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Abstract. We analyze an architecture based on mobility to address the problem of energy efficient data collection in a sensor network. Our
approach exploits mobile nodes present in the sensor field as forwarding agents. As a mobile node moves in close proximity to sensors, data
is transferred to the mobile node for later depositing at the destination. We present an analytical model to understand the key performance
metrics such as data transfer, latency to the destination, and power. Parameters for our model include: sensor buffer size, data generation
rate, radio characteristics, and mobility patterns of mobile nodes. Through simulation we verify our model and show that our approach can
provide substantial savings in energy as compared to the traditional ad-hoc network approach.
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1. Introduction

The problem of data collection in sparse sensor networks
is encountered in many scenarios such as monitoring phys-
ical environments such as tracking animal migrations in
remote-areas [1], weather conditions in national parks [2],
habitat monitoring on remote islands [3], city traffic moni-
toring etc. The objective is to collect data from sensors and
deliver it to an access point in the infrastructure. These sys-
tems are expected to run unattended for long periods of time
(order of months). The principal constraint is the energy bud-
get of the sensors which is limited due to their size and cost.

Current approaches involve forming an ad-hoc network
among the sensor nodes to send data. However, this faces the
following energy related issues. Firstly, in a sparse network,
the energy required for transmitting data over one hop is
quite large. This is because sensors may be far from each
other and the transmission power required increases as the
fourth power of distance. Secondly, in an ad-hoc network
sensors have to not only send their data, but also forward data
for other sensors. Thirdly, the network has routing hotspots
near the access points. Sensors that are near the access points
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have to forward many more packets and drain their battery
much more quickly. In this paper, we argue and analyze an
alternative model for energy efficient data collection in sparse
wireless sensor networks.

The key idea in our model is to exploit mobile entities
present in an application scenario. We call these entities
MULEs (Mobile Ubiquitous LAN Extensions) because they
“carry” data from sensor to access point. For example, in a
city traffic monitoring application vehicles can act as MULEs;
in a habitat monitoring scenario, the role can be served by
animals; in a national park monitoring scenario, people can
be MULEs. MULEs are assumed to be capable of short-range
wireless communication and can exchange data as they pass
by sensors and access points as a result of their motion. Thus
MULEs pick up data from sensors, buffer it and later on drop
off the data at an access-point.

In the MULE architecture sensors transmit data only
over a short range that requires less transmission power.
However, latency is increased because a sensor has to wait
for a MULE before its data can be delivered. Neverthe-
less, for many sensor network applications in which data
is collected for future scientific analysis such high latency is
acceptable.



328 JAIN ET AL.

The idea of MULE architecture was introduced in our pre-
vious workshop paper along with a very simple analytical
model [4]. However, many important aspects related to mod-
eling and comparison with ad-hoc networks were left open
and are the focus of this paper. The main contributions of this
paper are:

1. An analytical model based upon queueing theory is
presented to understand the relationship between per-
formance metrics and system parameters. Performance
is characterized along three dimensions: data transfer
rate, latency, and energy requirements at the sensors. Our
model incorporates system parameters such as sensor
data generation rate, buffer size, sensor duty cycle,
radio characteristics such as range and capacity, MULE
velocity, MULE mobility model, etc. Our previous paper
do not address sensor duty cycle, radio range, capacity
and is limited to only one mobility model (random-walk).
In particular, modeling radio characteristics increases
the complexity of the problem significantly. However,
by making suitable assumptions we are able to model
radio range and capacity and further obtain closed form
results.

2. Detailed simulations are performed to validate above an-
alytical model and to gain finer understanding. For ex-
ample, our results indicate that initially increasing ra-
dio bandwidth affects performance dramatically till a
certain point beyond which increasing it further does
not have much effect. Another interesting finding is
that the random-waypoint mobility model can be mod-
eled quite accurately using a Poisson arrival model of
MULEs. Further, somewhat surprisingly, the performance
of these two was similar to performance of MULEs with
a fixed (or deterministic) mobility pattern. This indi-
cates that controlling MULE motion precisely may not be
beneficial.

3. We argue the benefits of the MULE architecture over
ad-hoc networks both qualitatively and quantitatively
using simulation. Our results indicate at least an or-
der of magnitude energy savings. The improvement in
the operational lifetime of the network was even more
dramatic.

4. Issue of efficient discover of sensors is addressed by us-
ing a low duty cycle at the sensor and this is incor-
porated in the analysis. A novel discovery mechanism
is discussed that permits significantly lower duty cy-
cles while at the same time has very little impact on
performance.

The paper is structured as follows. We next de-
scribe related work. Section 3 presents MULE architec-
ture and its advantages over other approaches. Section
4 describes the analytical model and derives various re-
sults. Simulation results are presented in Section 6. We
discuss some enhancements in Section 7 and conclude in
Section 8.

2. Related work

Exploiting mobility for communication in ad-hoc networks
has received much attention recently [5–9]. The work fo-
cuses on scenarios in which there is no immediate end-to-end
path between two nodes that wish to communicate, usually
because of limited radio range. If the nodes are mobile, end-
to-end connectivity may be achieved by buffering data at the
nodes and waiting to transfer until they are in range of access-
points. The key difference is that our application context is
focused on sensor networks unlike previous work where the
focus was towards mobile ad-hoc networks. The severe re-
source constrained nature of sensors networks places different
requirements on the optimization objectives. For example, our
work tries to maximize sensor network lifetime by reducing
the communication energy required at the sensors. In context
of sensor networks, the ZebraNet [1] project collects data
from sensors on zebras by exploiting the natural motion of
the animals. Our architecture introduces MULE explicitly and
encompasses Zebranet like scenarios. Also we focus on ana-
lytical modeling, energy efficient discovery and comparison
with ad-hoc networks which were previously unaddressed.

