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Capacity of MIMO Systems With Semicorrelated
Flat Fading

Peter J. Smith, Member, IEEE, Sumit Roy, Senior Member, IEEE,
and Mansoor Shafi, Fellow, IEEE

Abstract—The primary contribution of this work lies in the derivation of
the exactcharacteristic function (and hence, the mean and variance) of the
capacity of multiple-input multiple-output (MIMO) systems for semi-cor-
related flat-fading channels. A Gaussian approximation to the exact ca-
pacity results is suggested and evaluated for its accuracy. We show that
over a range of correlation levels this approximation is adequate even for
moderate numbers of transmit and receive antennas.

Index Terms—Multiple-input multiple-output (MIMO) systems, Shan-
non capacity, spatial correlation.

I. INTRODUCTION

There continues to be substantial interest in wireless communica-
tion systems that employ multiple transmit and receive antennas, due
to their promise for dramatically increasing the capacity (or, equiva-
lently, spectral efficiency) without requiring bandwidth expansion. The
concept of such multiple-input multiple-output (MIMO) wireless sys-
tems was pioneered by Foschini and coworkers [1]–[4] and developed
into the Bell Labs layered space–time (BLAST) architecture that re-
port achieving spectral efficiencies in the range of 10–20 bits/s/Hz for
typical configurations.1 Derivation of capacity and other pertinent fig-
ures of merit for channels with independent gains should be credited
to [5], [1], [3]; further results appear in [6], [7]. Throughout this corre-
spondence, we assume a “quasi-stationary” channel [1] where capacity
is interpreted as a random variable. Hence, we concentrate on the ca-
pacity distribution, leading to outage probabilities, rather than ergodic
capacity.

Extensions of this work to correlated channels have begun to appear
rapidly in the literature [8]–[12]. It is now well known that MIMO ca-
pacity is very sensitive to the presence of spatial fading correlation [8]
which may be present at either or both ends of the radio link. As a
point of notation, we denote a system witht transmit andr receive an-
tennas as at ! r system. In fact, as shown by Shiuet al. [8], when
the angular spread reduces, the correlation between the elements of the
channel gain matrix increases. In turn, the capacity of ann! n MIMO
system decreases and approaches closely that of a1! n single-input
multiple-output (SIMO) system.

The highest spectral efficiency of a point-to-point MIMO system is
only achieved when there is uncorrelated fading among pairs of trans-
mitter and receiver antennas. In practice, this can be achieved with suf-
ficient spacing among the base station and (mobile or portable) terminal
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1Just recently, Lucent Technologies announced chip sets that achieve 19.2
Mbits/s for third-generation (3G) cellular networks using four transmit and re-
ceive antennas.

station antennas. At the base station, decorrelation is achieved using ap-
prox. 10� separation between nearest elements in a linear array [11].
A mobile station operating in an urban outdoor area (say, in the central
business district) or indoors in a home or office environment is likely
to be surrounded by multiple scatterers that contribute to wide angle
scattering. Therefore, only0:5� spacing may be adequate. At 2 GHz,
this wavelength is 15 cm. This means that even a modest four-element
antenna array at the base station will have a span of 4.5 m. Thus, con-
trary to popular belief, the spacing issue is of considerable significance
at the base station where mounting of antennas is subject to strict envi-
ronmental regulations. Note that design and mounting of closely spaced
antennas on small form-factor portable devices (lap tops, PDAs, etc.)
poses additional problems (to just using separation to decorrelate re-
ceived signals) due to coupling via the substrate.

In this correspondence, we consider channels with correlation at one
end only and we denote these channels as “semicorrelated” following
[13]. Note that recent measurements conducted in downtown Helsinki,
Finland show that the semicorrelated channel model is valid for certain
urban environments [14].

In particular, system engineers would like to have the ability to ex-
actly predict the influence on capacity due to the presence of correlation
at either end and establish the onset of diminishing returns.

The main contributions of the correspondence are as follows:

• the derivation of the exact characteristic function of the capacity
distribution under correlated fading at either end;

• differentiating the characteristic function to derive the first two
moments of the capacity distribution;

• validating the above results for a number of correlation scenarios
and array sizes (including equal and unequalt, r values).

