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Blind Channel Estimation in Multi-Rate
CDMA Systems
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Abstract—Multi-rate CDMA is a potentially attractive multiple
access method for futurebroad-band multimediawireless networks
that must support integrated voice/data traffic. The primary
impairment for such multi-rate systems is the multipath nature
of radio channels that results in intra-user inter-chip interference
(ICI) and multi-user interference (MUI) between different users’
symbols. Explicit knowledge of the channel is typically needed for
high performance detectors (such as coherent demodulation). In
this work, we propose a subspace method for channel estimation
in multi-rate CDMA systems. A unified signal model that applies
to three multi-rate CDMA schemes proposed in the literature is
developed. The computational complexity for multi-rate scenarios
is large and variable—accordingly, a modified approach is devised
that offers performance/complexity trade-offs. Performance
analysis is conducted based on a close-form expression for the
mean square error of the estimator, supported by simulation
results that investigate the effectiveness of our method.

Index Terms—Blind channel estimation, code division multiple
access, multi-code, multi-rate, variable chip rate, variable pro-
cessing gain.

I. INTRODUCTION

NEXT generation networks are expected to support
multimedia traffic such as voice, video and data. Such

heterogeneous information sources are inherentlymulti-rate
in nature. Among the principal candidate multiple access
schemes, CDMA offers a relatively straightforward solution to
this new communication scenario. It is well matched to bursty
multi-rate, multimedia traffic as it allows for dynamic allocation
of bandwidth resources among the active users; thus CDMA
based air interfaces have been adopted for 3G systems [1],
[2]. In the literature, three access methodologies are proposed
for multi-rate CDMA—variable chip rate, variable processing
gain and multi-code transmission [3]–[5], as shown in Fig. 1.
In variable chip rate systems, data streams at different rates are
spread with codes of the same length, i.e., different rate users
use different chip rates, implying that the available bandwidth
is not fully used by the low rate users. Variable processing
gain systems avoid this problem by spreading data at different
rates over the same bandwidth with codes of different length,
resulting in identical chip rate for all the users. The price paid
is the loss of processing gain by high rate users. In multi-code
systems, all rates are assumed to be multiples of a basic rate.
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Fig. 1. Three multi-rate CDMA access methods. (a) Variable chip rate access
method. (b) Variable processing gain access method. (c) Multiple code access
method.

Each stream is first (serial-to-parallel) down converted into
several basic rate streams; these lower rate substreams are then
spread over the same bandwidth for transmission. Orthogonal
codes are proposed to prevent self-interference between the
substreams [3], [6]. However, the presence of a dispersive
channel as is common in wireless access results in loss of this
orthogonality [15]. To deal with mutual interference between
signal components at different rates, one usually needs to
collect data samples over multiple symbol duration, implying
increased processing time and memory in contrast to the single
rate scenario. This provides the main challenge for receiver
design in multi-rate CDMA systems.

Decorrelating receivers have been devised and analyzed in
[7]–[9] for synchronous and asynchronous systems respectively.
Successive interference cancellation methods are developed in
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Fig. 2. Multi-rate CDMA detector.

[10]–[12]. While published results are critically dependent on
specific codes used in the design, a general consensus is that
for the conventional matched filter receiver, variable processing
gain and multi-code systems have identical performance [5], [6]
while for maximum likelihood detection, variable processing
gain is preferable to a comparable multi-code realization [13].

A random code analysis for the dual-rate case is presented in
[14] using the optimum near-far resistance (NFR) as the perfor-
mance measure to compare detector structures. It is shown that
for high rate users, optimum NFR for variable processing gain
systems is identical to that of variable chip rate and better than
multi-code systems; for low rate users, the multi-code systems
have same NFR as variable processing gain systems while sur-
passing variable chip rate systems.

In this paper, we consider multi-rate CDMA signaling
throughdispersivechannels. A general signal reception model
is proposed that incorporates all three access methods. The
CDMA receiver architecture depicted in Fig. 2 requires channel
estimation; in this work, we develop a subspace method for
this purpose. This problem has been addressed in [17], [18]
for single rate systems; our algorithm is a generalization to
the multi-rate case and accommodates single-rate as a special
case. Based on a unified data model, we accomplish channel
estimation for all three access methods under the same frame-
work. A reduced complexity method is also proposed to lessen
computational burden.

The rest of the paper is organized as follows, Section II
presents the received signal model; Section III outlines the
algorithm for channel estimation and Section IV refines the
method for complexity reduction. Simulation results are given
in Sections V and VI concludes the work.