3. MULE architecture

3.1. Overview

The MULE architecture provides connectivity by adding an
intermediate layer of mobile nodes to the existing relation-
ship between sensors and access-points used in typical sensor
network designs [3] as shown in figure 1.

– Lower tier—sensors: Sensors provide data, communicate
via a short-range radio, and have limited power and mem-
ory. The amount of work performed by sensors should
be minimized because they have the most constrained re-
sources among the three tiers.

Figure 1. The three tiers of the MULE architecture.
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– Middle tier—MULEs: MULEs are mobile entities with
large storage capacities (relative to sensors), renewable
power, and have the ability to communicate with sensors
and access-points. A MULE has the responsibility to dis-
cover sensors and access-points and transferring data be-
tween them. In our basic model MULE(s) do not commu-
nicate with each other. In Section 7 we discuss the effect
of MULE-to-MULE communication as an enhancement to
our basic architecture.

– Upper tier—access-points: These are servers with Internet
connectivity and enhanced power, storage and processing
capabilities. For our purposes, these are the eventual des-
tination of sensor data. They are used to offload the data
collected by and stored in the MULEs.

Depending on the scenario, tiers in our architecture can be
collapsed onto one device, increasing the applicability of our
architecture. For example, sensors can be mobile as in the
ZebraNet project [1] where sensors are attached to zebras,
causing the sensor and the MULE tier to be mapped to the
same device. Similarly, if MULE(s) have Internet connectiv-
ity they can act as an access-point, combining the MULE and
access-point tiers.

3.2. MULE discovery

A sensor needs to discover a nearby MULE to be able to of-
fload its data. In our architecture the prime responsibility of
discovery is placed on the MULE, as our objective is to min-
imize the load on sensors. A MULE continuously sends out a
discovery message to detect a nearby sensor. This requires a
sensor to listen for discovery messages. Since listening con-
sumes as much power as receiving [10], we need to reduce
the duty cycle at the sensors. That leads to a tradeoff between
minimizing the listen energy and maximizing the probability
of rendezvous with a passing MULE. This affect of duty cycle
on performance is analyzed in detail in Section 5.5. We also
discuss some interesting techniques for reducing listening
time in the enhancements Section 7.

3.3. Trade-offs

We now highlight the relative advantages and disadvantages
of the MULE architecture.

3.3.1. Benefits
– Energy Efficient: Substantial energy is saved because sen-

sors communicate over a short range. Moreover, there are
no hotspots in the network as sensors do not forward data
for other sensors.

– Spatial Reuse: The MULE architecture exploits spatial
reuse of bandwidth by using short-range communication
without losing long term connectivity and avoids radio
communication complexities such as collisions.

– No routing overhead: In contrast to ad-hoc networks, the
MULE architecture does not have any routing protocol
overhead for sensors.

– Robustness: Performance degrades gracefully as MULEs
fail. Any single MULE failure does not lead to a discon-
nected network. The primary effect of a MULE failure on
the overall system is a slight increase in latency as there
are now fewer MULEs to pick up data. In contrast, in an
ad-hoc network failure of few critical nodes might lead to
a disconnected network.

– Scalable: The MULE architecture is easily scalable as de-
ployment of new sensors or MULEs requires no network
reconfiguration.

– Simplicity: The data routing aspect of the MULE archi-
tecture is very simple and extremely lightweight for the
sensors. This is important because sensors are the bot-
tleneck of the system. The MULE architecture does not
require any synchronization or location information; an
assumption made by many approaches [10].

3.3.2. Limitations
– Latency: The MULE architecture has high latency and this

limits its applicability to realtime applications (although
this can be mitigated by collapsing the MULE and access-
point tiers).

– Best-effort delivery: Data delivery in the basic architecture
is best-effort; delivery is not guaranteed. The system re-
quires sufficient mobility. For example, MULEs may not
arrive at a sensor or after picking the data may not reach
near an access-point to deliver it. Also, data may be lost be-
cause of radio-communication errors or MULEs crashing.
To improve data delivery, higher-level protocols need to be
incorporated in the MULE architecture. This is discussed
further in the enhancements Section 7.

4. Analytical model

We begin with a discussion of the performance metrics and
parameters involved in the MULE architecture followed by
an analytical model based upon queuing theory.

4.1. Performance metrics

– Data success ratio (DSR): This measures the effectiveness
of data delivery. It is defined as the ratio of the total amount
of data transferred to the access-points to the total amount
of data generated. This metric has been also been used in [1,
11]. Ideally, DSR will be one. Data may be lost because of
errors in radio communication, failure of MULEs or buffer
overflows.

– Latency: This is the average time taken by data to reach
access-points from the time of its generation. Although,
the MULE architecture is targetted for latency insensitive
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applications some notion of latency can be important to
meet application requirements.

– Communication energy: We consider both the average en-
ergy consumed per sensor as well as the worst case con-
sumption which dictates the network lifetime. These are
discussed in detail in evaluation Section 6.3.

4.2. Parameter space

The parameter space can be divided into the four following
categories.

– Sensor related: The data generation rate (λ) defines the
average amount of data that a sensor is generating. This
directly affects the buffer requirements at the sensor. The
sensor buffer size (SB) determines the maximum amount
of data that can be stored on the sensor and can affect loss
of data from buffer overflows. Another parameter is the
duty cycle of sensor.

