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Abstract In this paper, we investigate the impact of applying 
the channel estimation method in [I] to an OFDM system 
quipped with rate 1 non-orthogonal space time block code[Z] 
for K transmit and 1 receive antenna. A new training pattern 
based on the Hadamard construction is designed that enables 
estimation of the K channels separately and thus reduces the 
effective noise variance in the estimate. The simulation result 
shows that using this low rank channel estimation in 
frequency selective slow fading channel yields very good BER 
performance comparable to the case when channel i s  known 
at the receiver. Moreover, the use of rate 1 non-orthogonal 
STBC achieves significantly superior performance vis-&vis 
with Alamouti’s orthogonal STBC.’ 

I Introduction 
OFDM is an attractive candidate for next generation 
broadband wireless communication services, since 
dividing the available specbum into many narrow parallel 
sub-channels allows efficient suppression of IS1 in high 
symbol rate designs. Nonetheless, subcartiers that 
encounter a fading null (due to channel dispersion at these 
frequencies) will encounter high error probability, 
necessitating some form of error correction coding and 
diversity techniques as . compensation. One way of 
achieving such diversity is by use of multiple transmit and 
receive antennas, leading to multiple input, multiple output 
(MIMO) systems. Space-time coding has been developed 
for high data rate MIMO wireless systems [3,4] for single 
carrier modulation and extended lo OFDM in [5 ] .  
However, space-time codes developed to date assume 
perfect knowledge of the MIMO channel at the receiver. In 
spite of this, several good channel estimation methods 
have been proposed for space-time coded OFDM systems 
[6,7,8]. In [6], a Least Square (LSkbased channel 
estimation method was presented that jointly estimated the 
impulse responses of all channels based on an optimal 
training signal design. However, training sequences 
consume bandwidth and thus incur spectral efficiency 
losses especially in rapidly varying environments. For this 
reason, blind channel estimation methods have received 
much attention. In 181, a deterministic constant modulus 
(CM) blind channel estimator was proposed which can 
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identify the channels under certain conditions. In [7], a 
semi-blind channel estimation method was proposed using 
a novel precoder that guaranteed channel identifiability 
regardless of channel zero location. The training based 
method was used to obtain initial channel estimates in [7] 
and the semi-blind method was shown to track slow 
channel variations. 
On the other hand, it is well known that for space-time 
block codes, a rate one complex orthogonal design exists 
only for the two transmit antenna case. For more than two 
transmit antennas, generalized complex designs lead to 
sub-unity code rates. In [2], the conshuction of a rate one 
non-orthogonal class of space time (ST) blocks for more 
than two antennas was discussed under flat fading 
channels. The class of ST block codes proposed in [2] 
exists for an arbitrary number of transmit antennas. 
Although this class of ST block codes cannot achieve full 
diversity gain, the resulting gain is still considerable when 
suficient number of transmit antennas are used. 
In this paper, we consider a rate one non-orthogonal space- 
time coded OFDM system with application in fixed 
wireless or wireless LAN. The key contribution in our 
work is design of a new training pattem based on the 
Hadamard construction which enables accurate estimation 
of each individual channel using the low rank channel 
estimator and reduces the effective noise variance in the 
estimate. Moreover, it is verified by simulation that the 
rate 1 non-orthogonal STBC achieves significant gain 
relative to Alamouti‘s STBC. 

ILA System Model 
Fig.1 shows the rate-1 Non-Orthogonal S-T coded 

OFDM baseband system used in this work. Cyclic-prefix 
(CP) is used to preserve the orthogonality of the tones and 
eliminate intenymhol interference (ISI) between 
consecutive OFDM symbols. Moreover, the channel is 
assumed to be slowly fading and is considered constant 
during four successive OFDM symbols. The number of 
tones in thes ystem is N and the length of the CP is L 
samples. 

