March 2005

doc.: IEEE 802.11-05/0142r0

IEEE P802.11
Wireless LANs

	Proposal for a Dynamic Backbone Mesh

	Date: 2005-03-16

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Dennis J. Baker
	
	100 Brickells Glade
Edenton, NC 27932
	252-482-0747
	d.baker@mchsi.com

	James P. Hauser
	Naval Research Laboratory
	Code 5521
Washington, DC 20375
	202-767-2771
	hauser@itd.nrl.navy.mil

[image: image146.wmf]Backbone AP

Mesh Backbone

Links

Mesh Backbone

Connection Links

Mobile STAs

BSS

Mesh Ordinary

Links

Non

-

Backbone AP

Backbone AP

Mesh Backbone

Links

Mesh Backbone

Connection Links

Mobile STAs

BSS

Mesh Ordinary

Links

Non

-

Backbone AP

[image: image147.wmf]Frame 1

Frame 2

Frame 4

Frame 3

Frame 5

…

Frame F

max

Frame 1

…

Epoch 0

Epoch 1

Epoch 3

Epoch 2

Epoch 4

…

Epoch 5

Epoch 6

Epoch 8

Epoch 7

Epoch 9

Slot 0

Slot 1

Slot 3

Slot 2

Slot 4

…

Slot S

max

Slot 0

…

T

e

T

f

T

s

Time axis

Frame 1

Frame 2

Frame 4

Frame 3

Frame 5

…

Frame F

max

Frame 1

…

Epoch 0

Epoch 1

Epoch 3

Epoch 2

Epoch 4

Epoch 0

Epoch 1

Epoch 3

Epoch 2

Epoch 4

…

Epoch 5

Epoch 6

Epoch 8

Epoch 7

Epoch 9

Epoch 5

Epoch 6

Epoch 8

Epoch 7

Epoch 9

Slot 0

Slot 1

Slot 3

Slot 2

Slot 4

…

Slot S

max

Slot 0

…

T

e

T

f

T

s

Time axis

	Number
	Category
	Name
	Coverage

(Complete /Partial/ None)
	Notes
	References

	FR1
	TOPO_RT_FWD
	Mesh Topology Discovery
	C
	
	

	FR2
	TOPO_RT_FWD
	Mesh Routing Protocol
	C
	
	

	FR3
	TOPO_RT_FWD
	Extensible Mesh Routing Architecture
	C
	
	

	FR4
	TOPO_RT_FWD
	Mesh Broadcast Data Delivery
	C
	
	

	FR5
	TOPO_RT_FWD
	Mesh Unicast Data Delivery
	C
	
	

	FR6
	TOPO_RT_FWD
	Support for Single and Multiple Radios
	C
	
	

	FR7
	TOPO_RT_FWD
	Mesh Network Size
	C
	
	

	FR8
	SECURITY
	Mesh Security
	N
	
	

	FR9
	MEAS
	Radio-Aware Routing Metrics
	P
	
	

	FR10
	SERV_CMP
	Backwards compatibility with legacy BSS and STA
	C
	
	

	FR11
	SERV_CMP
	Use of WDS 4-Addr Frame or Extension
	C
	
	

	FR12
	DISC_ASSOC
	Discovery and Association with a WLAN Mesh
	P
	
	

	FR13
	MMAC
	Amendment to MAC with no PHY changes required
	C
	
	

	FR14
	INTRWRK
	Compatibility with higher-layer protocols
	C
	
	

1 Overview

1.1 Assumption
This (partial) proposal assumes that the 802.11 wireless mesh frames are distinguishable from other 4-address WDS frames. For example, the wireless mesh frames could be implemented as 4-address data frames with a unique ethernet protocol type.
This proposal also assumes that a mesh point has already performed mutual authentication with its neighbor mesh points.
2 References

IEEE Standard 802.11-1999

3 Definitions, abbreviations, and acronyms

authenticated mesh point - A mesh point that has been authenticated as a valid participant in the WLAN mesh. The authentication is with repect to a common policy determined by a single administrative entity.
backbone connection node (BCN): In the Dynamic Backbone Algorithm, this refers to the backbone node chosen by a non-backbone node as its primary connection to the backbone.
connected mesh - The status of the WLAN mesh in which all mesh points that are participating members of a WLAN mesh are reachable.
disconnected mesh - The status of the WLAN mesh in which a subset of mesh points that are participating members within the WLAN mesh are not reachable. It is also called a partitioned mesh.
mesh AP - Any mesh point that is also an access point.
mesh association - The service used to establish the mesh point membership within a WLAN mesh. Mesh association is independent from STA association to an AP.