Throughout the paper, uppercase letters in boldface or callig-
raphy denote matrices; lowercase letters in boldface stand for
vectors; , represent transpose and Hermitian respec-
tively; , are two-norm and Frobenius norm; is the
pseudo-inverse and is the unity matrix.

II. SIGNAL MODELS AND PROBLEM FORMULATION

A. Variable Processing Gain Systems

A baseband variable processing gain multi-rate CDMA com-
munication system can be modeled as

(1)

where and respectively denote the total number of data
rates and the total number of users at rateand is additive

Fig. 3. A two-user variable processing gain system: rate ratio 2 : 3.

white Gaussian noise of variance . The signal component
due to user at rate is given by

(2)

where the zero mean information sequences s are i.i.d.,
of respective variance and independent of noise ; is
the symbol duration of rate sequences. The signature wave-
form as seen by the receiver is the convolution of the
channel impulse response and the pre-assignedtrans-
mittedspreading code :

(3)

where is the processing gain of rateusers, is the chip
duration and is thecompositechannel which includes the
fixed transmit/receive pulse shaping filters (e.g., raised cosine
pulse) and the unknown multipathphysicalchannel [19]

(4)

where is the number of distinct paths, is the com-
plex gain of the path and is the propagation delay. We point
out that for different users these parameters may be different;
in this work, we will assumestaticmultipath, i.e., the channel
amplitudes and delays are essentially fixed over the observation
duration. For practical purposes, can be modeled as a FIR
filter [19], [20], which incurs inter-symbol interference (ISI) as
shown in the signal model.

Since all the users share a common bandwidth in the variable
processing gain systems, the chip duration must be independent
of , hence

(5)

where is the processing gain for rate. This indicates

(6)

where are co-prime integers which indicate the
rate ratio, is the least common multiple of s
and is calledbasic rate. Introduce for future use

, then rate is times the basic rate. Denotethe greatest
common divisor of , it is easy to see that

. Fig. 3 illustrates the relative symbol duration of a dual-rate
system where the rate ratio is 2 : 3. in this example; rates
1 and 2 are respectively twice and three times the basic rate.
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Sampling the received signal at chip rate, we obtain the dis-
crete time model

(7)

where

(8)

and

(9)

We assume that all equi-rate users have the same channel order
measured in chip duration (the generalization to the case

of distinct channel orders is straightforward). Since generally
, we reasonably assume that the duration of is

with some trailing zeros. In matrix form

...
...

.. .
...

...
...

...

(10)

For full (column) rank , can be uniquely recovered from
; thus estimation of the received signature waveform and

channel is equivalent.
For the single rate scenario, second order blind identifica-

tion schemes [22], [23] are based on exploiting the cyclostation-
arity of the received (continuous-time) signal via oversampling.
These methods collect the channel output samples over a symbol
duration to yield avectorwide-sense stationary process for sub-
sequent channel estimation. In the multi-rate case, the received
signal is composed of several wide-sense cyclostationary com-
ponent signals withdifferentsymbol periods; thus the observa-
tion vector length must be (multiples of) the least common mul-
tiple of the constituent symbol duration, given by .
For the example shown in Fig. 3, if there is only one rate in the
system, say rate 1, a snapshot of durationis enough to charac-
terize the received signal. In contrast, in the case of two symbol
rates, received signal structure repeats everyduration, there-
fore a snapshot of at least that length is needed to describe the
system. The coefficient is called the (block)smoothing factor.
Since , the effective smoothing factor for rateusers
is [18].

Collecting chip rate samples over an interval of
yields

...
...

...

(11)

where

(12)

It is clear that characterizes the contribution of the current
symbol to the received signal and reflects ISI due to the
previous symbol. Correspondingly partition such that

(13)

then matrix can be expressed as

...
...

.. .

(14)

where is the block diagonal matrix of . The observation
vector for this -duration is

...

(15)

where noise vector .
Note that the length of the observation vector is a function of the
smoothing factor and processing gains. For example, consider a
dual-rate system with rate ratio 2 : 3 and ; the dimension
of the observation will be , indicating a significant nu-
merical complexity. We construct a data matrixby placing
successive ’s columnwise

(16)

The problem addressed in this paper is the estimation of
[and therefore ] from without explicit knowl-

edge of .