Despite their obvious complexity, the exact results have value in
allowing a calibration of simulations with the corresponding closed-
form results. Once implemented, of course, results are produced
more quickly than simulations and without simulation error. In an
earlier paper [15], we showed that the capacity of a MIMO system for
uncorrelated channels can be successfully approximated by a Gaussian
distribution. In this correspondence, we show that for the correlated
cases considered here, the Gaussian approximation is still effective.
This result follows from simulation of MIMO capacities of correlated
channels and comparison with a Gaussian distribution where the
mean and variance were computed using the exact results derived
in this correspondence. For the uncorrelated case, the distribution
of the standardized capacity converges to Gaussian under various
limiting regimes [9], [15]. For the correlated case, we conjecture
that this will also occur under suitable constraints on the correlation
structure. In this correspondence, however, we simply demonstrate the
accuracy of a Gaussian approximation by experimentation. Note that
the characteristic function for the uncorrelated case has been derived
in [16].

The channel model assumed for correlated fading is the well-known
separable model where separate processes induce correlation at the
transmitter and receiver. This approach is now considered an accept-
able basis for research into correlated fading [8]–[12], [17] and also ap-
pears in the standards literature [18]. Recent work in this area [8]–[10],
[12], [19] gives capacity results under limiting scenarios, but to the best
of our knowledge no exact results are available, with the exception of
some work reported in [12].

The correspondence is organized as follows: Section II formulates
the problem. Section III contains the derivation of the exact charac-
teristic function of the capacity and its mean and variance. Section IV
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provides a Gaussian approximation based on the exact results and some
numerical checks of the analysis. Finally, in Section V, some conclu-
sions are given.

II. PROBLEM FORMULATION

Consider a MIMO system where each user transmits simultaneously
via t antennas and reception is viar antennas. The total power of
the complex transmitted signalsss is constrained toP regardless of the
number of antennas. The received signalrrr is given by

rrr = XXXsss+ nnn (1)

wherennn is a complexr-dimensional additive white Gaussian noise
(AWGN) vector, with statistically independent components of identical
power�2 at each of ther receive branches andXXX is anr � t (com-
plex) matrix of independent and identically distributed (i.i.d.) circular
Gaussian variables with zero mean and unit total variance as is appro-
priate for independent and identical fading channels. Without loss of
generality, we assume�2 = 1 for the remainder of the correspondence.
The capacity of such a MIMO system with no channel state informa-
tion at the transmitter is given by [5], [1], [3]

C = log
2

det (IIIr +
P

t
XXXXXX

y) (2)

In the case of correlated fading, the most common models assume
that the fading is induced by separate physical processes at the trans-
mitter and receiver [8]. This leads to the channel matrix being modeled
asAAAXXXBBB whereAAA induces correlation at the receiver end,BBB induces
correlation at the transmitter side, andXXX is as defined above. Using
this model we can write the capacity as

C = log
2

det (IIIr +
P

t
AAAXXXBBBBBB

y
XXX
y
AAA
y)

= log
2

det (IIIr +
P

t
AAAXXX���B���B���

y

BXXX
y
AAA
y)

= log
2

det (IIIr +
P

t
AAA ~XXX���B ~XXX

y
AAA
y) (3)

where���B is the unitary matrix defined by the matrix decomposition
BBBBBBy = ���B���B���

y

B and���B is the diagonal matrix of eigenvalues of
BBBBBBy. Since���B is unitary, the statistics of~XXX are identical to those of
XXX and we drop the~superscript for convenience. For correlation at the
transmitter only we have the result

C = log
2

det (IIIr +
P

t
XXX ���BXXX

y) : (4)

If the correlation is at the receiver end only then we write

C = log
2

det (IIIr +
P

t
AAAXXXXXX

y
AAA
y)

= log
2

det (IIIt +
P

t
XXX
y
AAA
y
AAAXXX)

= log
2

det (IIIt +
P

t
~XXX
y
���A ~XXX) (5)

whereAAAyAAA = ���A���A���
y

A using the same approach as before. Hence,
both types of one-sided correlation result in a capacity equation of the
same form (see (4) and (5)).

III. D ERIVATION

Note that all the cases discussed in Section II yield a capacity ex-
pression of the form

C = log
2

det (IIIM +XXX ���XXXy) (6)

where, for example,��� = P

t
���A in the case of correlation at the receiver

end andM can ber or t depending on the application. Our analysis
depends on the assumption thatM � N whereM is the number of

rows ofXXX andN is the number of columns. This includes the most
useful special case whereM = N , i.e.,r = t. The requirement that
M � N stems from the methodology used (see Appendixes A and
B) which is based on the distribution ofXXX ���XXXy given in [20] for this
particular case.

