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Capacity of MIMO Systems With Semicorrelated station antennas. At the base station, decorrelation is achieved using ap-
Flat Fading prox. 10\ separation between nearest elements in a linear array [11].
A mobile station operating in an urban outdoor area (say, in the central
Peter J. SmithMember, IEEESumit Roy Senior Member, IEEE  business district) or indoors in a home or office environment is likely
and Mansoor Shaftellow, IEEE to be surrounded by multiple scatterers that contribute to wide angle
scattering. Therefore, only.5\ spacing may be adequate. At 2 GHz,
this wavelength is 15 cm. This means that even a modest four-element
the exactcharacteristic function (and hence, the mean and variance) of the antenna array at th_e base stau_on WIH haye a spar! of 4.5 m._ Th_u_s, con-
capacity of multiple-input multiple-output (MIMO) systems for semi-cor-  trary to popular belief, the spacing issue is of considerable significance
related flat-fading channels. A Gaussian approximation to the exact ca- at the base station where mounting of antennas is subject to strict envi-
pacity results is suggested and evaluated for its accuracy. We show that ronmental regulations. Note that design and mounting of closely spaced
over a range of correlation Ieyels this approximation is adequate even for gntennas on small form-factor portable devices (lap tops, PDASs, etc.)
moderate numbers of transmit and receive antennas. poses additional problems (to just using separation to decorrelate re-
Index Terms—Multiple-input multiple-output (MIMO) systems, Shan-  ceived signals) due to coupling via the substrate.
non capacity, spatial correlation. In this correspondence, we consider channels with correlation at one
end only and we denote these channels as “semicorrelated” following
[13]. Note that recent measurements conducted in downtown Helsinki,
Finland show that the semicorrelated channel model is valid for certain
There continues to be substantial interest in wireless communiggbhan environments [14].
tion systems that employ multiple transmit and receive antennas, dugn particular, system engineers would like to have the ability to ex-
to their promise for dramatically increasing the capacity (or, equivactly predict the influence on capacity due to the presence of correlation
lently, spectral efficiency) without requiring bandwidth expansion. Thgt either end and establish the onset of diminishing returns.

concept of such multiple-input multiple-output (MIMO) wireless sys- The main contributions of the correspondence are as follows:
tems was pioneered by Foschini and coworkers [1]-[4] and developed

into the Bell Labs layered space—time (BLAST) architecture that re- * the derivation of the exact characteristic function of the capacity

port achieving spectral efficiencies in the range of 10-20 bits/s/Hz for ~ distribution under correlated fading at either end;

typical configurations. Derivation of capacity and other pertinentfig- . gjfferentiating the characteristic function to derive the first two

ures of merit for channels with independent gains should be credited ,oments of the capacity distribution;

to [5], [1], [3]; further results appear in [6], [7]. Throughout this corre-

spondence, we assume a “quasi-stationary” channel [1] where capacity’ validating the above results for a number of correlation scenarios

is interpreted as a random variable. Hence, we concentrate on the ca- and array sizes (including equal and unegualvalues).

pacity'distribution, leading to outage probabilities, rather than ergodicDeSpite their obvious complexity, the exact results have value in

capacny.. ) allowing a calibration of simulations with the corresponding closed-
Extensions of this work to correlated channels have begun to appgaf, results. Once implemented, of course, results are produced

rapidly in the literature [8]-[12]. It is now well known that MIMO ca- more quickly than simulations and without simulation error. In an

pagity is very sensitive to thg presence of spatial fading cgrrglation @’Lrlier paper [15], we showed that the capacity of a MIMO system for
Wh_'Ch may b_e present at either or bOth ends o_f the radlo_ link. ASLf?1correla’[ed channels can be successfully approximated by a Gaussian
point of notation, we denote a system wittransmit a_nd- receve an- gistripution. In this correspondence, we show that for the correlated
tennas as & — r system. In fact, as shqwn by Sreaal. [8], when — coq6q considered here, the Gaussian approximation is still effective.
the angular_ Sprea‘?' r_educes, the correlation betV\_/een the elements O‘rme result follows from simulation of MIMO capacities of correlated
channel gain matrix increases. Inturn, the capacny@zfap_l an_MO channels and comparison with a Gaussian distribution where the
system decreases and approaches closely thal eban single-input 020 and variance were computed using the exact results derived
multlple-_output (SIMO) sy_st_em. . . in this correspondence. For the uncorrelated case, the distribution
The hlghest spectral effl_C|ency ofa pomt-tq-pomt MIMO §ystem '3f the standardized capacity converges to Gaussian under various
oqu achieved \{vhen there is uncorrelgted fgdlng among palrs Of.traﬂﬁiiting regimes [9], [15]. For the correlated case, we conjecture
mitter and receiver antennas. In practice, this can be achieved with syjf his will also occur under suitable constraints on the correlation
ficient spacing among the base station and (mobile or portable) tem"@f’rhcture. In this correspondence, however, we simply demonstrate the
accuracy of a Gaussian approximation by experimentation. Note that