mesh broadcast - Frame forwarding mechanism for transporting MSDUs to all mesh points within a WLAN mesh.

mesh coordination function - A logical function used to coordinate use of mesh resources by mesh points.
mesh identifier - A unique identifier for a WLAN mesh.
mesh link - A bidirectional IEEE 802.11 link between two mesh points.
mesh link metric - A criterion used to characterize the performance/quality/eligibility of a mesh link as a member of a mesh path. A mesh link metric may be used in a computation of a path metric.
mesh management frame - Frame defined for managing and operating the mesh. The frame is sent between mesh points, e.g. for path determination, neighbor discovery, topology discovery, etc. This definition of message is intended to be generic and does not specify the form of conveyor.
mesh member - An associated mesh point.
mesh member set - The set of associated mesh points within a WLAN mesh.
mesh multicast - Frame forwarding mechanism for transporting MSDUs to a group of mesh points within a WLAN mesh.

mesh neighbor - Any mesh point that is directly connected to another mesh point with a mesh link.

mesh path - A concatenated set of connected mesh links from a source mesh point to a destination mesh point.

mesh path selection - The process of selecting mesh paths.
mesh point - Any IEEE 802.11 entity that contains an IEEE 802.11–conformant Medium Access Control (MAC) and Physical Layer (PHY) interface to the Wireless Medium (WM), that is within a WLAN mesh, and that supports WLAN mesh services.
mesh portal - A point at which MSDUs exit and enter a WLAN mesh to and from other parts of a DS or to and from a non-802.11 network. A mesh portal can be collocated with an IEEE 802.11 portal.

mesh service area - The conceptual area within which members of a WLAN mesh may communicate.
mesh topology - A graph consisting of the full set of mesh points and mesh links in a WLAN mesh.

mesh unicast - Frame forwarding mechanism for transporting MSDUs to an individual mesh point within a WLAN mesh.
path metric - Criterion used for mesh path selection.
wlan mesh – A WLAN mesh (previously known as ESS mesh) is an IEEE 802.11-based WDS which is part of a DS, consisting of a set of two or more mesh points interconnected via IEEE 802.11 links and communicating via the WLAN mesh services. A WLAN mesh may support zero or more entry points (mesh portals), automatic topology learning and dynamic path selection (including across multiple hops).

wlan mesh services – The set of services provided by the WLAN mesh that support the control, management, and operation of the WLAN mesh, including the transport of MSDUs between mesh points within the WLAN mesh. WLAN mesh services supplement DSS (Distribution System Services).
AP

access point

ARP

address resolution protocol

BCN

backbone connection node

BSS

basic service set

DBA

dynamic backbone algorithm

DMPID

MPID of destination of a mesh frame

DS

distribution system

DSM

distribution system medium

DSS

distribution system services

ESS

extended service set

IEEE

Institute of Electrical and Electronic Engineers

IP

internet protocol

LAN

local area network

LLC

logical link control

LQI

link quality indicator

LSA

link state advertisement
MAC

media access control

MCF

mesh coordination function

MP

mesh point

MPID

mesh point identifier

MPIDn

MPID = n

MSDU

MAC service data unit

PHY

physical (layer)

RMPID

MPID of designated receiver of mesh frame

SMPID

MPID of source of a mesh frame

STA

station

TMPID

MPID of transmitter of a mesh frame

WDS

wireless distribution system

WLAN

wireless local area network

WM

wireless media
4 Proposed WLAN mesh architecture

Figure s1 - Proposed WLAN mesh architecture.

5 Mesh message formats
5.1 General mesh frame format

The proposed format for mesh frames is defined in Figure s2. The fields that precede the mesh body are collectively referred to as the mesh header. Mesh frames are carried in the body of 4-address 802.11 WDS frames. Conceptually, the mesh header is an extension of the 4-address 802.11 WDS header.
	Octets: 2
	1
	1
	1
	1
	1
	2
	0 to (TBD)

	mesh control
	Mesh ID
	RMPID
	TMPID
	DMPID
	SMPID
	MSEQ
	mesh body

Figure s2 – Mesh frame format
5.2 Mesh frame fields

5.2.1 Mesh frame control field
The subfields within the mesh control field of mesh frames are set as illustrated in Figure s3.