Let��� = diag(
1; . . . ; 
N) where
1 > 
2; . . . ; > 
N . The char-
acteristic function ofC is given by

�(s) = E e
jsC = E exp js log2

M

i=1

(1 + xi) (7)

wherex1; . . . ; xM are the nonnegative (unordered) eigenvalues of
XXX���XXXy. Letting t = s

log (2)
yields

�(s) =E exp jt loge

M

i=1

(1 + xi)

=E

i

(1 + xi)
jt = �1(t): (8)

In Appendix A, we show that�1(t) can be written as a ratio of deter-
minants

�1(t) =
j�12III0 III1 . . . IIIM�1j

M�1

k=1

k! �3

(9)

where

�3 =

1 
1 : 
N�1
1

1 
2 : 
N�1
2

: : : :

1 
N : 
N�1
N

(10)

is a Vandermonde matrix and�12 is anN � N � M submatrix of
�3 consisting of the firstN �M columns. The remaining terms are
defined by

IIIk = [I1k I2k . . . INk]
T

where

Iik =
1

0

x
k(1 + x)jt exp �

x


i


N�M�1
i dx

is a confluent hypergeometric function [21]. Note that�3 has the al-
ternative form�3 =

i>k
(
i � 
k) where we assume that
i 6=


k 8i 6= k. If two 
k values are equal then both the numerator and the
denominator of�1(t) are zero and this form cannot be used. The as-
sumption of unequal
 ’s can be relaxed but the analysis then requires
taking the limit of (9) as, say,
i ! 
k. This is possible but is perhaps of
marginal interest. The important case where equal eigenvalues occur is
the classical one where��� is proportional to the identity matrix and this
is well known. For semicorrelated channels, the
k values result from
correlation measurements or models. If based on measurements, they
are unequal with probability one. Also, all channel models known to the
authors lead to unequal
k values, including those in standards models
[18] and in the literature [8], [13], [17]. Hence, in this correspondence,
we only consider the case of distinct eigenvalues. More problematic is
the issue of numerical robustness of the exact results when eigenvalues
become extremely close to each other. This is discussed in Section IV.

The mean and variance is now readily obtained from the character-
istic function as follows:

E[C] =�j�0(0) =
1

loge 2
�j�01(0) (11)

V ar:[C] =
1

( loge 2)2
�
0
1(0)

2 � �
00
1 (0) : (12)
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In Appendix B, we show how the characteristic function can be dif-
ferentiated to give�01(0) and�001 (0). Substituting these in (11), (12)
gives the following results:

E[C] =
1

loge 2

M�1

i=0

N

k=1

cik I(i; 
k) (13)

where

cik =
(�1)(M�i�1)


(N�M�1)
k

i!
h 6=k

(
k � 
h)

�1

�

i 6=k

1�i <...<i �N


i . . . 
i (14)

and

I(i; 
k) =
1

0

loge (1 + x) xi e
�

dx: (15)

Evaluation of (15) can be done numerically, or from the expression

I(i; 
) =

i

r=0

i!(�1)i�r

(i� 1)!

r+1 E1

1




+

i

r=1

r�1

k=0

r�k�1

h=0

i!(�1)i�r
h+k+2

(i� r)!(r � k � 1� h)!(r � k)
(16)

which follows using integration by parts and the definition of the expo-
nential integralE1(�). The coefficientcik may be more easily evaluated
using its representation as a determinant (see (36) in Appendix A). Note
that the form of (13) is similar to Telatar’s result [5] for the mean ca-
pacity in the uncorrelated case. Both are finite sums of integrals which
can be expressed in terms of the exponential integral. Hence, although
the correlated case addsN extra parameters, their effect is simply to
make the coefficients more complicated. The variance is given by (17)
at the bottom of the page, wherec, �ik, and�ikrs are constants andIik
is given above. These terms are defined as follows:

c =

M�1

k=1

k!

�1

��1
3 (18)

I 0ik(0) = j
N�M�1
k I(i; 
k) (19)

I 00ik(0) =�
N�M�1
k

1

0

[ loge (1 + x)]2xi exp �
x


k
dx

(20)

�ik =

M�1

r=1

r!
�ik
i!