– MULEs related: The primary aspect is to determine when
MULEs come into the communication range of a sensor.
The MULE arrival within a sensor’s range is modeled as a
discrete event. The key parameter is the distribution of time
between two MULE arrivals at a sensor. Determining this
parameter is a complex problem that depends on factors
such as MULE velocity, number of MULEs, sensor’s radio
range and a MULE’s mobility pattern. For example, dou-
bling number of MULEs or doubling velocity doubles the
average MULE arrival rate. Our model abstracts out these
complexities by assuming the knowledge of inter-arrival
distribution. MULEs buffer size is another parameter, but
for the purposes of this paper we assume that MULEs have
sufficiently large buffers.

– Access point related: The important aspect here is the dis-
tribution and the number of access-points. This affects how
frequently a MULE visits an access-point to deliver data.
This is modeled by a parameter characterizing the distri-
bution of the time interval between visits to access-point
by a MULE.

– Radio related: The radio parameters affect the amount of
data that can be transferred as a MULE passes by a sensor.
We use a radial model for the radio, i.e. sensors and MULEs
can communicate if they are within a distance r. The rate
of data transfer is a fixed quantity B. Although simplistic,
this provides a good approximation, particularly because
the sensor to MULE communication will be over a short-
range.

The discussion of the categories above highlights the fact
that there are many knobs in the MULE architecture. Our
approach is to identify a few basic parameters that are suf-
ficient to characterize the performance metrics. These basic
parameters are: (1) sensor data generation, (2) sensor buffer
size (SB), (3) amount of data transferred between a MULE
and a sensor, denoted by K (4) MULEs arrival at a sensor and
(5) a MULE’s visit to access-points.

The affect of other parameters can be understood by first
studying how they change one or more of the basic parameters
and subsequently studying how the performance is affected
by the change in basic parameters. For example, the impact of
increasing MULE velocity on performance can be examined
in two steps. First, by examining the impact of increasing
MULE velocity on the basic parameters. In this case, it in-
creases the MULE arrival rate at the sensors/access-points
and decreases K (see Section 5.4). Second, the analytical
model is used to analyze the affect on performance due to the
changes in these basic parameters. The effects of sensor duty
cycle are modeled in a similar manner (see Section 5.5).

4.3. Model

The primary component of our model is a queue of generated
data (but not delivered) at each sensor. In queuing theory
terminology, generation of new data at a sensor corresponds
to an arrival at the sensor’s queue. The buffer size of the sensor
defines the capacity of the queue. If the buffer is full then any
new data is dropped. The queue is served whenever a MULE
is in a sensor’s range. For modeling purpose the arrival of a
MULE in a sensor’s range is considered as a discrete event.
This event causes transfer of data from the sensor’s queue to
the MULE. The sensor then waits for the next MULE arrival
event to transfer the data. Thus, the time between two MULE
arrivals dictates when is the queue served.

The amount of data that can be transferred on a MULE
arrival event is a random variable and depends on factors
such as, the time the MULE is in the communication range
of sensor. However, for analytical tractability, this is taken as
a fixed quantity, denoted by K and is derived in Section 5.4.

The interaction between the MULEs and the access-points
can be modeled on exactly the same principles. Because of
space limitation we only focus on interaction between sensors
and MULE, which is the primary bottleneck of the system.
Interaction between the MULEs and access-points have been
discussed in the technical report [12].

The above queueing model resembles the bulk service
model in the queuing literature. The model is typically de-
noted as G/GK/ I /SB [13]. The two G’s stands for the general
input (data generation) and service (MULE arrival) distribu-
tions respectively. K is the service size, and SB is the maxi-
mum queue capacity. If less than K units of data are available
at the sensor then that data is transferred and the MULE leaves
without waiting for additional data.

The following list provides a summary of assumptions and
key notational symbols.

– The MULEs arrival process at a sensor is a renewal process
{S(t), t ≥ 0}, where S(t) is the total number of MULEs
that have visited the sensor up untill time t. The renewal as-
sumption means that the inter-arrival times (time between
arrival of two MULEs) are independent and identically dis-
tributed (denoted by random variable Xs). Average MULE
arrival rate is denoted by µ, and the variance of Xs is σ ms.



EXPLOITING MOBILITY FOR ENERGY EFFICIENT DATA COLLECTION 331

– At a given time only one MULE interacts with a given sen-
sor and vice-versa. Also, we assume that when a MULE
visits a sensor no other sensor is near-by (and contending
for service). This is reasonable because our networks are
sparse. This assumption is verified using detailed simula-
tions.

– Sensors are identical. Although not essential, we will as-
sume that sensors are not mobile for ease of exposition.

– The data generation process at a sensor is a renewal process
{U(t), t ≥ 0}, where U(t) is the total amount of data gen-
erated till time t. Average data generation rate is denoted
by λ.

– The queueing discipline is FCFS. The data that is generated
first is picked up first.

– MULEs have sufficiently large buffers.

– Without loss of generality, SB ≥ K. If SB < K then the
maximum amount of data that is available at sensor buffer
to transfer to MULE is SB. Therefore, K = SB for such
cases.

– Data transmission does not incur any loss. The only loss is
due to sensor buffer overflow.

– The queueing system is stable and only the stationary (time
independent) probabilities are considered. These are the
probabilities as t → ∞ .