Manuscript received October 30, 2002; revised April 27, 2003.  the characteristic function for the uncorrelated case has been derived
P. J. Smith is with the Department of Electrical and Computer Englneerlﬁ%, [16]

University of Canterbury, Private Bag 4800, Christchurch, New Zeala .
(e-mail:p.smith@elec.canterbury.ac.nz). The channel model assumed for correlated fading is the well-known

S. Roy is with Wireless Technology, Communications and Interconnect Labgeparable model where separate processes induce correlation at the
ratories, Intel Corporation, Hi”SbOI’O, OR97124,USAo0n leave fromthe Depalﬁ-ansmitter and receiver. This approach is now considered an accept_
ment of Electrical Engineering, University of Washington, Seattle, WA 9819§b|e basis for research into correlated fading [8]-[12], [17] and also ap-

USA (e-mail: roy@ee.washington.edu). . . . .
M. Shafi is with Telecom New Zealand, Wellington, New Zealand (e-maifP€ars In the standards literature [18]. Recent work in this area [8]-[10],

Abstract—The primary contribution of this work lies in the derivation of

|. INTRODUCTION

mansoor.shafi@telecom.co.nz). [12], [19] gives capacity results under limiting scenarios, but to the best
Communicated by B. M. Hochwald, Guest Editor. of our knowledge no exact results are available, with the exception of
Digital Object Identifier 10.1109/TIT.2003.817472 some work reported in [12].

LJust recently, Lucent Technologies announced chip sets that achieve 19_}'he correspondgnce 1S orggnlzed as f(_)HOV_VS: Section Il formulates
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ceive antennas. teristic function of the capacity and its mean and variance. Section IV
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provides a Gaussian approximation based on the exact results and smws of X and V is the number of columns. This includes the most
numerical checks of the analysis. Finally, in Section V, some concluseful special case wheld = N, i.e.,» = t. The requirement that

sions are given. M < N stems from the methodology used (see Appendixes A and
B) which is based on the distribution & I' X given in [20] for this
Il. PROBLEM FORMULATION particular case.
_Consider a MIMO system where each user transmits simuItaneoua&_;tisl:i;ﬂjl;iﬁé# ol is Wexvgsreu > 2, -+, > N The char
via t antennas and reception is viaantennas. The total power of
the complex transmitted signalis constrained td® regardless of the ; o ' M
number of antennas. The received signi given by ®(s) =F (6’ ) =F <€Xp <)5 log, [+ h))) (7)
r=Xs+n 1) =
. . . . . . . _wherexy, ..., xar are the nonnegative (unordered) eigenvalues of
wheren is a complexr-dimensional additive white Gaussian noise TX'. Lettingt = —* yields
(AWGN) vector, with statistically independent components of identical log (2)
powers? at each of the receive branches an¥ is anr x * (com- M
plex) matrix of independent and identically distributed (i.i.d.) circular P(s)=F < exp <jt log, <H 1+ mi)> ))
Gaussian variables with zero mean and unit total variance as is appro- i=1
priate for independent and identical fading channels. Without loss of .
generality, we assume’ = 1 for the remainder of the correspondence. =E H (L+2:)" | =oi(h). (8)