The information symbols are grouped into blocks 
S(n)  of dimension N X 1 that are fed into the rate-I non- 
orthogonal space time encoder. The ST encoder takes as 
input four consecutive blocks, 
S(4n), S(4n + I ) ,  S(4n + 2), S(4n + 3) and outputs the 
following 4N X 4 code matrix: 
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(1) S(4n) -S'(4n+I) S(4n+2) -S'(4n+3) 

S(4n+l) ,S'(4n) S(4nt3) S'(4n+2) 

S(4n+2) -S'(4n+3) S ( 4 4  -S'(4n+l) I S(4"+3) S'(b"+Z) S(4"+l) S'(4") 

where each column is transmitted in successive time 
intervals using the four transmit antennas, respectively. 
Note that without blocking ( N  = I ) ,  the code matrix in 
Equation (I) is the same & the code matrix in (25) of [2]. 

For convenience, we denote by Si(n),i  =1,2,3,4, the 

N X 1 block transmitted through the i th transmit antenna 
at the time n . Then, Si(n)  is related to S(n) as follows: 

c o h "  1 Of(l) COFSponds to Sj(4n),i = 1,2,3,4 

Column 2 of ( I )  corresponds to S,(4n + I),i = 1,2,3,4 
Column 3 of ( I )  corresponds to Sj(4n + 2),i = 1,2,3,4 
Column 4 of ( I )  corresponds to Sj(4n + 3),i = 1,2,3,4 (2) 
The attenuations on each tone are given by 

. 

h, = G , ( L ) ,  j = O,...,N -1, i = l,2,3,4 (3 1 
NT, 

where G, (e) is the frequency response of the ith channel 

g,(7). Define Nxl blockH, =E, hi, ... hi,+, 1, and 

Di = diug(H,), i = 1,2,3,4. In matrix notation, we can 
describe the OFDM system as 

r'(4n+l) ] = [ D ,  Di-D; 4 D;-D; 4 D 4 1  S(4n+l) 
r(4n+2) D, D, D, D, S(4n+2) 
r ' (4n+3)  D;-D; D ; - D ;  S(4n+3), 

(4) 

-+I11 w'(4n+l) ] (5 )  
H(4ncZ) 
w'(4nC3) 

where 
A = D; D, + D; D, + D;D, + D ~ D ~ ,  
B = D," D, + D ~ D .  + D:D, + D : D ~  
and @ denotes a N X N  zero matrix. Due to non- 
orthogonality, the matrix M is not diagonal, therefore 
S(4n),S(4n+ I),S(4n+2),S(4n+3) cannot be detected 

separately. Thus, a decorrelator denoted by matrix M'" 
is used to generate 

(7) 

where 0 is the Kronecker product The four outputs 
S1(4n),S'(4n + 1),.?'(4n + 2),S'(4n + 3)denote the 
preliminary estimates; asi n [2], one stage of 
interference cancellation is used to generate the fwl 
decisions 
~ s Y ~ ~ )  1 rS'(4n) 1 

i'(4" + 2)  
= dec(z -(M- A B l ,  

I1 B. Channel Model 
As in [I], we consider a fading multipath channel model, 
consisting of M impulses 

H-1 

g ( 7 ) = p k m - . r k T )  (9) 
k ; O  

where a, are zero-mean complex Gaussian random 

variables with a power-delay profile e@,). M=S was 
used with an exponentially decaying power-delay profile 
e(7 i t -  ) - Ce-r*'r'"* and delays 2, that are uniformly and 
independently distributed over the length of the CP. 

I1 C. Rate- I Non-Orthogonal Space Time Block codes 

Complex, rate -1, orthogonal S-T block codes exist only 
for two transmit antennas; however, non-orthogonal rate-I 
S-T block codes exist for arbitrary number of lransmit 
antennas [2], while allowing a contmlled number of 
interference terms per detected symbol. 
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As is well known for two transmit antennas, the Alamouti 

scheme [4] maps a pair of symbols z = [z, z2 T into the 

matrix z,, = [ , .] , called an Alamouti block. 