	Mesh Protocol Version

B0
	Mesh Message Type
	Mesh Message Subtype
	Source is MP
	Destination is MP
	Precedence
	Reserved

 B15

	Bits: 2
	2
	4
	1
	1
	3
	3

Figure s3 – Mesh frame control field
5.2.1.1 Mesh protocol version field

The Mesh Protocol Version field is 2 bits in length and is invariant in size and placement across all revisions. The present value of the protocol version is 0. All other values are reserved. A device that receives a frame with a higher revision level than it supports will discard the frame without indication to the sending access point or LLC.

5.2.1.2 Mesh message type and subtype fields

The mesh message type field is 2 bits in length, and the subtype field is 4 bits in length. The mesh message type and subtype fields together identify the function of the mesh message. There are presently two defined mesh message types: mesh management and mesh data. Each of the mesh message types has several defined mesh subtypes. Table s1 defines the valid combinations of mesh message type and mesh message subtype.

Table s1 - Valid mesh message type and subtype combinations
(numeric values in this table are shown in binary)

	mesh msg type value
b3 b2
	mesh msg type description
	mesh msg subtype value
b7 b6 b5 b4
	mesh msg subtype description

	00
	management
	0000
	reserved

	00
	management
	0001
	DBA frame 1 message

	00
	management
	0010
	DBA frame 2 message

	00
	management
	0011
	DBA frame 3 message

	00
	management
	0100
	DBA frame 4 message

	00
	management
	0101
	DBA frame 5 message

	00
	management
	0110
	mesh ARP query message

	00
	management
	0111
	mesh ARP reply message

	00
	management
	1000
	link state advertisement message

	00
	management
	1001-1111
	reserved

	01
	reserved
	0000-1111
	reserved

	10
	data
	0000
	data message

	11
	reserved
	0000-1111
	 reserved

5.2.1.3 Source is MP

This flag is 1 if the SADDR of the prepended 802.11 4-address frame header corresponds to a mesh member and 0 otherwise.

5.2.1.4 Destination is MP

This flag is 1 if the DADDR of the prepended 802.11 4-address frame header corresponds to a mesh member and 0 otherwise.

5.2.1.5 Precedence field

This field is used to indicate the transmission precedence of the attached MSDU. The highest precedence level is 7 and the lowest is 0.
5.2.1.6 Reserved

This field is reserved for future use. It should be set to 000 (binary).
5.2.2 Mesh identifier

The mesh identifier is a 1-byte field that uniquely identifies to which mesh within the ESS that this frame belongs.

5.2.3 Mesh point identifier fields

Mesh point identifiers (MPIDs) are unsigned, 1-byte mesh point addresses. MPIDs in the range 0 to 127 are reserved for unicast address, while MPIDs in the range 128 to 255 represent multicast addresses. Table s2 lists the present allocation of mesh point identifiers. When the mesh point identifier represents a unicast address, it can be thought of as a short alias for the MAC address. A unicast MPID may be assigned manually or automatically.
Table s2 - Valid MPID values
(numeric values in this table are shown in binary)
	Mesh Point Identifier
b7 b6 b5 b4 b3 b2 b1 b0
	Type
	Multicast group name
	Multicast group

MAC address (hex)

	00000000-00011111
	unicast
	not applicable
	not applicable

	00100000-01111110
	unicast, reserved
	not applicable
	not applicable

	01111111
	NO_MPID
	not applicable
	not applicable

	100000000
	multicast
	local DS announcement
	to be assigned

	10000001-10011110
	multicast, reserved
	unassigned, reserved
	unassigned, reserved

	10011111
	multicast
	mesh broadcast
	to be assigned

	10100000-11111110
	multicast, reserved
	unassigned, reserved
	unassigned, reserved

	11111111
	multicast
	subnet broadcast
	ff:ff:ff:ff:ff:ff

The mesh header contains four mesh point identifiers: DMPID, SMPID, RMPID, and TMPID, which are described as follows.

5.2.3.1 Destination mesh point identifier (DMPID) field

DMPID is the mesh point identifier of the destination of the mesh frame.

5.2.3.2 Source mesh point identifier (SMPID) field

SMPID is the mesh point identifier of the originating source of the mesh frame.
5.2.3.3 Receiver mesh point identifier (RMPID) field

RMPID is the mesh point identifier of the next immediate recipient of a unicast destination DMPID. If DMPID represents a multicast address, the appropriate setting for RMPID has yet to be determined.
5.2.3.4 Transmitter mesh point identifier (TMPID) field

TMPID is the mesh point identifier of the transmitter of the mesh frame.
5.2.4 Mesh frame sequence (MSEQ) field

The mesh sequence field (MSEQ) is used as an end-to-end identifier of a mesh frame and to determine the relative ages of mesh frames sent from the same mesh point. MSEQ, in conjunction with SMPID, are also used to identify duplicate mesh frames.
5.2.5 Mesh frame body field

The mesh frame body field is a variable length field that contains information specific to individual mesh message types and subtypes.