The capacity of such a MIMO system with no channel state informa-

tion at the transmitter is given by [5], [1], [3] In Appendix A, we show that (¢) can be written as a ratio of deter-
minants
€ =log, <det a.+ L Xx*)) @
. t £ = |A121011...I}\171| 9
In the case of correlated fading, the most common models assume é1(t) = M—1 ©)
that the fading is induced by separate physical processes at the trans- l:[ k! Asg

mitter and receiver [8]. This leads to the channel matrix being modeled k=t

asAX B whereA induces correlation at the receiver ed®ljnduces where
correlation at the transmitter side, aXdis as defined above. Using 1 - N1
this model we can write the capacity as R vﬁvfl
P ) As=|t 2R (10)
C = log, <(l(\t (I + 7AXBB*X*A' )) .
Low - ot

s P tyrtat
= log, <dvt (I + ?AX(I)BFB‘I)BX 4') is a Vandermonde matrix antl;» is anN x N — M submatrix of

P - i Aj consisting of the firstV — A7 columns. The remaining terms are
= log, <det I+ ?AXI‘BX A’)) (3)  defined by
where® s is the unitary matrix defined by the matrix decomposition I =L Lo, ... IW]T

BBT = <I>BI‘B<I>§3 andT's is the diagonal matrix of eigenvalues of
BB'. Since®3 is unitary, the statistics oX are identical to those of \where
X and we drop thésuperscript for convenience. For correlation at the

transmitter only we have the result I = / 2F(1+ 2)" exp <—i) ANTM g
— oo S AT t ) .
¢ =log, <det (Ir+ 3 XIpX )> : 4 is a confluent hypergeometric function [21]. Note thet has the al-
If the correlation is at the receiver end only then we write ternative formAs = []._, (i — ) where we assume that #
P ’ i Vi # k. If two 4, values are equal then both the numerator and the
C = log, <dct (I. + ?AXX*AT)> denominator ofj, (¢) are zero and this form cannot be used. The as-
sumption of unequaj’s can be relaxed but the analysis then requires
= log, <dct (I + BX*A*AX)) taking the limit of (9) as, say,; — ~«. Thisis possible but is perhaps of
) t marginal interest. The important case where equal eigenvalues occur is
P ot ¢ the classical one wheleis proportional to the identity matrix and this
=log, (det(I; + — X TsX 5) . .
082 < etde+ t A )) ©) is well known. For semicorrelated channels, thevalues result from

whereA'A = &,T4&’, using the same approach as before. Hencgorrelation measurements or models. If based on measurements, they

both types of one-sided correlation result in a capacity equation of R Unequal with probability one. Also, all channel models known to the
same form (see (4) and (5)). authors lead to unequagl values, including those in standards models

[18] and in the literature [8], [13], [17]. Hence, in this correspondence,
we only consider the case of distinct eigenvalues. More problematic is
the issue of numerical robustness of the exact results when eigenvalues
Note that all the cases discussed in Section Il yield a capacity éyecome extremely close to each other. This is discussed in Section IV.

11l. D ERIVATION

pression of the form The mean and variance is now readily obtained from the character-
C = log, (det (In + XFX'*)) (6) Istic function asEfc;!ov_VS: o , o .

where, for exampld = £T 4 in the case of correlation at the receiver 1€ =—j®(0) = log, 2 (=701(0) (11)

end andM can ber or ¢ depending on the application. Our analysis Var[C] = 1 L (0)% — 67(0) 12

depends on the assumption thdt < N whereM is the number of arltl = (log, 2)2 CH 51(0)) - (12)
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In Appendix B, we show how the characteristic function can be ditorrelation in a4 — 4 MIMO system. The correlation has a simple
ferentiated to givey; (0) and¢¥ (0). Substituting these in (11), (12) exponential decay form whet@orr(X;x X i) = p/* " for k €

gives the following results:

M—1 N
E[C] = 10“‘ 5 Z Z cin I(iy va (13)
where
—1
( 1(’»1 i—1) . (A —M-1)
Cik = ) 4 H (V& — )
h#k
ir#k
Z Yo - Yimoio (14)
1<ig<on<ipg i1 <N
and
I(i, ve) = / log, (14 z) 2T dr. (15)
Jo

Evaluation of (15) can be done numerically, or from the expression

I(i,7) = Z % B (l>

r=0 /

i r—lr—k—1 7,( 1)1 r h+k+z
+;kzohzo (i—7) 7—A—1—11)'( k) (16)