5. Results

5.1. Stability condition

Result 1. The system is stable (the queue reaches a unique
stationary regime) iff

λ

Kµ
≤ 1 (1)

Proof. This follows directly from Theorem 3.1 in [14]. Intu-
itively, the equation says that the system is stable if the net
service rate (product of K and the MULE arrival rate) is more
than the data generation rate, else the sensor queues can grow
arbitrarily large.

Our analysis assumes that SB ≥ K (see Assumptions 4.3).
Incorporating this we get, λ

min(SB,K)µ ≤ 1. The above equation
can be used to derive the minimum value of K or SB (for a
given λ, µ) required to reach a stable system.

5.2. Results for performance metrics

We now present results for different performance metrics. The
rest of this section assumes the knowledge of the distribution
of the queue length at the instance a MULE arrives at a sensor
(denoted by the random variable Q). More specifically, Pj will
denote the probability that the queue length Q is j (note that
Pj = 0 for j > SB). Distribution of Q for specific scenarios
is derived in next section.

The average of Q (E[Q]) is used as a measure of the
average buffer occupancy of a sensor. By definition, E[Q] =∑SB

j=0 jPj

Result 2. Data Success Ratio (DSR) is given by:

DSR = µE[min(K,Q)]

λ
(2)

=
µ

(∑K
j=0 jPj + ∑SB

j=K+1 KPj

)

λ
(3)

Proof. Proof is given in Appendix A.
Later, we will see that P′

js depend only on the ratio of λ

and µ,. From the above equation this will also be true for
DSR. This tells us that the system performance (DSR and
buffer occupancy) will not be affected if both parameters are
scaled proportionately.
Result 3. Average queuing delay (Wq) is given by:

Wq = µ2σms + 1

2µ
+ E[Bno]

µ
(4)

Proof. In general, a single MULE may not be able to
transfer all the data in the sensor buffer. In such a case multiple
MULEs may have to arrive before a data sample is served.
Let, E[Bno] denotes the average number of MULEs that arrive
at the sensor while a data unit is in the queue excluding the
MULE which serves the data unit itself. The expression for
E[Bno] is derived in Appendix B.

Recall that, µ is the average renewal rate and σ ms is the
variance of the MULE inter-arrival time distribution.

Consider a time t at which some data (call it d) is generated
and accepted into the queue. The time spent by d in the queue
is the time till the next MULE arrives after t, plus, the time till
next E[Bno] MULEs arrive. To compute the average time till
the next MULE arrives, we will use the concept of Residual
Life for renewal processes. Since the MULE arrival process
is a renewal process, the average time till the next MULE
arrival is by definition the average residual life of the MULE
arrival process ({S(t)}). Therefore, by residual life theorem
[15], the average residual life for {S(t)} is µ2σms+1

2µ
.

Since the average time between two arrivals of MULE
is 1

µ
, the average time for E[Bno] MULEs to arrive isE[Bno]

µ
.

Finally, Wq is the sum of the above two components.
If K is sufficiently large, a MULE can pick up all the

data in the sensor queue. In this case E[Bno] would be zero.
Therefore, the average queuing delay is just the residual life
of the MULE arrival process. The average queuing delay
increases with σ ms. Therefore, MULE arrival processes with
lower variance will have lower queuing delay. Also, note that
total latency from sensors to access-point also includes the
time spent by data at the MULE before it is delivered to an
access-point. As mentioned earlier, this can be dealt in the
same manner as latency inside sensor and is discussed in
technical report [12].
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5.3. Specific scenarios

The previous section assumes that the distribution of Q is
known. In general, this depends on the arrival pattern of the
MULEs and the other system patterns. For the general case a
closed form for the distribution of Q may be hard to obtain.
In this section, we derive Q by making suitable assumptions.
These distributions are later used in the evaluation section
to compare results from the analytic model to the simulation
results.

5.3.1. The MULE arrival distribution and the data
generation process is Poisson

The Poisson assumption allows us to obtain closed form re-
sults and is reasonable under certain environments. For ex-
ample, it is known by the Palm-Khintchine theorem (p. 156
[16]) that under mild conditions on the individual arriving
entities (MULEs in our case), the aggregate arrival process
(also called the superposition process) often looks approxi-
mately Poisson as n → ∞ . We directly apply the results
from Section 4.5 of [13].

Pj = (FSB−j − FSB−j−1)/[FSB], j = 0, . . . SB − 1

PSB = 1/[FSB ], where

Fi =
[i/(K+1)]∑

s=0
(−1)s

(
i − sK

s

)

(1 − p)spsK−i i ≥ 1

Observe that Pj‘s depend only on the ratio of µ and λ. This
indicates that the absolute value of µ and λ is not important.
This would be useful in evaluating the effect of scaling param-
eters on performance (see Section 6) as one of the parameters
can be fixed.

5.3.2. K is large (K ≥ SB)
When K ≥ SB, all the data is transferred when a MULE visits
a sensor. Therefore, the amount of data in the sensor buffer (Q)
is the minimum of: (1) the amount of data generated during
the time between arrival of two MULEs, (2) the sensor buffer
size. In most cases, by stationarity assumption, the amount
of data generated in an interval depends only on the length
of the interval. For example, for poisson or deterministic data
generation process. Therefore, Q = min(U(Xs),SB). If SB is
large, the equation can be further simplified to: Q = U(Xs)
The assumption SB large is valid when the load on the system
is low which is particularly true with low data rates. In this
case, the expected queue length is:

E[Q] = E[U [E[Xs]] = λ

µ
(5)

5.4. Determining K

K is the average amount of data that can be transferred be-
tween a MULE and a sensor, as the MULE passes by a sensor.
We assume that the sensor is stationary.

data generation

process

sensor buffer size (SB)

Sensor Buffer

MULE Arrival process

Buffered data 

Figure 2. The queue model for MULE architecture.