5.3 Format of individual mesh messages
This section specifies the formats of the mesh messages listed in table s1.
5.3.1 Mesh management messages
5.3.1.1 DBA frame 1 message
The Dynamic Backbone Algorithm (DBA) defines five message formats that are used to exchange the information required to form and maintain the mesh’s dynamic backbone. This information is exchanged in five consecutive “DBA frames” that are repeated every DBA epoch, as described in section 6.1. Section 6.2 describes the operation of the DBA and explains how the values of the various fields of DBA messages are determined. The period of time from the start of DBA frame 1 until the start of the following DBA frame 1, is called a “DBA epoch”. Figure s4 shows the format of the DBA frame 1 messages.
	Octets: 4
	1-variable

	Probe ack

B0 B31
	LSA msg

Figure s4 – DBA frame 1 message

5.3.1.1.1 DBA frame 1 message fields

5.3.1.1.1.1 DBA frame 1 message probe ack field

This field is used to acknowledge the reception of previous DBA frame 1 transmissions from the current DBA epoch. A “1” in bit position Bn indicates that the transmitting MP has successfully received the DBA frame 1 transmission from MPIDn, whereas a “0” indicates failure to receive this transmission. The transmitting MP places a “0” in its own bit position.
5.3.1.1.1.2 DBA LSA message field
Link state advertisement messages can be appended to any DBA message. See section 5.3.1.7 for details of the LSA message format.

5.3.1.2 DBA frame 2
Figure s5 shows the format of all DBA frame 2 messages.

	Octets: 4
	1

	Bidirectional links

B0 B31
	own clusterhead

Figure s5 – DBA frame 2 message

5.3.1.2.1 DBA frame 2 fields

5.3.1.2.1.1 DBA frame 2 bidirectional links field

This 32-bit field is used to indicate MPs that the transmitting MP considers to be directly linked to it via bidirectional links. A “1” in bit Bn indicates that the link to MPIDn is considered to be a bidirectional link, whereas a “0” indicates that the link to MPIDn is not considered to be a bidirectional link. The transmitting MP places a “0” in its own bit position. These “links” are used for the purpose of routing broadcast/multicast traffic.
5.3.1.2.1.2 DBA frame 2 message own clusterhead field

The DBA frame 2 own clusterhead field contains the MPID of the MP that has been designated by the DBA as the transmitting MP’s own clusterhead.

5.3.1.3 DBA frames 3 and 5
Figure s6 shows the format of all DBA frame 3 and frame 5 messages.

	Bits: 2
	2
	…
	2
	2
	8

	Type of 2-way link with MPID0
	Type of 2-way link with MPID1
	…
	Type of 2-way link with MPID30
	Type of 2-way link with MPID31
	Node type

Figure s6 – DBA frames 3 and 5 messages
5.3.1.3.1 DBA frames 3 and 5 message fields
5.3.1.3.1.1 DBA frames 3 and 5 message link type fields

These are 2-bit fields that represent the type of bidirectional links the transmitting MP has with other MPs. The encoding for link type fields is as follows: 0 = no link, 1 = link and 2 = backbone link. This encoding is extended in frame 5 with the additional link type 3 = backbone connection link. The transmitting MP places a “0” in its own link type field. Padding (binary 0s) shall be inserted after the last 2-bit link type field to ensure that the following node type field starts on an octect boundary.
5.3.1.3.1.2 DBA frames 3 and 5 message node type field

The DBA frame 3 node type field indicates the type of node that is reporting, i.e., the current role that the node has in the network restructuring. Valid node types are the following: 1 = non-backbone node, 2 = clusterhead, and 3 = gateway. All nodes having node types set to clusterhead or gateway are considered to be backbone nodes.
5.3.1.4 DBA frame 4 message
Figure s7 shows the format of all DBA frame 4 transmissions.