{1, 2, 3, 4} and0 < p < 1. We refer top as the exponential corre-
lation parameter. This gives correlation at the receiver (or transmitter)
which drops off exponentially with antenna separation. For example,
an equally spaced linear array with antennas sequentially numbered has
|i — h| proportional to the distance between antehaadh. For this
model, we simulate 5000 capacity values for a variety of signal-to-noise
ratio (SNR) ancp values. In Figs. 1 and 2, we plot the mean capacity
and capacity variance versp$or SNR € {3 dB, 9 dB, 15 dB}. Good
agreement is observed between simulated values and the exact calcu-
lations. Also shown in this correlation scenario is the expected drop in
mean capacity and capacity variance as correlation increases. In the ex-
treme case of perfect correlation, there is no diversity at one end of the
link and so the capacity will become that of a SIMO or a multiple-input
single-output (MISO) system. In addition, we note that the variance ap-
pears to be more sensitive than the mean to changes in correlation. As
mentioned in Section Ill, when values become very close to each
other, the presence of difference terms, especially in the denominator
can be a problem in terms of numerical computation. Producing algo-
rithms which are robust to all parameter values is beyond the scope of
the correspondence. Our own implementation of the results begins to
encounter difficulties around” = 10. Beyond this point, special care

which follows using integration by parts and the definition of the expaieeds to be taken in the handling of the computations.

nential integraF’; (). The coefficient,;, may be more easily evaluated Next we investigate a Gaussian approximation to the capacity dis-
using its representation as a determinant (see (36) in Appendix A). Ntiibution. Here, we consider three physical models for the correlated
that the form of (13) is similar to Telatar’s result [5] for the mean cashannel in at — 4 MIMO system. In particular, we use the correla-
pacity in the uncorrelated case. Both are finite sums of integrals whititbn model in [17] specified by the average angle of arrival or depar-
can be expressed in terms of the exponential integral. Hence, althotigiie (AOA), the angle spread (AS), the distribution of the angles, and
the correlated case adds extra parameters, their effect is simply toequally spaced antennas with separatioumerical values for the
make the coefficients more complicated. The variance is given by (J¥rameters are given in Table I. These parameters were then used to

at the bottom of the page, whergs; ., andé; .., are constants and,
is given above. These terms are defined as follows:

M—1 -1
( 11 m) At
k=1

I(0) =jve MG, ) (19)

I.(0) :_ﬁ/}i\umfl / [log, (1—|—J)] ' exp <—j—k> dx
0 Y

(20)
M—1
(6777
1!
r=1
wherea;;, is the determinant ah; with columni and rowk removed
Qikrs

M-—1
Sikrs = H n! _
TRTS l! k!
n=1

wherea s is the determinant A3 with columnsi, & and rowsr, s

(18)

o
I

Bir = (21)

(22)

compute the elements of a corresponding channel correlation matrix
for the three scenarios. We compute the eigenvalues for these models
which form the diagonal entries of tHe matrix in (6). These eigen-
values are plotted in Fig. 3, normalized so that the maximum eigen-
value isl for ease of comparison. Note that there is a wide spread of
correlation here; the low correlation eigenvalues decay slowly whereas
the highly correlated case has essentially only one eigenvalue of any
size.

For the three scenarios in Table | we plot, in Fig. 4, the empirical dis-
tribution function of 10 000 simulated capacity values. Superimposed
on each curve is the Gaussian approximation fitted from the exact mean
and variance values. As for the uncorrelated case, good agreement is
observed between the empirical distribution and the Gaussian approxi-
mation even down to lower tail probabilities of the orded6f . This
observation holds even for the high correlation scenario where there
is only one eigenvalue of any size. Here the Gaussian approximation
is likely to be most suspect. In [22], it was also shown that temporal

removed. Again, the result is similar to the uncorrelated case derivg@iquences of capacity variables can be approximated by a Gaussian
in [15] with the basic form of the expression remaining the same bgocess in the presence of both spatial and temporal correlation.
the extra parameters causing an increase in the complexity of the coefs more thorough investigation of the Gaussian approximation is

ficients.