MULE’s
line of motion

x22r2

radio 
range (r)

x

MULE

Sensor

Figure 3. Amount of time a sensor is in contact with a MULE.

In our radio model, sensors and MULEs can communicate
only if they are within a distance r. Therefore, the amount of
data transferred is the radio data transfer rate (B) times the
amount of time the MULE is in the radio range of sensor
(called CT)1 Thus, K = CT × B.

The average contact time can be computed as follows.
Let x be the perpendicular distance between the sensor and
the MULE’s line of motion as shown in figure 3.2 Assume
that x is uniformly distributed between 0 and r. The average
distance that the MULE remains in contact with the sensor
can now be computed as: 2

∫ r

x=0

√
r2−x2

r
dx, which equalsπ

2 r .
If the MULE has a velocity v, we get CT = π

2
r
v

Hence,

K =
(π

2

r

v

)
B

For example, consider a sensor-MULE interaction using a
Berkeley mote. The mote has a radio range of 25 meter and
data transfer rate of 40 Kb per second. If the MULE has a
velocity of 10 m/s (10 m/s is approx 20 miles per hour), using
above equation, we get K = 150 Kb.

1We are assuming that the discovery time is very small.

2In general an application may have additional constraints on x, such as for
traffic monitoring application x is at-least few meters because of spatial
constraints.
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5.5. Impact of sensor duty cycle

We will assume that the sensor periodically listens for DT
seconds every BT seconds. DT is the time for discovery and
BT is the beacon interval. Duty-cycle (γ ) by definition is the
ratio, DT

BT
. Also, we Compared to the 100% duty cycle case,

performance will be affected because of two reasons:

1. A MULE may not be discovered at all because the sensor
was asleep during the time the MULE was in communica-
tion range of sensor (figure 5(a). We model this by finding
the probability of discovering a nearby MULE and use it
to get the effective MULE arrival rate (called µ∗) . For ex-
ample, if the probability of discovering a MULE is 0.25,
then the effective arrival rate is one-quarter of the original
rate.3

The probability that a MULE is missed is the same as
the probability that the MULE contact time interval (CT)
does not oevrlap with the sensor’s discovery interval when
it was listening. Assuming that the MULE contact time can
begin uniformly at any time with respect to a sensor’s, the
probability of discovering a MULE is (CT − DT)/BT.
Therefore, µ∗ is µ(CT − DT)/BT. Note that, if CT − DT
≥ BT µ∗ = µ.

2. The amount of data that can be transferred (K) in one
contact may decrease if the MULE is discovered in the
middle of the duration it is in the communication range of
the sensor. We model this by finding an effective K (called
K∗), the average amount of data transferred between the
MULE and the sensor due to this late discovery.
K∗ depends on the time that is lost because of late dis-

covery. If CT − DT ≥ BT, the discovery starts in the
first BT/2 seconds on average. Therefore, K∗ is K(1 −
BT/2CT) in this case. On the other hand, when CT − DT
< BT the discovery starts on average in the first (CT −
DT)/2 seconds. Therefore, K∗ is K

2 (1 + DT/CT ).

5.5.1. Example
As an example, suppose sensors have a duty cycle of 1/100.
Consider a sensor-MULE interaction scenario, where the ra-
dio range is 25 m and the MULE velocity is 10 m/s. The con-
tact time (CT) for these parameters is approximately 4 sec-
onds. Discovery time is typically 10’s of milliseconds, say
40 ms. For these parameters, µ ∗ is the same as µ. The only
affect is on K, which is halved. This shows that the sensors
can operate at low duty cycles without substantially affecting
performance.

3Here we are assuming that the MULE arrival process is Poisson and the re-
sults hold because random sampling of Poisson processes results in another
Poisson process [15]. For general distributions, this provides a convenient
approximation.

6. Evaluation

This section serves three purposes. One, to understand the
affect of scafing system parameters on performance metrics.
Second, to verify the analytical model presented earlier using
detailed simulations. Third, to compare energy consumption
between the MULE architecture and ad-hoc networks.

6.1. Simulation setup

A custom simulator was written to model the MULE architec-
ture. The underlying topology was a two-dimensional grid.
Sensors and access-points were fixed and randomly placed
on the topology. MULEs were described by an initial position
and a mobility model which guided there movement through
the topology. Considered mobility models were: Random
waypoint, random walk, deterministic arrivals (fixed route
and velocity), and poisson arrivals. Data generation at sensor
was defined by a generic distribution. We considered both
poisson distribution (as assumed by the analytical model) as
well as constant rate generation. In the constant data genera-
tion rate interarrival time between two events is fixed. Both
sensors and MULEs had fixed buffer size (unlike analytical
model where MULEs had infinite buffer). Details of sensor
duty cycle and discovery were also modeled. Sensor’s listen
only a small fraction of time and randomization was used in
sensor’s sleep schedule.

A disc model was used for radio propagation, i.e whenever
sensors and MULE were in each other’s range r they can com-
municate at data rate B. Since our target networks are sparse
and radio range small (25 m default) this is a reasonable
model. Further, a link error rate of one percent was intro-
duced to verify the robustness of our results to lossy links.
The radio propagation model along with mobility model for
MULEs leads to a variable K, unlike our assumption in analy-
sis. Communication between MULEs and access-points were
modeled in the same manner.