(21)

where�ik is the determinant of�3 with columni and rowk removed

�ikrs =

M�1

n=1

n!
�ikrs
i! k!

(22)

where�ikrs is the determinant of�3 with columnsi; k and rowsr; s
removed. Again, the result is similar to the uncorrelated case derived
in [15] with the basic form of the expression remaining the same but
the extra parameters causing an increase in the complexity of the coef-
ficients.

IV. RESULTS

We first focus on numerical verification of the results on the exact
mean and variance. Here, we consider a simple scenario with one-sided

correlation in a4 ! 4 MIMO system. The correlation has a simple
exponential decay form whereCorr(XXXikXXXhk) = �ji�hj for k 2
f1; 2; 3; 4g and0 � � � 1. We refer to� as the exponential corre-
lation parameter. This gives correlation at the receiver (or transmitter)
which drops off exponentially with antenna separation. For example,
an equally spaced linear array with antennas sequentially numbered has
ji � hj proportional to the distance between antennai andh. For this
model, we simulate 5000 capacity values for a variety of signal-to-noise
ratio (SNR) and� values. In Figs. 1 and 2, we plot the mean capacity
and capacity variance versus� for SNR2 f3 dB; 9 dB; 15 dBg. Good
agreement is observed between simulated values and the exact calcu-
lations. Also shown in this correlation scenario is the expected drop in
mean capacity and capacity variance as correlation increases. In the ex-
treme case of perfect correlation, there is no diversity at one end of the
link and so the capacity will become that of a SIMO or a multiple-input
single-output (MISO) system. In addition, we note that the variance ap-
pears to be more sensitive than the mean to changes in correlation. As
mentioned in Section III, when
 values become very close to each
other, the presence of difference terms, especially in the denominator
can be a problem in terms of numerical computation. Producing algo-
rithms which are robust to all parameter values is beyond the scope of
the correspondence. Our own implementation of the results begins to
encounter difficulties aroundN = 10. Beyond this point, special care
needs to be taken in the handling of the computations.

Next we investigate a Gaussian approximation to the capacity dis-
tribution. Here, we consider three physical models for the correlated
channel in a4 ! 4 MIMO system. In particular, we use the correla-
tion model in [17] specified by the average angle of arrival or depar-
ture (AOA), the angle spread (AS), the distribution of the angles, and
equally spaced antennas with separationd. Numerical values for the
parameters are given in Table I. These parameters were then used to
compute the elements of a corresponding channel correlation matrix
for the three scenarios. We compute the eigenvalues for these models
which form the diagonal entries of the��� matrix in (6). These eigen-
values are plotted in Fig. 3, normalized so that the maximum eigen-
value is1 for ease of comparison. Note that there is a wide spread of
correlation here; the low correlation eigenvalues decay slowly whereas
the highly correlated case has essentially only one eigenvalue of any
size.

For the three scenarios in Table I we plot, in Fig. 4, the empirical dis-
tribution function of 10 000 simulated capacity values. Superimposed
on each curve is the Gaussian approximation fitted from the exact mean
and variance values. As for the uncorrelated case, good agreement is
observed between the empirical distribution and the Gaussian approxi-
mation even down to lower tail probabilities of the order of10�3. This
observation holds even for the high correlation scenario where there
is only one eigenvalue of any size. Here the Gaussian approximation
is likely to be most suspect. In [22], it was also shown that temporal
sequences of capacity variables can be approximated by a Gaussian
process in the presence of both spatial and temporal correlation.

A more thorough investigation of the Gaussian approximation is
given in Fig. 5. There are seven curves in Fig. 5 corresponding to two
levels of correlation (� = 0:1, 0:9) by three sets of antenna num-
bers (r = t=2, r = t, r = 2 � t). The seventh curve (bold) corre-
sponds to a true Gaussian random variable. For each scenario, a Kol-
mogorov–Smirnov goodness of fit test for a Gaussian distribution was

Var[C] =
�1

( loge 2)2
c

M�1

i=0

N

k=1

�ikI
00
ik(0) + 2c

0�i<k�M�1

N

r=1

N(s6=r)

s=1

�ikrsI
0
ir(0)I

0
ks(0) � E[C]2 (17)
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Fig. 1. Plot of mean capacity versus exponential correlation parameter for a4! 4 MIMO system. Simulated results are given by the lines and analytical results
are given by the points.