IV. RESULTS

given in Fig. 5. There are seven curves in Fig. 5 corresponding to two
levels of correlation4 = 0.1, 0.9) by three sets of antenna num-
bers ¢ = t/2,r = t,r = 2 x t). The seventh curve (bold) corre-

We first focus on numerical verification of the results on the exasponds to a true Gaussian random variable. For each scenario, a Kol-
mean and variance. Here, we consider a simple scenario with one-sidexjorov—Smirnov goodness of fit test for a Gaussian distribution was

M—1

Var[C] = (l . 2)2 (’Z

=0

N
> B[k (0) + 2¢
k=1

0<i<k<M—1r=1

N N(s#r)

DD DD PN

s=1

0)IL.(0) | - E[CT? (17)
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results are given by the points.
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Plot of capacity variance versus exponential correlation parameterferat MIMO system. Simulated results are given by the lines and analytical

TABLE | Gaussian distribution. For < 3, correlation reduces the goodness of
PARAMETER VALUES FOR THETHREE CORRELATION SCENARIOS fit. For fixedm, r = ¢ has the worst fitand = 2 x t is the best fitting.
Scenario AOA° | AS° d Distribution
Low correlation 0 72 0.5\ Von Mises V. CONCLUSION
Moderate correlation 0 18 0.5\ Von Mises :
High correlation 90 10 | 0.3A | Von Mises We have derived a closed-form characteristic function for the capacity

ofaMIMO system in semicorrelated flat-fading channels. This provides
closed-form expressions for the mean and variance and thus enables an

performed. Large values of the test statistic correspond to large devi#estigation of a Gaussian approximation to the capacity distribution.
tions from Gaussianity. The following conclusions can be drawn frolVe have shown that for moderate numbers of antenmas$>( 3) the
Fig. 5. Form > 3, all scenarios are similar and compare very well to &aussian approximation is adequate over a wide range of correlations.
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APPENDIX A where A, Ao, Az are various determinants. Now, it is

Consider the distribution of therderedeigenvalues:(;y < --- < knoxvnjfrom [23] that ftge_ 10|r|1ttp(;:ift C;L tthef o_rdered eigenvalues
x(ary Of the M x M random Hermitian matriZ given by o = [z - xaun] O '? rea;e 0 that oz via
_ T _M(M—1)/2

Z=VIvV fx, (@) = ———— Al(=,) fa (=) (24)

whereV is M x N normal with i.i.d.CA"(0, 1) entries, M < N, and 1 *
k=1

I = diag[vi, ..., 7]
with v; > 0, Vi. Collecting the?”*”*) distinct elements oZ in From (23) and (24) we have
the vectorz, the results of [20] state that the joint probability density Fx. (o) = L A(z,)Ax(2,)
function (pdf) of Z is given by e M—1 Az

. 1T !
_ _ma—1y2 Al(z) k=
fz(z) == —Ag(z)A;; (23) 1 (25)
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where The above can be simplified by noting that
M-
1 ,T‘(]) . . T(ﬂ 1 M
As(z,) = (26) [T+ A=Az by ho . b
o i =
N hereA,, is an N x N — M matri isting of the firsty — A1
Nt whereA; isanN x N — M matrix consisting of the firsfV —
Ly oo columns ofA; and thelV-vectors
As=1|" =~ 7 ) (27) , . -, ) @y 4T
o hi = (14 )" [ﬂ/?foleiﬁ, 7}%7‘7\471 e 71\'] .
1 vw o o vy

and in (28) at the bottom of the page. Now tieorderedeigenvalues NOw it can be seen from the expression foy that

X .. have ajoint pdf given by iV

o— 1\ i
fx (@) = fxff('z) _ Ml Al(miAg(mX A=) (-1 H 7}
pAl A3 =
11 *!
k=1 wherei, € 0, 1, ... M — 1 and« is the sign of the permutation. Using
21 >0, 22>0,...,20>0. (29) thisin (30) gives
Using the unordered eigenvalues we have o 1
M _ b1(t) =AF" < k!) /
o1()=E (H(Hwi)”) H 0
=1 =S} . .
_ /Oo o / Z(—l)a Aggaithy, ooo, a3 harlda, .., dar
= Js
0

o M M -1 M -1
H(1+m,;)f‘ Ay Ay AT <H k!) dxy ... dzar. =A7" (Hm) Z(—l)“|A12L1, e Iyl
/U k=1 k=1

i=1
(30) (31)
1 " L. nﬂ]\!’—]\/f—] 7'1\7_'7\/[_]6_1(1“71 L. 71]\"—]\/7—1 6—.7:(]\/1)/71
Aay=| . (28)
1 WL vf\V;fﬂlfl ’Yl]\y;iﬂjileix(l)/A/N o 7::\\;7[\/[71 efa:(ﬂl)/A/N
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where