B. Single Rate and Multi-Code Systems

It is easy to see that the single rate system is a special case
of the variable processing gain multi-rate systems with ,

, , and , for which the
snapshot interval .

In multi-code systems, multiple data (sub)streams are sent in
parallel, each at thebasic ratedefined in (6). Clearly, a single
rate user can be viewed as virtual users at the basic rate
(see Fig. 3). In this manner, multi-code systems are equivalent
to single rate systems with more (virtual) users and hence (16)
still applies.
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C. Variable Chip Rate Systems

For variable chip rate multi-rate CDMA systems, the signa-
ture waveform is given by

(17)

where is the processing gain and thus the chip duration for rate
users is . Suppose (6) is still valid, then sampling

with an interval yields

(18)

and

(19)

It is easy to verify that (19) is equivalent to

(20)

where length effectivespreading code is defined as

(21)

Note that (8) and (18) have exactly the same form, as do (9)
and (20). Thus we conclude that (16) accommodates variable
chip rate systems as well. Clearly, the assumption on rate ratio
specified in (6) is a requirement for (18) and (19) to be valid.
Hence, we summarize that the unified model covers all three
multi-rate CDMA access methods only if (6) holds; this is al-
most always true in practice, particularly for variable processing
gain and multi-code systems.

III. SIGNATURE WAVEFORM/CHANNEL ESTIMATION

A method is derived in this section for signature wave-
form/channel estimation by exploiting the subspace of matrix

that contains the relevant channel information due to (16). In
order for the noise free observation matrixto share the same
subspace structure as, a necessary condition is thatmust
have full row rank [21]. For matrix

with elements randomly sampled from a finite alphabet,
this condition is satisfied with probability 1 as is increased
beyond [24]. Thus given symbol rates,
system load and the smoothing factor, we obtain the following
requirement on the number of observation vectors for the
validity of the algorithm.

Lemma 1: A necessary condition for subspace based channel
estimation requires to satisfy .

A. Algorithm Outline

We first consider the noise free case. Assuming the above nec-
essary condition is satisfied, applying the singular value decom-
position (SVD) [25] to data matrix , we have

(22)

The vectors in , associated with the singular values in diag-
onal matrix , span the signal subspace defined by the columns
of , and the vectors in , associated with the zero singular
values, span the orthogonal complement of (and hence of

). Thus we have

(23)

Since , this yields

(24)

Denoting ( ) as the submatrix of in (14)
consisting of columns through ,
then according to (14), (24) can be combined into

...
... (25)

where is a block diagonal matrix with block element .
Equation (25) yields a set of
linear equations with unknowns. To determine up to
a scalar,

(26)

needs to be satisfied. A necessary condition for this is

(27)

Assuming that has full rank, we arrive at

(28)

Thus together with Lemma 1, we obtain
Theorem 1: For any rate , a set of necessary conditions for

channel estimation with the proposed algorithm are

1) ;

2) .
It is observed in [18] that better performance is generally ex-

pected with larger smoothing factors but with diminishing re-
turns when the smoothing factor exceeds 3. In our case, the ef-
fective smoothing factor is usually no less than 2. Since the
numerical complexity of the proposed algorithm is a quadratic
function of , as will been seen in Section IV, we propose to
choose the smallest which satisfies the above conditions.

In the presence of noise, since only a perturbed version of
can be obtained, (25) is replaced by the LS criterion

(29)

which provides an estimate of up to an unknown scalar.
The signature waveform estimate can then be determined
from (10).
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B. Identifiability

The identifiability condition from (25) is that there exists a
vector such that

(30)

lies both in and . Let
, then clearly .

Since the columns of are independent, the mapping of (30)
is isomorphic. Thus the identifiability condition becomes

(31)

for uniqueness of the solution to (25), which is re-stated as fol-
lows.

Theorem 2: can be uniquely determined up to
some scalar with the algorithm iff the intersection between

and is one-dimensional.
An interesting observation from the theorem is thatdoes

not need to be full rank for the channel to be identifiable, which
is in contrast to the conclusions for non-CDMA systems [23].
With partial information of —the user spreading code, the
channel can be uniquely determined when the identifiability
condition is satisfied.

C. Channel Order Selection

In the above derivation, we assume that the channel orders
are knowna priori at the receiver. Sensitivity of the method

to such knowledge is a key aspect of algorithm performance—
from (25), it follows that overestimation of the channel order
will only introduce additional zeros in the tail of the vector .
Thus the subspace based channel estimator is expected to be
robust against channel order overestimation—in practice, one
can use an estimate based on the maximum anticipated delay
spread at the cost of some performance degradation in channel
estimates.