Fig. 2. Plot of capacity variance versus exponential correlation parameter for a4 ! 4 MIMO system. Simulated results are given by the lines and analytical
results are given by the points.

TABLE I
PARAMETER VALUES FOR THETHREE CORRELATION SCENARIOS

performed. Large values of the test statistic correspond to large devia-
tions from Gaussianity. The following conclusions can be drawn from
Fig. 5. Form � 3, all scenarios are similar and compare very well to a

Gaussian distribution. Form < 3, correlation reduces the goodness of
fit. For fixedm, r = t has the worst fit andr = 2� t is the best fitting.

V. CONCLUSION

Wehavederived aclosed-formcharacteristic function for thecapacity
ofaMIMO system in semicorrelated flat-fadingchannels. Thisprovides
closed-form expressions for the mean and variance and thus enables an
investigation of a Gaussian approximation to the capacity distribution.
We have shown that for moderate numbers of antennas (m � 3) the
Gaussian approximation is adequate over a wide range of correlations.
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Fig. 3. Plot of the normalized eigenvalues for the correlation scenarios versus eigenvalue position for a4! 4 MIMO system.

Fig. 4. Capacity distribution functions for a4! 4 system under low, medium, and high correlation scenarios (SNR= 15 dB).

APPENDIX A

Consider the distribution of theorderedeigenvaluesx(1) � � � � �

x(M) of theM �M random Hermitian matrixZZZ given by

ZZZ = VVV �VVV y

whereVVV isM �N normal with i.i.d.CN (0; 1) entries,M � N , and

��� = diag[
1; . . . ; 
N ]

with 
i > 0; 8i. Collecting theM(M+1)
2

distinct elements ofZZZ in
the vectorzzz, the results of [20] state that the joint probability density
function (pdf) ofZZZ is given by

fZZZ(zzz) = �
�M(M�1)=2 �1(zzz)

�2(zzz)�3
(23)

where �1; �2; �3 are various determinants. Now, it is
known from [23] that the joint pdf of the ordered eigenvalues
xxxo = [x(1); . . . ; x(M)] of ZZZ is related to that ofzzz via

fXXX (xxxo) =
�M(M�1)=2

M�1

k=1

k!

�2
2(xxxo) fZZZ(xxxo) (24)

From (23) and (24) we have

fXXX (xxxo) =
1

M�1

k=1

k!

�1(xxxo)�2(xxxo)

�3
x(1) � x(2) � . . . � x(M)

(25)
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Fig. 5. Gaussian goodness of fit results for MIMO systems at various levels of correlation:� = 0:1 and� = 0:9. Antenna numbers are set atr = t, r = t=2,
andr = 2 � t (SNR= 3 dB).

where

�2(xxxo) =

1 x(1) : : xM�1(1)

: : : : :

: : : : :

1 x(M) : : xM�1(M)

(26)

�3 =

1 
1 : : 
N�11

: : : : :

: : : : :

1 
N : : 
N�1N

(27)

and in (28) at the bottom of the page. Now theunorderedeigenvalues
XXXu have a joint pdf given by

fXXX (xxx) =
fXXX (xxx)

M !
=

1
M

k=1

k!

�1(xxx)�2(xxx)

�3
;

x1 � 0; x2 � 0; . . . ; xM � 0: (29)

Using the unordered eigenvalues we have

�1(t)=E

M

i=1

(1+xi)
jt

=
1

0

� � �

1

0

M

i=1

(1+xi)
jt�1�2�

�1
3

M

k=1

k!

�1

dx1 . . . dxM :

(30)

The above can be simplified by noting that

M

i=1

(1 + xi)
jt�1 = j�12 hhh1 hhh2 . . .hhhM j

where�12 is anN � N �M matrix consisting of the firstN �M

columns of�1 and theN -vectors

hhhk = (1 + xk)
jt



N�M�1
1 e

�

; . . . ; 
N�M�1N e
�

T

:

Now it can be seen from the expression for�2 that

�2 = (�1)�
M

k=1

x
i
k

whereik 2 0; 1; . . .M � 1 and� is the sign of the permutation. Using
this in (30) gives

�1(t) =��13

M

i=1

k!

�1
1

0

� � �

1

0

(�1)� �12x
i
1 hhh1; . . . ; x

i
M hhhM dx1; . . . ; dxM

=��13

M

k=1

k!

