = 8 and k = 2, the size L = 3 sets are (1, 4, 7), (2, 5, 8),
(1, 4, 8), and (1, 5, 8). Since we made the argument that all
size-L states occur an equal fraction of the time, the long-run
fraction of time that a node i gets the channel is given by the
fraction of such states (size L maximal independent sets) that
i belongs to: Ni

bn,k
where Ni is the total number of states that

i belongs to. Now Ni is the total number of ways to select
a total of L − 1 items from above and below i on the list at
least k + 1 places apart, if this is possible; therefore Ni =

3Note that in some topologies, such as n = 4, k = 1, there are no smaller-
size states; all maximal independent sets are the maximum size.

(
bi−(k+1),k

) ·(bn−(i+k),k

)
if bi−(k+1),k + bn−(i+k),k = L−1,

or Ni = 0 if bi−(k+1),k + bn−(i+k),k < L−1 (in the case that
it is not possible to select L − 1 items after selecting i.)

Table I lists predicted and actual (simulated) results for
a few networks, in terms of normalized throughput. This
represents the fraction of the theoretical maximum throughput
of a single flow transmitting continuously. We computed the
normalized throughput from OPNET simulation results as

normalized throughput = throughput · T + CWmin−1
2 σ

packet size
(1)

where throughput is measured in bps, packet size is mea-
sured in bits, and

T =mean data packet trans. time

+ SIFS + ACK trans. time + DIFS.
(2)

The simulations used packet sizes of 1500 bytes and the
802.11a PHY settings. The model does not take data rate
into account, but for comparison, simulation results are given
for both a low data rate (6Mbps) and a high data rate
(12Mbps). Due to the expected (and observed) symmetry,
only results for flows �n

2 � are given. In the simulations, the
EIFS is triggered by neighboring sender’s transmissions. The
simulation throughputs are averaged over one 2-minute run.

TABLE I
COMPARISON OF SIMULATION AND MODEL PREDICTIONS FOR A FEW

EXAMPLE TOPOLOGIES. SIMULATION RESULTS ARE FROM OPNET,
NORMALIZED AS EXPLAINED ABOVE.

n = 3, k = 1 n = 5, k = 1
flow 1 flow 2 flow 1 flow 2 flow 3

model 1 0 1 0 1
sim, 6Mbps 0.98 0.01 0.97 0.01 0.97
sim, 12Mbps 0.96 0.02 0.96 0.03 0.94

n = 4, k = 1 n = 6, k = 1
flow 1 flow 2 flow 1 flow 2 flow 3

model 0.6667 0.3333 0.75 0.25 0.50
sim, 6Mbps 0.71 0.27 0.79 0.20 0.50
sim, 12Mbps 0.69 0.30 0.76 0.23 0.49

n = 4, k = 2 n = 5, k = 2
flow 1 flow 2 flow 1 flow 2 flow 3

model 1 0 0.6667 0.3333 0
sim, 6Mbps 0.97 0.00 0.65 0.30 0.00
sim, 12Mbps 0.94 0.02 0.66 0.30 0.01

An important observation that we make, and that is implied
by our model, is that the fairness of channel allocation among
the nodes can change dramatically if a single flow is added
or removed from the end of the network. Figure 4 illustrates
this effect. The figure shows the results of a simulation in
OPNET consisting of 10 sender-receiver pairs that can sense
k = 1 pair on either side. Initially, all but the first is silent;
every 10 seconds a new saturated flow is switched on. The
throughput at the receiver for each flow is color-coded by flow
number (due to symmetry, only flows 1-5 are plotted), and the
flat plots in the same color are the model predictions. The
predicted throughput in bps was computed from the predicted
normalized throughput using Eq. (1).
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Fig. 4. Predicted and simulated throughput at receiver for 10 sender-receiver
pairs, where each pair can sense k = 1 pair on either side. Initially only
flow 1 is active, and every 10 seconds the next flow is switched on. (Due
to symmetry, only flows 1-5 are shown). The “flat” plots are the predicted
long-term throughput for each flow.

The results in Table I and Figure 4, as well as further results
in [2] for 802.11b, showed that the model is less accurate when
either:
(i) the data rate is high and the conflict graph has some

smaller-size maximal independent sets;
(ii) there are many “nodes in the middle” (i.e., k is large),

particularly when the data rate is high;
(iii) n−1

k+1 is large, so that both largest and smaller-size maxi-
mal independent sets contain many nodes

The explanation for (i) is that if the packet transmission time is
short, it is less rare for a middle sender to win the channel from
its two neighbors. Thus the system transitions more frequently
into (and spends more time in) smaller-size states. This effect
can be seen in Table I for the n = 3, k = 1 topology, the
n = 4, k = 2 topology, and the n = 5, k = 1 topology,
for which the model is less accurate at the higher data rate.
Note the the same effect occurs with shorter packet sizes,
smaller DIFS, or when the EIFS isn’t used (due to neighbors
being within communication range). The explanation for (ii)
is that we would expect higher cumulative throughput for the
“starved” nodes in the middle if there are more of them—both
the n = 4, k = 2 topology and the n = 3, k = 1 topology have
one largest state, but the former will spend more cumulative
time in its smaller states (2 and 3) than the latter will in its
smaller state (2). The explanation for (iii) is that if a “starved”
node belongs to a smaller-size maximal independent set that
contains many other nodes, its chances of becoming active are
much higher since its neighbors can be silenced by one of the
other nodes in its set. For example, the n = 9, k = 1 topology
has only one largest state (containing all of the odd nodes) but
when it does enter the smaller state containing the even nodes,

it is likely to remain there for some time. This is evident in
Figure 4: when n = 9 flows are active, the “starved” flows
(2,4,6,8) get higher thoughput than the “starved” flow 2 gets
when only n = 3 flows are active.

V. CONCLUSION

In this paper, we considered chain-like networks of multiple
saturated 1-hop flows. We have argued that the bandwidth
allocated to each flow in such a topology is well approxi-
mated, under certain conditions, by the fraction of largest-size
maximal independent sets to which it belongs. An implication
of our analysis is that certain combinations of n and k lead
to very unfair behavior, while others are more fair. Adding
a single sender/receiver pair to the end of the topology can
dramatically change the way the channel is allocated among
all the flows; hence there is no “limiting behavior” as n → ∞.
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