IV. REDUCED COMPLEXITY METHOD

The computational burden of the above algorithm is
due to a full SVD on data matrix . Defining

and , such an operation
requires flops [25]. Since is a function of the rates
and is usually much larger than the system’s processing gains,
multi-rate systems incur costs that may not be acceptable in
practice. To gain insight into this complexity, we compare three
dual-ratescenarios. The first system has rate ratio of 2 : 3 and

; for the second, the rate ratio is 7 : 11 and to keep
the processing gains roughly the same; the third system has rate
ratio 2 : 5 and such that the high rate users’ processing
gain is the same. Supposing , the complexities are

, and in the three
cases, respectively. In this section, we explore ways to reduce
this complexity by trading off performance; a direct method
is to use a reduced dimension observation vector in place of

. Introduce the new notation for the
submatrix of (subvector of ) consisting of rows (entries)
through . It is clear from (16) that

(32)

We show the row dimension of may
be chosen so as to achieve considerable computation savings
compared to the full dimension case, when is large.

Applying SVD to noise free data matrix yields

(33)

It follows, as before that

(34)

Denote by the submatrix of
consisting of columns through

, (34) can be rewritten as

...
...

(35)
Then in the noisy case is estimated from

(36)

where it is clear that the modified method includes the original
for , .

Note that there may be all-zero columns in for
some pairs. Letting , the number of rows in

and the number ofnonzerocolumns in ,
we obtain the following:

Theorem 3: For any rate , the necessary conditions for the
refined method are

1) ;
2) .
The identifiability condition is stated below.
Theorem 4: can be uniquely determined up to some

scalar with the reduced complexity method iff the intersection
between and is one-dimensional, where

.
If the above condition holds for some users but not for others,

one may need to re-select and/or increase the ma-
trix’s dimension. However, our extensive simulations show that
as long as the necessary conditions in Theorem 3 are satisfied,
channels are generally identifiable for all the users.

Two naturally arising questions concern i) the length of the
reduced dimension observation vectors and ii) if there exists
an optimal choice for a given dimension. While the length of
the observation vectors is a trade-off between performance and
computational burden, a lower bound is given by Theorem 3 as

. For a given observation vector di-
mension, determining the location that yields best performance
necessitates performance analysis, the key result for which is
summarized next.

Result: Denote the estimation error ; the
mean square error (MSE) is thenapproximatedby

MSE (37)

Proof: See the Appendix.
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It is easy to verify that the sample covariance matrix
is an unbiased estimator of the true covariance ma-

trix . From central limit theorem we know that
as , the distribution of the perturbation to,

, approaches Gaussian distribution of zero mean and vari-
ance of order , i.e., the result above provides a first-order
approximation to the true MSE that is accurate for sufficiently
large .

Note from (37) that MSE depends on both spreading codes
and channels; thus it is not possible in general to determine
the optimal value of in advance without knowledge of the
channel. Our simulation in Section V however shows that the
choice of is not critical, at least for the channels considered.

V. SIMULATION RESULTS

In order to assess performance of the proposed methods for
multi-rate CDMA systems, a commensurate single rate system
must be first determined. Thus we established the following
baseline toward that end—

1) System Bandwidth: The single rate, multi-code and vari-
able processing gain systems have the same chip duration

(and hence same bandwidth) as the highest rate users
in variable chip rate systems.

2) Net Rate Budget: The total data rate (bits/s) is conserved
in all systems, i.e.,

(38)

where is the total number of users in any
system, and is the symbol duration of the equivalent
single rate system.

3) Identical duration of observation in all systems.
4) Identical length of observation vector in all cases,

achieved by suitable choice of the smoothing factor.
5) Same two-ray multipath physical channel

(39)

for all users in the system; the composite channel is
the convolution of and raised-cosine pulse shaping
function with roll-off factor 0.10 (with respect to the re-
ciprocal of the user’s chip duration); is truncated
to duration in the single rate, multi-code and
variable processing gain systems and to in
the variable chip rate system. Thus the channel orders are
5 for the single rate, multi-code and variable processing
gain systems, 11 for high rate users and 17 for low rate
users in the variable chip rate system.

6) Randomly generated binary spreading codes used in all
the systems (including multi-code) to eliminate any de-
pendence of performance on code correlations.