�1

(�1)� j�12Ii ; . . . ; Ii j

(31)

�1(xxxo) =

1 
1 : : 
N�M�11 
N�M�11 e�x =
 : : 
N�M�11 e�x =


: : : : :

: : : : :

1 
N : : 
N�M�1N 
N�M�1N e�x =
 : : 
N�M�1N e�x =


: (28)
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where

Ii =
1

0

x
i



(N�M�1)
1 e

�

� � � 

(N�M�1)
N e

� T

(1 + x)jtdx (32)

Since� is the number of column swaps required in the ordering
i1 . . . iM , all the terms in the sum above are identical and hence

�1(t) = ��13

M�1

k=1

k!

�1

j�12I0 . . . IM�1 j : (33)

APPENDIX B
DERIVATION OF �01(0) AND �001 (0)

Here we give a brief derivation of the first and second derivatives of
the characteristic function which enables the computation of the mean
and variance. Defining

c = ��13

M�1

k=1

k!

�1

and differentiating (33) with respect tot gives

�
0
1(t) = c �12I

0
0 . . . IM�1 + . . . + c �12I0 . . . I

0
M�1 (34)

With Ii defined in (32) it is straightforward to show that

Ii(0) = i![
N�M+i
1 ; . . . ; 
N�M+i

N ]T

and hence,

�
0
1(0) = c

M�1

k=1

k!

M�1

i=0

1

i!
�1;N�M+i I

0
i(0) �N�M+i+2; N

(35)

where�r; s represents the submatrix of�3 containing columnsr
throughs inclusive. Expanding the determinant in (35) by column
N � M + i + 1 gives

�
0
1(0) = c

M�1

k=1

k!

M�1

i=0

1

i!

N

k=1

�ikI
0
ik(0) (36)

where�ik is the ikth cofactor of�3. From (32) we haveI 0ik(0) =
j
N�M�1k I(i; 
k) and from [24] we have

�ik = (�1)N�M+1+i+k
r; s 6=k

r>s

(
r � 
s)

�

i 6=k

1�i <...<i �N


i 
i . . . 
i : (37)

Substituting forI 0ik(0) and�ik in (36) gives the result in (13).
The procedure for the second derivative is very similar and starts

from the equation

�
00
1 (0)=c

M�1

i=0

�12I0(0); . . . ; I
00
i (0); . . . ; IM�1(0)

+2c
0�i<k�M�1

�12I0(0); . . . ; I
0
i(0); . . . ; I

0
k(0); . . . ; IM�1(0) :

(38)

We expand both determinants in (38) by columnN�M+i+1. The
second determinant is then also expanded by the column containing
I 0k(0). This gives

�
00
1 (0) = c

M�

i=0

N

k=1

�ikI
00
ik(0)

+2c
0�i<k�M�1

N

r=1

N(s6=r)

s=1

�ikrsI
0
ir(0)I

0
ks(0) (39)

where�ik and�ikrs are the relevant cofactors in (38). Note that compu-
tationally fast and simple recursions can be derived for all the constants
required (cik, �ik, and�ikrs) but this is beyond the scope of this cor-
respondence.
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Upper Bounds of Rates of Complex Orthogonal
Space–Time Block Codes

Haiquan Wang and Xiang-Gen Xia, Senior Member, IEEE

Abstract—In this correspondence, we derive some upper bounds of the
rates of (generalized) complex orthogonal space–time block codes. We first
present some new properties of complex orthogonal designs and then show
that the rates of complex orthogonal space–time block codes for more than
two transmit antennas are upper-bounded by3 4. We show that the rates
of generalized complex orthogonal space–time block codes for more than
two transmit antennas are upper-bounded by4 5, where the norms of
column vectors may not be necessarily the same. We also present another
upper bound under a certain condition.

For a (generalized) complex orthogonal design, its variables are not re-
stricted to any alphabet sets but are on the whole complex plane. In this
correspondence, a (generalized) complex orthogonal design with variables
over some alphabet sets on the complex plane is also considered. We obtain
a condition on the alphabet sets such that a (generalized) complex orthog-
onal design with variables over these alphabet sets is also a conventional
(generalized) complex orthogonal design and, therefore, the above upper
bounds on its rate also hold. We show that commonly used quadrature am-
plitude modulation (QAM) constellations of sizes above4 satisfy this con-
dition.