6.1.1. Parameter settings
As discussed earlier, the key parameters affecting perfor-
mance are: λ (data generation rate), µ (MULE arrival rate),
SB (sensor buffer) and K (data transferred in one interaction).
Only, the above parameters are varied. K is varied by varying
radio bandwidth B (default value 25 KB) (see Section 5.4)
and µ (MULE arrival rate) is varied by increasing number of
MULEs.

The topology used for sensor placement and MULE mo-
tion was a 2 km ∗ 2 km grid. 100 sensors were placed ran-
domly on it. There was one access-point and was placed at a
corner of the topology.4 MULE buffer was fixed at 10 MB.
Default mobility model used for MULEs was random-
waypoint. The MULE velocity was set to be at 10 m/s. The
default radio-range was 25 m. Time to discover a sensor by a

4We tried few variations in the topology dimensions and qualitatively similar
results were obtained.
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MULE was taken to be 40 ms. Sensor duty cycle was 1/200. λ
is fixed at 90 KB/Hour and constant rate data generation is as-
sumed for simulations.5 The results presented were averaged
over 100 random simulations.

6.2. Performance metrics

We first study the effect of increasing µ and SB, assuming
sufficiently large K (K ≥ SB). Subsequently, the effect of K
is considered. Both simulation and analytical results (using
poisson arrivals) are presented. Finally, effect of different
mobility models is considered.

6.2.1. Scaling µ, and SB
Figure 4 shows the effect of increasing µ, on the performance
metrics. The three different lines on the plots corresponds to
three different sensor buffer sizes 1 MB, 100 KB and 50 KB.

The plots verify that inspite of many simplistic assump-
tions our analysis matches closely to detailed simulations.
Results produced by our analytical model were with-in 5
percentile of simulation results.

Figure 4(a) shows the affect of increasing µ, on average
sensor buffer occupancy.

As expected, with increasing µ the average buffer oc-
cupancy decreases. This is because when MULEs come
more frequently there is less amount of data generated be-
tween two arrivals. Further, interestingly, SB does not have
much effect on buffer occupancy except when the MULE
arrival rate is small which causes excessive load on the
system.

Figure 4(b) shows the effect of increasing µ, on the data
success ratio (DSR).

With increasing µ, the DSR increases sharply eventually
reaching one. This is because when µ is large, the buffer
occupancy decreases and therefore less data is dropped. The
arrow shows the minimum value of µ, required for stability of
the queuing system found using (equation 1 and taking into
account the effect of duty cycle. DSR is very low (around
0.6) at that point. Therefore, µ, should be much larger (5
times for our experiments) than the minimum µ required for
stability. The DSR is also higher, when SB is larger. This is
expected because when SB is large, less data is dropped.
In general, one can increase DSR by either increasing
µ or SB.

Figure 4(a) shows the effect of increasing µ, on latency.
Since K is large, the queuing delay is simply the resid-

ual life of the MULE arrival process, which decreases
as µ, is increased. Additionally, SB has no impact on
latency.

5As mentioned during analysis only the ratio λ
µ

is important.

6.2.2. Effect of K
Figure 5(a) and (b) shows the effect of increasing K on the
average buffer occupancy and the fatency respectivefy (note
that the y-axis is fogscafe). We chose µ as 2 per hour and
relatively large SB of 1 MB. Since SB is large, the DSR is
always close to one and is not shown.

When K is small, both buffer occupancy and latency is
large. This is because a sensor cannot transfer all the data
in the queue to a MULE during a single contact. This in-
creases the average buffer occupancy. Latency is also in-
creased because a data unit has to wait for multiple MULEs
to arrive before it can be served. As K is increased, there
is a sharp decrease in both the buffer occupancy and the
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Figure 5. Effect of scaling K. (a) buffer occupancy (b) latency.

latency initially. However, increasing K beyond a certain
limit does not effect performance. This follows by observ-
ing the flat region of the plots. Intuitively, this is because
K only needs to be large enough so as to absorb the oc-
casional burst in the sensor buffer. For our experiments,
we found that K∗ = 3 × λ

µ∗ was sufficient to be in the
flat region.6

6.2.3. Effect of mobility model
Four mobility models are considered: (1) Random waypoint
(2) Random Walk (new direction is chosen on reaching a
street intersection) (3) Deterministic (MULEs arrive at fixed
interval) (4) Poisson arrival. The data generation rate was
90 KB/S. K and SB were fixed at 100 KB and only µ, was
varied.

Figure 6 shows the DSR and the latency for different mo-
bility models as µ scales. In all cases as µ increases, the
DSR increases and the latency decreases. The performance is
best when the MULE arrival is deterministic and worst under
the manhattan model. The performance of random-waypoint
model closely matches that of poisson model.

To understand this behavior, we considered the coefficient
of variation (CVR) for different mobility models as shown
in Table 1. CVR gives an idea of the burstiness of MULEs
arrival. Large CVR means that the MULE arrival pattern is
more bursty and vice-versa. Now, the performance would
be better when the MULEs arrive at regular interval than in
bursts (assuming same µ). This is because when the MULE
arrival pattern is bursty, relatively longer periods exist when
no MULE arrives. This can cause the sensor buffer overflow
and reduce the DSR. This also affects latency because latency
increases with the variance as discussed in the latency analysis
(Results 3).

6.2.4. Summary
Table 2 summarizes the relationship between the different
parameters and the metrics. We also find that:

6K∗ and µ∗ are the effective quantitites after taking into account sensor’s
duty cycle (Section 5.5).

– The performance results determined using analysis were
close to (with in 5%) results of detailed simulation.