The corresponding received signal vector r = [r, r2 
given bv 

ZI 2 2  

-22 =I 

is 

K+l . . ,. 2" are not used for transmission, and the decoder 
sets h,,, = . .. = h,. = 0 in the H matrix 
After matched filtering at the receiver, we get 

- 
r = [ = Z,*[ ill+[ = Z,,h + n (10) 

The receive equation can be expressed, equivalently, in 
" terms of a channel matrix H I ,  via 

In the case of non-orthogonal space time block codes, the 
conditions under which rand are interchangeable were 
discussed in [2]. The H matrix representation was 
preferred so that the design problem of constructing good 
codes was translated into the problem of designing 
spreading codes that reduce interference between data 
symbols. The solution to the latter problem is closely 
related to the class of linear real Hadamard codes. The case 
K=N=2p was first discussed in 121, where K is number of 
transmit antennas and N is the number of consecutive 
complex symbols to be encoded. Consider the class of S-T 
block codes for which the channel matrix H has the 
general form 

H = AVj @ H2i-1.Zi + D, @ H k , * < )  (12) 

where H2i-,,2i is an Alamouti block and C, and 0, are 

p X p complex matrices. It is proved in [2] that 

a) 

and X i , i = 1 , 2 ; . . , p / 2 ,  formap/2-canouical set(see 
Appendix for definition of p-canonical set), then a p- 
canonical set can be constructed as 

iil 

If Dj = 0 for i = 1 , .  .., p , 

b) If bothCi # O  and Di # O ,  for i = l , . . . , p ,  
then a pcanonical set can be constructed as 

(14) 

If the number of transmit antennas K is arbitrary (not a 
power of 2), then m satisfies 2"-' < K S 2", ( m  2 2 ) .  
A code Z i s  constructed for 2" antehas, bwantennas 

y = m + H H i i  
M 

For non-orthogonal S-T block codes, M is not a diagonal 
matrix, so matrix M"' is needed to decorrelate the signal 
y before detection. 
Examp/e: K=4 
The following pair ofmatrices is a 2-canonical set 

which implies 

H=[ HI H2 1, z=[ ZI z2 ] 
H2 HI 2 2  z, 

(17) 
where H i ,  i = 1,2 is an Alamouti block. 

111 A. Simplified Low Rank Channel Estimation 
When QPSK modulation is used, Equation (3) in [ I ]  can 
be simplified into 

where 

= (d iag(s ) ) - 'y  (1% 
The optimal rank-p estimator can also be simplified to 

H, =UA,U"S,  (20) 

where A, is a diagonal matrix with entries 

The above equations are used to estimate each channel 

term is replaced 
1 

separately with the change that the - 
SNR 

with KU,' / 2"" . 

III B. Training block design 
For a fair comparison between S-T coding methods with 
different number of transmit antennas, we fix the total 
power per bit at the receiver to be 1, so the power of each 
bit at a transmit antenna is 1/K, where K is the nnmbq of 
transmit antennas. Since QPSK is employed, the symbol 
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power is 2K on each transmit antenna. For simplicity, we 
tint consider the K= 4 transmit antenna case. Four training 
blocks are used to estimate the four channels. Using 
Hadamard matrix as the training blocks, we can separately 
estimate the individual channels with simple linear 
combination of the received blocks. 
Using a K 4  Hadamard matrix, we have the following: 

(22) 

where each row corresponds to one time instant, and each 
column corresponds to one transmit antenna. For OFDM 
system, SI, s, , s, and s4 represent the 4 training 

~~ ~ 

blocks (4 OFDM symbols). Thus from (4) 
rl = DISl + D2S2 + D3S, + D4S4 + wI 

r, = D,S, - D,S, + D,S, - D4S4 + wz 
r, = D,S, + D,S, - D,S, - D4S4 + w3 
r4 =D,S,  -D,S,-D,S,+D,S,+w, 
Therefore, 

rl + r, + r, + r4 - WI +W, +w, +w4 
- D,S, + 

Y , 2  4 
rI -r2 +r, -rr - w1 -w2+w,-w4 - D,S, + 

Y &  4 
rI +r2 -r, -r4 w,tw,-w, -w,  

=D,S, + 
y3h, 4 4 

r, -r, -r, t rr - 
Y 4  -D,S, i 

w, -wi - W) + w, 
4 

The noise variance in the equations above has been 

. Also notice that DiSi = diog(Si ) H i ,  reduced to - 

thus we plug yi and S i ,  i = 1,2,3,4 into equations (19) 
and (20) to get optimal rank p estimate of each channel. If 
3 transmit antennas are used, we remove the last column of 
the mamx above and still use four time instants to transmit 
the 3 training blocks. Correspondingly at the receiver, we 
only need to calculate y ,  , y ,  and y, which identical to 
that in the K=l case. In this way, when 3 transmit antennas 
are used, the new noise variance can still he reduced to 