Estimator performance is evaluated in terms of normalized
root mean square error (NRMSE), defined as

NRMSE (40)

Fig. 4. NRMSE versus SNR with full dimension method for the variable
processing gain system.

where is the total number of Monte Carlo runs, is the
channel estimate at theth run, is the true channel and it is
normalized to remove the scalar ambiguity of the estimates.

The desired user’s (average) signal-to-noise (SNR) ratio is
defined as

SNR (41)

Example 1 (Full Dimension Method):We consider a dual-
rate system of 6 active users, 3 at high rate and 3 at low rate.
The rate ratio is 2 : 3. In the variable processing gain system, we
choose , thus the processing gains for high rate and low
rate users are 10 and 15 respectively. Let , implying that
the observation vector length is 60. Data is obtained for trans-
mission duration of (therefore 900 sym-
bols transmitted at high rate and 600 symbols at low rate) in
each independent trial. Using the equivalence conditions above,
the following corresponding settings for the multi-code system
are obtained: processing gain 30, smoothing factor 2, 300 sym-
bols transmitted by each of the 15 virtual users. For the vari-
able chip rate system the configurations are: processing gain
10 [thus effective processing gains are 20 and 30 respectively,
see (21)], smoothing factor 1, 900 symbols transmitted at high
rate and 600 symbols transmitted at low rate. For the single rate
system the specifications are: processing gain 12; smoothing
factor 5, 750 symbols transmitted by each of the 6 users. Note
that the above parameter settings satisfy the necessary condi-
tions described in Theorem 1. We assume channel orders are
knowna priori and conduct 100 independent runs to compute
the NRMSE under perfect power control, i.e., all users have
equal transmit power. The simulation results are presented in
Figs. 4–6, along with the theoretical results computed according
to (37) and training-based LS estimation curves. We can see
that in all three multi-rate systems, 1) the theoretical expression
well approximates the simulation results; 2) minor estimation
degradation is induced when the blind method is used instead
of the training-based approach. It is also observed that high rate
and low rate users have comparable NRMSE in the multi-code
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Fig. 5. NRMSE versus SNR with full dimension method for the multi-code
system.

Fig. 6. NRMSE versus SNR with full dimension method for the variable chip
rate system.

and variable processing gain systems, in contrast to the variable
chip rate system where high rate users have better estimation
performance. This is due to the fact that low rate users have a
larger channel order in the variable chip rate system. The single
rate system performance vis-a-vis the three multi-rate systems is
shown in Fig. 7 where average NRMSE’s over rates are used for
multi-rate systems. It is observed that for the simulation settings,
all the systems are comparable while the multi-code system is
slightly superior to others.

Example 2 (Reduced Complexity Method):The perfor-
mance/complexity tradeoffs for the reduced complexity method
are investigated. In contrast to example 1, there are 5 high rate
and 5 low rate users in the variable processing gain system,

and observation duration is used.
The rate ratio is again 2 : 3 and . The parameters for
other systems are computed accordingly. Simulation results are
presented in Figs. 8 and 9. This method is parametrized by a
“location” variable and the (reduced) vector dimension.
The minimum dimension of the observation vector is based on

Fig. 7. Estimation performance comparison.

Fig. 8. Average NRMSE versusl .

Fig. 9. Average NRMSE versus vector length.

Theorem 3; that requires knowledge of. To obviate a search
for this parameter, we replace by the number of columns in
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Fig. 10. Complexity versusL.

that constitutes a ready upper bound. Thus the observation
vector dimensions are no less than 61 in variable processing
gain, 77 in multi-code, 41 in variable chip rate systems and 61
in the single rate system respectively. We choose and
test the performance of the reduced complexity method with
every possible value of . Perfect power control is assumed.
Fig. 8 is the plot of the average NRMSE over rates as a function
of with SNR 5 dB and known channel orders. The result
shows that performance sensitivity tois not significant, thus
in the remainder of this example, is used. With other
simulation parameters fixed as before, Fig. 9 illustrates the
effect of vector length on the average NRMSE, which is seen
to be monotonically decreasing function of, highlighting
the trade-off between estimation accuracy and complexity.
Estimates of the relative computational complexity are shown
in Fig. 10 in terms of flop counts for the SVD for the respective
methods versus as defined by (5); the processing gains of
other systems are computed according to conditions 1), 2) of
the equivalence baseline. Observation vector length
is used in the reduced complexity method to estimate the
computational demands. Note that this value satisfies the
necessary conditions of Theorem 3 independent of. It is seen
that as the processing gains increase, the complexity of the
modified method is invariant to (the three multi-rate systems
have nearly identical complexity) in contrast to the original
method—this is because the row dimension ofincreases
while that of does not. Further, the complexity of the
single rate system for the original method is much larger than
those of multi-rate systems for large. While the complexity
of both the single rate and multi-rate systems is as
anticipated, the (multiplicative) constant differs due to the fact
that the number of columns in for the single rate system is
larger than the corresponding multi-rate cases. We conclude
that significant computation savings can be achieved with our
modified method, particularly for large.