– DSR is less than 60% if the parameters are chosen such that
the stability condition is just met. DSR can be made close
to one by increasing µ, or SB. When K is large, choosing
SB and µ, such that µ ∗ B > 5λ resulted in a DSR greater
than 95%.

– When K is small, the sensor buffer occupancy and latency
is quite large. However, the performance improves sharply
by increasing K initially and eventually saturates when
K∗ > 3 × λ

µ∗ .

– Mobility models which have high variance perform worse
than more deterministic models. The performance of pois-
son arrivals and random waypoint were almost same and
similar to deterministic arrivals. This indicates that MULEs
with fixed mobility pattern are not much beneficial than
random-waypoint kind of motion.

Table 1
Coefficient of variation (CVR) for MULE inter-arrival distribution for

different mobility models.

Mobility model CVR

Poisson 1.0

Deterministic 0.0

Waypoint 0.75

Manhattan 2.1

Table 2
Effect of parameters on performance.

Performance metrics

Parameters Buffer Occ DSR Latency

µ↑ ↓ ↑ ↓
SB↑ – ↑ –

K↑ ↓ ↑ ↓
λ↑ ↑ ↓ ↑

Note. ↑ indicates an increase in the quantity. ↓ indicates a decrease and —
indicates no effect.
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Figure 6. Effect of different mobility models.

6.3. MULE vs Ad-hoc network

This section compares the energy consumption for sending
data in the MULE architecture to an ad-hoc network. The
MULE model and the adhoc network model presents two
different paradigms of collecting data from a sensor network.
The MULE model uses explicit mobile entities which are not
used in the adhoc network model. A head-to-head comparison
should therefore, be carefully interpretted. The main goal
here is to understand the potential savings in energy in the
MULE model. We believe that this would allow us to better
understand the overall tradeoffs between the two paradigms.

The following metrics are used:

Average energy ratio: This is the ratio of the average energy
consumed at a sensor in the ad-hoc network to the energy
consumed in the MULE architecture.

Hotspot ratio: This is the ratio of hotspot usage in the ad-hoc
network to the hotspot usage in the MULE architecture.
Hotspot usage is the maximum energy consumed by any
sensor. This gauges the network lifetime.

The model used for communication energy [17] is: pt =
(α11 + α2(d)l) and pr = (α12). pt is the energy dissipated
to transmit 1 bit of data to a node at a distance d. pr is the
energy dissipated to receive one bit of data. l is the path loss
index and α’s are positive constants. Here, α11 = 45 nJ, α12

= 135 nJ, α2 = 10 pJ/m2 (1 = 2) or .0001 pJ/m4(l = 4), if
d < 87 m, l = 2, else l = 4.

Energy Requirements in the MULE architecture: In the
MULE architecture, a sensor communicates data only to a
MULE within range r. Therefore transmit energy per bit
(per sensor) is simply α11 + α2(r)l. (r = 25 m).

Energy Requirements in an ad-hoc network: This depends on
the sensor network topology and the routing protocol. A
sensor communicates data to a nearby sensor towards an
access-point and the forwarding continues until the data
reaches the access-point. We route the data through the
minimum energy path [18]. Energy requirements for route
maintenance are ignored, therefore, the energy computed
here is only a lower bound on the overall energy require-
ments. Since energy requirement here depends on network
density, number of sensors were varied.

6.3.1. Results
We chose µ as 16 per hour, SB and K as 100 KB. Other
parameters were same as discussed in the simulation setup.
Figure 7(a) shows the Average Energy Ratio as a function of
the sensor density.

When the sensor density is low, the MULE architecture has
over a factor of 100 less average energy consumption. This is
because with few sensors the average distance between two
sensors is large and the communication energy increases as
the fourth power of distance. The benefits decrease as the
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Figure 7. Energy comparison of MULE vs Ad-hoc network approach as a function of sensor density.
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sensor density is increased and eventually saturate with the
average energy ratio around ten. This highlights that even
for high sensor density the MULE architecture is more effi-
cient. This is because in the ad-hoc network the data traverses
multiple hops.

Figure 7(b) shows the Hotspot Ratio as a function of
the sensor density. Same trend as in the Average En-
ergy Ratio is observed indicating that the life-time in the
MULE architecture will be much longer than the ad-hoc
network. Additionally, the Hotspot Ratio is over an or-
der of magnitude higher than the Average Energy Ratio.
This is because the sensors near the access-points have to
forward much more data than others whereas in the MULE
architecture all sensors have the same energy consumption.

These results are not surprising and are somewhat biased
because in the MULE architecture there is an additional en-
ergy consumption at the MULEs. However, MULEs are as-
sumed to be entities with renewable energy whereas sensors
are energy constrained and the primarily bottleneck of the
system. Also, latency in MULE network was much much
more (few minutes or more) than latency in ad-hoc net-
work (few seconds at worst). Another metric of comparison
is throughput between the two approaches. For our settings
(90 Kb/Hour) both approaches were able to deliver the data.
However, we suspect that because the capacity of an ad-hoc
network decreases with increasing number of sensors [19] the
MULE architecture can potentially provide more throughput
(assuming sufficient number of MULEs) because of its better
spatial reuse. This would confirm the results presented in [5]
and we are currently exploring this further.

7. Enhancements

7.1. Reducing sensor duty cycle

Reducing sensor duty cycle saves energy but also affects the
system performance as the sensors may not discover a nearby
MULE. However, the probability of discovering a MULE
can be improved by increasing the contact time (Section 5.5),
thereby allowing a reduction in the duty cycle without affect-
ing performance.