-. In conclusion, since the rate 1 non-orthogonal 

STBC can be applied to any number of antennas, if 
2"-' < K _< 2" (m t 2, m is an integer) transmit 
antennas are used, the method above (taking advantage of 

2 
0," 

4 

ow2 
4 

the 2" X 2 "  Hadamard matrix, truncated if necessary), 

. Thus, the allows us to reduce the noise variance to - 
LS estimator can provide a mare precise estimate for the 
rank-p channel estimator than in the single transmit 
antenna case. 

IV Simulation Results and Discussion 
We use 4 transmit antennas and I receive antenna, with 
QPSK modulation where one frame is assumed to have 
300 super blocks (each super block contains the 4 OFDM 
symbols to be transmitted from 4 transmit antennas at the 
same time). 1000 independent channel realizations are 
used to obtain the simulation results. This OFDM system. 
operates with a bandwidth of 20MHz, so the sampling 
interval Z', =5Ons. The bandwidth is divided into N= 64 
tones and we assume that the mt-mean square (ms) delay 
spread of the multipath channel is rn, =IT,. In 
addition, cyclic prefu length L=16 is used. 
First, the MSE of low rank channel estimation by SVD is 
investigated. 
The actual MSE is calculated using 

2 
=w 

2" 

,$f.s~=--Cu~,-~,r I '  and is compared with the 
4N j _ l  

theoretical MSE of rank-p channel estimator from [I] 
suitably modified for QPSK modulation and K 
(2"-' < K 9 2") transmit antennas as described. 

Fig.2 shows that the simulated and theoretical MSEs are 
very close to each other when the value p is chosen a little 
larger than the length of the channel. 

,&, .... .. ~ 

* I , * , , m f l * ~ . ,  
-*.I 

Figure 2. MSE of channel estimation by SVD @=7) 

Second, we compare the BER performance when the 
channel is estimated by SVD with the BER performance 
when the channel is known at the receiver (Figure.3). The 
two curves are very close .to each other for ~ 7 ,  hut. 
diverge for p=5 high SNR. The reason for this 
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performance degradation for p=5 (rank equal to !he 
minimal value) is attributable to loss of signal information 
when the SNR is high. Moreover, comparison between the 
performances of Alamouti’s STBC and the rate-1 Non- 
onhogonal STBC shows that the latter can provide better 
BER. The Non-orthogonal STBC with p=7 even 
outperforms Alamouti’s STBC with full channel 
knowledge at the receiver. Since the channel estimation, 
problem can be solved at low complexity, it is concluded 
that the rate-I Non-orthogonal STBC is promising for 
high-rate transmission over MIMO frequency selective 
channels. 
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Appendir 
Definition ofp-canonical set [?] 
A set of p mal square matri~es, each of size p. is a p-canonical se1 if the 

nonzero matrix entries equal one, I belongs to the s q  and the muices P 
veri@ the follow properties. 

I) c:c, = c;c, = (C,HC,)H,tfk,l = 1,2,...,p 
2) C, has q nollzero cntnes, located in the tint q rows, and Ljk has (p-q) 

nonzero entries, located in tows q+l through p; the ra& of c, 
and ok are q and @-$, respectively. 

3) Each mahix has at most one nowem entry in each mw and column. 
4) No WO matrices have nonzero entries in the same position (disjoint 
n o m w  entris). 

5 )  For a given k, C, and 4 cm01 have B nouero entry on the same 

6) Anonzero snhy has modulus one (conservation ofsignal power) 
C O l U N t ,  

I 

Figure I Baseband model af a Non-wthogonal ST coded ODFM system 

Figure 3. BER perfo-ce comparison behveen Non-orthogonal STBC 
and STBC 
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