> (N—M—1 z
I, = / 'k (71' —M=1) 30
Jo

r x T .
»YJ(\‘,.NﬂM*l)e_W) (1+x)'de (32)

Since « is the number of column swaps required in the ordering
i1 ...1p7, all the terms in the sum above are identical and hence

é1(t) = A (

M—1

11 k!) h

JAVPY [\ J VRS N (33)

k=1

APPENDIX B

DERIVATION OF ¢} (0) AND &7 (0) [
Here we give a brief derivation of the first and second derivatives of
the characteristic function which enables the computation of the mearjz)

and variance. Defining

M—1 -1
c=A7" ( 11 k!>

k=1
and differentiating (33) with respect tagives

(b/l(f) =cC |A121(’) e [A/]’_] | —|— P —|— C |A12[0 .. .Ij\,],l }
With I; defined in (32) it is straightforward to show that
L(0) = illyy ML T

(3]

[4]
(34)

[5]

[6]
and hence,

M—1
& (0)=c < H m)

k=1

M-—1

!
Z q | AL N i TH0) AN—artite, N |

=0

(71

L

where A, ¢ represents the submatrix @&f; containing columns
through s inclusive. Expanding the determinant in (35) by column (ol
N — M + i+ 1gives

M—1 M-l ., N [10]
61(0) = ¢ ( 11 k!) Z o > ainTix(0) (36)
k=1 2=0 k=1 [11]
wherea;;, is theikth cofactor ofAs. From (32) we have; (0) =
G =M= (i, v ) and from [24] we have
o s#k [12]
Qi = (—1)‘N7M+1+l+,C H (vr — 7s)
r>s [13]
inFk
Z VirVig oo Ving—ioq- (37)
1<i<...<ipg—i—1<N (14]

Substituting forZ};, (0) and«,y in (36) gives the result in (13).
The procedure for the second derivative is very similar and starts

from the equation [15]
M—-1

o (0)=c Z |A1210(0), ..., I/(0), ..., Ins—1(0)] [16]
=0

+2¢ Z [A1216(0). ..., I}(0), ... T,(0). ..., Inr—1(0)]. 171

0<i<k<M—1
(38)
[18]

We expand both determinants in (38) by coluMr- A +i+1. The
second determinant is then also expanded by the column containiqgg]
I;.(0). This gives

M— N

1=0 k=1
N N(s#r) [21]
+2C Z Z Z éik’W'SI‘I{T((])II:‘,S‘ (0) (39)

0<i<k<M—1r=1 s=1
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where3; . andé;.,.s are the relevant cofactors in (38). Note that compu-
tationally fast and simple recursions can be derived for all the constants
required €;x, 3ix, andé;x.-5) but this is beyond the scope of this cor-
respondence.

ACKNOWLEDGMENT

The authors wish to thank Andrea Giorgetti for his help in providing
the parameters for the correlation scenarios.

REFERENCES

G. J. Foschini and M. J. Gans, “On limits of wireless communication in
a fading environment when using multiple antenn&gifeless Personal
Commun,.vol. 6, no. 3, pp. 311-335, Mar. 1998.

G. J. Foschini, “Layered space-time architecture for wireless communi-
cation in a fading environment when using multielement antenisad]”
Labs Tech. Jwvol. 1, pp. 41-59, Autumn 1996.

T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-an-
tenna communication link in rayleigh flat fadindEBEE Trans. Inform.
Theory vol. 45, pp. 139-157, Jan. 1999.

J. S. J. Winters and R. D. Gitlin, “The impact of antenna diversity on the
capacity of wireless communication system&EE Trans. Commun.
vol. 42, pp. 1740-1750, Feb./Mar/Apr. 1994.

E. Telatar, “Capacity of multi-antenna gaussian channé&lgrbp. Trans.
Telecommunwvol. 10, pp. 2172-2178, 2000.

J. B. Anderson, “Array gain and capacity for known channels with mul-
tiple element arrays at both endt£EE J. Select. Areas Communol.

18, pp. 2172-2178, Nov. 2000.

J. Evans and D. N. C. Tse, “Large system performance of linear
multiuser receivers in multipath fading channel&€EE Trans. Inform.
Theory vol. 46, pp. 2059-2078, Sept. 2000.

D. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation
and its effect on the capacity of multi-element antenna systellBEE
Trans. Communyvol. 48, pp. 502-513, Mar. 2000.

B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multi-antenna channel
hardening and its implications for rate feedback and scheduliBgE
Trans. Inform. Theorysubmitted for publication.

C.-N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity
scaling in MIMO wireless systems under correlated fading,EE
Trans. Inform. Theoryol. 48, pp. 637-650, Mar. 2002.

J. L. D. Chizhik, F. Rashid-Rarrokhi, and A. Lozano, “Effect of an-
tenna separation on the capacity of blast in correlated chanhesE
Commun. Lett.vol. 4, pp. 337-339, Nov. 2000.

A. M. Sengupta and P. P. Mitra, “Capacity of multivariate channels with
multiplicative noise: 1. random matrix techniques and large-n expan-
sions for full transfer matrices,” LANL arXiv: physics/0010087, 2000.
M. T. Ivrlac, W. Utschick, and J. A. Nossek, “Fading correlations in wire-
less mimo communication system$EZEE J. Select. Aareas Commun.
vol. 21, pp. 819-828, June 2003.

J. Laurila, K. Kalliiola, M. Toeltsch, K. Hugel, P. Vainikainen, and E.
Bonek, “Wideband 3-d characterization of mobile radio channels in
urban environments,JEEE Trans. Antennas Propagatol. 50, pp.
233-243, Feb. 2002.

P J. Smith and M. Shafi, “On a Gaussian approximation to the capacity
of wireless MIMO systems,” ifProc. 2002 IEEE Int. Conf. Communi-
cations New York, Apr. 28—May 2 2002, pp. 406—410.

M. Chiani, “Evaluating the capacity distribution of mimo rayleigh fading
channels,” inProc. IEEE Int. Symp. Advances in Wireless Communica-
tions Vancouver, BC, Canada, 2002, pp. 3-4.

A. Abdi and M. Kaveh, “A space-time correlation model for multiele-
ment antenna systems in mobile fading channésEE J. Select. Areas
Commun,.vol. 20, pp. 550-560, Apr. 2002.

3GPP, “A standardized set of mimo radio propagation channels,” in
TSGR#23 RI-01-1179eju, Korea, Nov. 2001.

E. Biglieri and G Tarico, “Large-system analysis of multiple-antenna
system capacities,J. Commun. and Networkgol. 5, no. 2, pp. 96-103,
June 2003.

H. Gao and P. J. Smith, “A determinant representation for the distribution
of quadratic forms in complex normal vectors,”Mult. Anal, vol. 73,

no. 2, pp. 155-165, 2000.

I. Stegun and M. Abramozitz, Edddandbook of Mathematical Func-
tions with Formulas, Graphs and Mathematical Table®Vashington,
DC: Nat. Bur. Stand., 1972.



2788 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

[22] A. Giorgetti, M. Chiani, M. Shafi, and P. J. Smith, “Level crossing rategsonstructreal orthogonal space—time block codes of size n and
e}nd mimo capacity fades: Impacts of §pa;ia|/temporal channel correlgte 1 for & pulse-amplitude modulation (PAM) symbols, wherés
g‘;”gé’;g_rgg's'gEE Int. Conf. Communicatiopanchorage, AK, 2003, e hympber of transmit antennasis the time delay (or block size),

[23] A. .T. James, “5istributions of matrix variates and latent roots derive@Nd 2 = k/p is the code rate. They also provided a construction of
from normal samples Ann. Math Statist.vol. 35, pp. 475-501, 1964. rate1/2 complexorthogonal space-time block codes for phase-shift

[24] H. Gao_ an(_j P.‘J. Smith, “Exact sinr calculations for_ optimum lineakeying (PSK) and quadrature amplitude modulation (QAM) symbols
g‘éT_bz'réTgl'gg‘g’”e'ess systemsProbl. Eng. Inform. Scj.vol. 12, pp.  ysing real orthogonal space—-time block codes of taten order to

' : maintain the fast ML decoding and the full diversity of a space—time
block code, the orthonormality in the sense that the norms of all
column vectors are the same can be relaxed to a general orthogonality
where the norms of column vectors may not be necessarily the same