The basic idea involves MULEs using longer range radios
to transmit discovery messages. Sensors then have the oppor-
tunity to hear the message for a longer period of time, thereby
increasing the effective contact time (Section 5.4). Once the
sensor hears the discovery message, it can keep the radio-on
and wait for the MULE to come within the communication
range of the sensor radio.

Application specific knowledge can also be used to reduce
duty cycle. For example, if a sensor is aware of a MULE’s
arrival schedule then it can simply start listening at an appro-
priate time.

7.2. End to end reliability

A simple method to achieve reliability is to incorporate ac-
knowledgements (acks). The main challenge is to determine

when the sensors should retransmit their data. There is a
trade-off, as retransmitting data too early may cause un-
necessary transmissions that increase energy consumption;
whereas, delaying retransmission may lead to buffer over-
flow and increased latency. The problem is particularly acute
because of large and highly variable latencies.

7.3. Improving data reachability

The basic architecture assumes that a MULE eventually
reaches an access-point and at-least one MULE reaches a
sensor. This limitations can be overcome by using a more
general framework in which MULEs and sensors can com-
municate among themselves. For example, MULE to MULE
communication can be used to address scenarios in which a
MULE may not reach an access-point. Similarly, if no MULE
reaches a sensor, the sensor can send its data to other sensors
(using an ad-hoc network) which might be able to forward its
data eventually.

8. Conclusion

In this paper, we argued for exploiting mobility for energy
efficient non real time data collection in sparse sensor net-
works as an alternative to forming an ad-hoc network. To this
end, we presented and analyzed the MULE architecture, a
three-tiered design. The key idea is to exploit the presence
of mobile nodes in the environment by using them as for-
warding agents. This approach extends the lifetime of the
network by minimizing the communication responsibility of
the resource-constrained sensors.

An analytical model based on queuing theory was pre-
sented. Our model incorporates many detailed aspects such
as different MULE mobility models, radio characteristics etc.
By making appropriate assumptions, analytically closed form
results were also dervied which were validated through de-
tailed simulations. Our results provide a usefull base to under-
stand performance cost trade-offs such as buffer requirements
at sensors, radio bandwidth requirements, sensitivity to mo-
bility model etc. We also compared the MULE network with
ad-hoc network. We found that energy savings of up to two-
orders of magnitude (and even larger increases in network
lifetime) can be achieved with MULEs as compared to the
traditional ad-hoc network approach. However, the MULE
architecture is limited to non real time applications which
have mobility. Thus, the MULE architecture is not always
the method of choice, but for certain applications it may be
the most effective option.

This work is only a first step in understanding the feasibil-
ity of using mobility in sensor networks. It is clear that much
more work remains to be done to fully understand the cost-
effectiveness of this approach. We plan to investigate some
of the enhancements discussed earlier, such as reliability and
using MULE-to-MULE communication. Issues surrounding
naming, network layer, and end-to-end connectivity seman-
tics also needs to be addressed. Here we hope to leverage
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work from a recently proposed network architecture called
the Delay Tolerant Network [20].

Appendix A: Proof of result for DSR result 2

Result 2: Data Success Ratio (DSR) is given by:

DSR = µE[min(K,Q)]

λ

=
µ

(∑K
j=0 jPj + ∑SB

j=K+1 KPj

)

λ

Proof. DSR is the ratio of data delivered to the access-
points to the amount of data generated in time t as t → ∞ .
By our assumptions once a MULE picks up the data it is
delivered to the access-point. Therefore, DSR is the ratio of
the data picked up by the MULEs in time t to the total data
generated in time t.

DSR = lim
t→∞

P (t)

U (t)
= lim

t→∞
P (t)

t

(

lim
t→∞

U (t)

t

)−1

Here U(t) is the total amount of data generated at the sensor
and P(t) is the total amount of data picked up by the MULEs.
Also recall, S(t) is the number of arrivals of MULEs in time
t. Now,

lim
t→∞

P (t)

t
= lim

t→∞
P (t)

S(t)
lim
t→∞

S(t)

t

By definition, limt→∞ S(t)
t

= µ, andlimt→∞ U (t)
t

= λ. The
termP (t)

S(t) represents the average amount of data transferred
when a MULE visits the sensor. Let L be the amount of data
picked up by a MULE at the sensor. Then,limt→∞ P (t)

S(t) =
E[L] Since only a maximum of K data units can be trans-
ferred, L = min(K, Q). Now using the fact that Pj is the
probability Q equals j,

E[L] =
K∑

j=0

jPj +
SB∑

j=K+1

KPj

Putting everything together, we get the result.

Appendix B: Expression for E[Bno]

E[Bno] =
� SB

K �−1∑

i=0

i

iK+K−1∑

j=(iK)

P e
j

Proof. E[Bno] is the average number of MULEs that arrive
at a sensor while a data unit is in the queue. This depends on
the distribution of queue length at the instant a new data is
accepted in the queue. To compute this we define P e

j which is
the probability that the queue length is j at the instant a new
packet is accepted in the queue (excluding the new data unit

itself).P e
j can be related to Pj by (Theorem 4.1 of [ 14 ])

P e
j =

min(j+K,SB)∑

i=j+1

Pi

E(L)
0 ≤ j < SB

P e
j = 0 j ≥ SB

The Bno of a new data unit is i iff the queue length (exluding
the packet itself) is between iK and iK + K − 1. This is
because a single MULE arrival removes K data units from
the queue.This gives,

E[Bno] =
� SB

K �−1∑

i=0

i

iK+K−1∑

j=(iK)

P e
j
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