Example 3 (Channel Order Selection):In this example we
evaluate the effect of channel order overestimation. Simulation
scenario is exactly the same as that in Example 2, except that

Fig. 11. The effect of channel order overestimation on average NRMSE.

Fig. 12. Near–far effect.

SNR is fixed at 5 dB and channel order estimate measured
in chip duration is varying. In addition, ,
for the reduced complexity method. Note that the true order
is 6 chips and the corresponding true is specified by the
equivalence condition 5) at the beginning of this section. The
average NRMSE curves in Fig. 11 show that overestimation of
channel orders results in minor NRMSE increase, attesting to
its robustness.

Example 4 (Near–Far Effect):CDMA systems are interfer-
ence limited since the received signature sequences of different
users are not orthogonal; thus strong (undesired) users may
overshadow weak (desired) users, resulting in thenear–far
problem. In such cases, multi-user (or interference suppressive)
detection is employed to eliminate the multi-user interference
whose performance depends critically on the accuracy of the
signature waveform estimation. Once again, we use parameters
from Example 2 with desired user’s SNR 5 dB; as before,

, for the reduced complexity method. In
multi-rate systems we assume two desired users, one at high
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Fig. 13. BER performance.

rate and one at low rate; in the single rate system we only
assume one desired user. We also assume that all interfering
users have the same signal power. Clearly, the average NRMSE
in Fig. 12 is largely invariant to near–far ratio (ratio of the
interfering users’ signal power to the desired user’s) as antic-
ipated, since the signal subspace is determined by the users’
normalized signature waveforms and not their powers.

Example 5 (BER Performance):Based on the data model
(15), we construct the decorrelating receivers for the systems
specified in Example 1 with channel estimates obtained via full
dimension method. For uncoded BPSK modulation, the BER
curves are shown in Fig. 13, where we have assumed user 1 at
each rate is the desired user. It can be seen that the variable chip
rate system has the best performance and the multi-code system
outperforms the single rate system while the latter is superior to
the variable processing gain system. The exception is that the
low rate user in the variable processing gain system has better
performance than those of the multi-code and single rate system
in low SNR region.

VI. CONCLUSION

A unified model has been introduced for three multi-rate
CDMA access methods over dispersive channels. A subspace
based channel estimation algorithm developed for possible use
in coherent multi-rate detectors requires complexity essentially
determined by , the least common multiple of the system’s
processing gains, which is typically much larger than any
individual user’s processing gain. A modified method using
reduced dimension observation vectors is then introduced that
results in considerable complexity reduction (vs. performance
trade-offs) as illustrated by simulations. Investigation shows
that estimation performance does not change much as the
location of the reduced observation vectors varies; thus only
the dimension of the reduced observation vectors needs to be
determined, which can be adapted in response to performance
requirements. We remark that the important problem ofef-
fective multi-rate multi-user detector designneeds significant
additional work that must be deferred to the future.

APPENDIX

MSE OF THE CHANNEL ESTIMATOR

The derivation is based on first order perturbation theory in-
troduced in [16]. We use the same method as [17] to obtain the
explicit form for MSE. denotes the true complementary sub-
space of and introduce ( ) as the difference
between ( ) and its estimate. From [16], the perturbation
to due to noise is given by

(42)

Introducing the following block diagonal matrices

... (43)

... (44)

we obtain

(45)

Similarly, the perturbation to the channel estimation assumes
the form

(46)

Let be the column vector withth element one and zero oth-
erwise, the th element of is given by .
Thus

(47)

Denote the number of column vectors in , the
block matrix is constructed

with th ( )block defined as
.

From [16, (73) and (80)] we know that

(48)

Since and are two column vec-
tors of and hence of , suppose they are
indexed as the th and th then

(49)



1004 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 6, JUNE 2002

where is the th element of , which is
if and zero otherwise. So

which indicates

(50)

and

(51)
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