[3]. A complex orthogonal space—time block code with the generalized

orthonormality is called a generalized complex orthogonal space—time

block code. In [2], [3], it has been shown that the ré&e< 1 for

both real and complex orthogonal space-time block codes for any

number of transmit antennas. While the maximal datee., R = 1, is

reachable for real orthogonal space—time block codes as we previously
mentioned from the Hurwitz—Radon’s constructive theory, it has been
Abstract—in this correspondence, we derive some upper bounds of the recently shown in [8] that: < p — 1 whenn > 2,ie,R < 1

rates of (generalized) complex orthogonal space-time block codes. We firstand R = 1 is not reachable for (generalized) complex orthogonal

present some new properties of complex orthogonal designs and then showspace—time block codes no matter what the time delay unless

that the rates of complex orthogonal space—time block codes for more than the number of transmit antennas is two, i.e., the Alamouti's scheme.
two transmit antennas are upper-bounded by3 /4. We show that the rates

of generalized complex orthogonal space—time block codes for more than Notice that, if conditiorp =n is required, i.e.squarecpdes osquare
two transmit antennas are upper-bounded by4 /5, where the norms of complex orthogonal designs, thénh< 1 whenn > 2 directly follows
column vectors may not bg necessgrily the same. We also present anotherfrom the results on amicable designs [18], [21]-[23], [3], [5]-[7] that
upper bound under a certain condition. have small rates whem > 8. While both square and nonsquaeal

For a (generalized) complex orthogonal design, its variables are not re- th | desi iti f dratic f I
stricted to any alphabet sets but are on the whole complex plane. In this Orthogonal designs (or compositions of quadratic forms) are we

correspondence, a (generalized) complex orthogonal design with variables Understood, not much is known for nonsquammplexorthogonal
over some alphabet sets on the complex plane is also considered. We obtairdesigns (or Hermitian compositions of quadratic forms [26]), [3],
a condition on the alphabet sets such that a (generalized) complex orthog- [26], [27].

onal design with variables over these alphabet sets is also a conventional In this corresnondence. we derive some upber bounds on theates
(generalized) complex orthogonal design and, therefore, the above upper P ’ PP

bounds on its rate also hold. We show that commonly used quadrature am- Of (generalized) complex orthogonal space-time block codes (or com-
plitude modulation (QAM) constellations of sizes abovet satisfy this con-  plex orthogonal designs). We emphasize that the sizes of (generalized)
dition. complex orthogonal space—time block codes (or complex orthogonal

Index Terms—Complex orthogonal designs, complex orthogonal space— designs) here are general and they may not be square, irey not
time block codes, Hermitian compositions of quadratic forms, Hurwitz  be equal to:. We show that, when the number of transmit antennas is

Upper Bounds of Rates of Complex Orthogonal
Space—Time Block Codes

Haiquan Wang and Xiang-Gen Xi&enior Member, IEEE

family, Hurwitz—Radon theory. more than two, i.en > 2, the rates of complex orthogonal space-time
block codes are upper-boundedy, i.e.,
|. INTRODUCTION R< 3
— 4

The first real/complex orthogonal space-time block code wagj the rates of generalized complex orthogonal space—time block
proposed by Alamouti [1] for two transmit antennas. It was then 9€Psdes are upper-bounded by5, i.e.

eralized to real/complex orthogonal space—time block codes for more 4
than two transmit antennas by Tarokh, Jafarkhani, and Calderbank R< -

=
[3]. There are two important properties of real/complex orthogonal 0

space—time block codes: 1) they have fast maximum-likelihood (ML’%Ote that rate3,/4 complex orthogonal space—time block codes for

decoding, namely, symbol-by-symbol decoding; 2) they have ifyree and four transmit antennas have appeared in [3]-[6]. There-
full diversity. These two properties make real/complex orthogongﬁre' thg above upper bound tells us that these compl_ex orthogonal
space—time block codes attractive in space—time code designs. sg?ce—tlme block codes have already reached the optimal rate. Also
utilizing the Hurwitz—Radon theory [17]-[19], [23], [26], Tarokh,noethat the above upper boubidt on the rates is not new faquare

Jafarkhani, and Calderbank [3] provided a systematic method q8mplex_orthogona_1l des_igns. In fact, it has been shown and revie_wed
from amicable designs in [18], [21]-[23], [3], [5]-[7]. However, this
upper bound imewfor nonsquare complex orthogonal designs. In the
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