Index Terms—Complex orthogonal designs, complex orthogonal space–
time block codes, Hermitian compositions of quadratic forms, Hurwitz
family, Hurwitz–Radon theory.

I. INTRODUCTION

The first real/complex orthogonal space–time block code was
proposed by Alamouti [1] for two transmit antennas. It was then gen-
eralized to real/complex orthogonal space–time block codes for more
than two transmit antennas by Tarokh, Jafarkhani, and Calderbank
[3]. There are two important properties of real/complex orthogonal
space–time block codes: 1) they have fast maximum-likelihood (ML)
decoding, namely, symbol-by-symbol decoding; 2) they have the
full diversity. These two properties make real/complex orthogonal
space–time block codes attractive in space–time code designs. By
utilizing the Hurwitz–Radon theory [17]–[19], [23], [26], Tarokh,
Jafarkhani, and Calderbank [3] provided a systematic method to
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constructreal orthogonal space–time block codes of sizep � n and
rate1 for k pulse-amplitude modulation (PAM) symbols, wheren is
the number of transmit antennas,p is the time delay (or block size),
andR = k=p is the code rate. They also provided a construction of
rate1=2 complexorthogonal space–time block codes for phase-shift
keying (PSK) and quadrature amplitude modulation (QAM) symbols
using real orthogonal space–time block codes of rate1. In order to
maintain the fast ML decoding and the full diversity of a space–time
block code, the orthonormality in the sense that the norms of all
column vectors are the same can be relaxed to a general orthogonality
where the norms of column vectors may not be necessarily the same
[3]. A complex orthogonal space–time block code with the generalized
orthonormality is called a generalized complex orthogonal space–time
block code. In [2], [3], it has been shown that the rateR � 1 for
both real and complex orthogonal space–time block codes for any
number of transmit antennas. While the maximal rate1, i.e.,R = 1, is
reachable for real orthogonal space–time block codes as we previously
mentioned from the Hurwitz–Radon’s constructive theory, it has been
recently shown in [8] thatk � p � 1 whenn > 2, i.e.,R < 1

andR = 1 is not reachable for (generalized) complex orthogonal
space–time block codes no matter what the time delayp is unless
the number of transmit antennas is two, i.e., the Alamouti’s scheme.
Notice that, if conditionp = n is required, i.e.,squarecodes orsquare
complex orthogonal designs, thenR < 1 whenn > 2 directly follows
from the results on amicable designs [18], [21]–[23], [3], [5]–[7] that
have small rates whenn � 8. While both square and nonsquarereal
orthogonal designs (or compositions of quadratic forms) are well
understood, not much is known for nonsquarecomplexorthogonal
designs (or Hermitian compositions of quadratic forms [26]), [3],
[26], [27].

In this correspondence, we derive some upper bounds on the ratesR
of (generalized) complex orthogonal space–time block codes (or com-
plex orthogonal designs). We emphasize that the sizes of (generalized)
complex orthogonal space–time block codes (or complex orthogonal
designs) here are general and they may not be square, i.e.,p may not
be equal ton. We show that, when the number of transmit antennas is
more than two, i.e.,n > 2, the rates of complex orthogonal space–time
block codes are upper-bounded by3=4, i.e.,

R �
3

4

and the rates of generalized complex orthogonal space–time block
codes are upper-bounded by4=5, i.e.,

R �
4

5
:

Note that rate–3=4 complex orthogonal space–time block codes for
three and four transmit antennas have appeared in [3]–[6]. There-
fore, the above upper bound tells us that these complex orthogonal
space–time block codes have already reached the optimal rate. Also
note that the above upper bound3=4 on the rates is not new forsquare
complex orthogonal designs. In fact, it has been shown and reviewed
from amicable designs in [18], [21]–[23], [3], [5]–[7]. However, this
upper bound isnewfor nonsquare complex orthogonal designs. In the
meantime, it is known that to generate orthogonal space–time codes, a
square orthogonal design is not necessary [3].

In a conventional (generalized) complex orthogonal design, its vari-
ables may take any values in the complex plane. However, as we shall
see later, to generate a space–time code, the variables only take values
in some finite subsets, called alphabet sets, on the complex plane. The
question then becomes whether it is helpful to produce more (gener-
alized) complex orthogonal designs of high rates when their variables
are restricted to some alphabet sets. This question has been partially
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