	Octets: 1
	2
	
	2

	P, reserved, n

B0, B1, B2, B3, B4, B5 B6 B7
	Link 1 ID
	…
	Link n ID

Figure s7 – DBA frame 4 message
5.3.1.4.1 DBA frame 4 message fields
5.3.1.4.1.1 DBA frame 4 message P field
Bit 0 of the first octect of DBA frame 4 is a flag indicating whether the MP is leaving the backbone (P = 1) or not leaving (P = 0).
5.3.1.4.1.2 DBA frame 4 message reserved field

Bits B1 through B4 of the first octect of DBA frame 4 are reserved bits and are set to zeroes (binary).
5.3.1.4.1.3 DBA frame 4 message n field

Each MP that is leaving the backbone announces which of its backbone neighbors have to build links to each other in order to keep the backbone connected. Field n (bits 5, 6, and 7 of the first octect of DBA frame 4) holds the number of such links that are being reported. Some of these backbone links may already exist.
5.3.1.4.1.4 DBA frame 4 message link id fields
Each of the DBA frame 4 link id fields is defined by giving the MPID’s of the nodes at the ends of the link, as shown in Figure s8.
	Octets: 1
	1

	MPIDxj
	MPIDyj

Figure s8 – DS Link j is identified by the MPIDs x and y at the link endpoints

5.3.1.5 Mesh ARP query message
Figure s9 shows the format of a mesh ARP query message. This message is used to find the target mesh point identifier corresponding to the given target MAC address.

	Octets: 1
	6
	6

	Source MPID
	Source MAC Address
	Target MAC Address

Figure s9 – Mesh ARP query message
5.3.1.5.1 Mesh ARP query message fields
5.3.1.5.1.1 Mesh ARP query message target MAC address field

This field contains the MAC address of the node whose mesh point identifier is being sought.
5.3.1.6 Mesh ARP reply message
Figure s10 shows the format of a mesh ARP reply message.
	Octets: 1
	6
	6
	1

	Source MPID
	Source MAC Address
	Target MAC Address
	Target MPID

Figure s10 – Mesh ARP reply message
5.3.1.6.1 Mesh ARP reply message fields
5.3.1.6.1.1 Mesh ARP reply message target MAC address field
This field contains the MAC address of the node whose MPID is being sought.
5.3.1.7 Link state advertisement

Figure s11 shows the format of a link state advertisement (LSA) message. This message typically combines the link state reports of several MPs.

	Octets: 1
	1
	1
	2
	Depends on LSA format used
	
	1
	1
	varies

	number of reports n
	RTAID
	 OMPID1
	LSEQ1
	LQI1
	…
	(OMPID)n
	LSEQn
	LQIn

Figure s11 – Link state advertisement message
5.3.1.7.1 LSA message fields

5.3.1.7.1.1 LSA message number of reports field

This field indicates how many reports follow the RTAID field in this frame. Each link state report consists of three fields: the originating MPID (OMPID), the link report sequence number (LSEQ), and the link quality indicator (LQI).
5.3.1.7.1.2 LSA message routing algorithm identifier (RTAID) field

This field identifies the unicast routing algorithm being used within the mesh. Associated with each unicast routing algorithm is a format description of the corresponding LQI field that it uses.
5.3.1.7.1.3 Link state report OMPID field

The originating MPID is the mesh point to which a report applies.

5.3.1.7.1.4 Link state report sequence (LSEQ) field

The LSEQ field is used to determine the relative age of two link state reports from the same originating MP.

5.3.1.7.1.5 Link state report link quality indicator (LQI) field

The format and values for the LQI fields depends upon the link metrics being used, e.g., hop count, link data rate, etc. The format for the LQI field is indicated by the value in the routing algorithm identifier field.
5.3.2 Mesh data frames

5.3.2.1 Mesh data messages of subtype data
The frame format for a mesh data message of subtype data is identical to that shown in Figure s2. The mesh body holds the “user data” (beginning with the standard SNAP header) to be transmitted.

6 Mesh algorithms and protocols

6.1 Mesh timing

6.1.1 Mesh-wide DBA timing and synchronous counters

Figure s12 – Dynamic Backbone Algorithm (DBA) timing and synchronous counters

6.1.2 DBA self-synchronization protocol
Details of this protocol to be supplied in a future draft.
6.2 Backbone maintenance (Dynamic Backbone Algorithm, DBA)

6.2.1 Overview of DBA

Periodically, the WLAN mesh is presented with a new backbone structure, an example of which is shown in Figure s1. A synchronous, distributed algorithm, the Dynamic Backbone Algorithm (DBA), is responsible for maintaining this backbone. The DBA takes as input i (the MPID of the host MP) and n (the maximum number of access points allowed in the WLAN mesh). DBA is driven by synchronous events, indicating time to transmit a DBA message and indicating when a new DBA frame begins, and by asynchronous events, indicating reception of DBA messages from other mesh points.

The DBA requires five frames of communications to determine a new backbone; these communications take place during the first five frames of each epoch. Each access point uses its MPID to determine in which slot to transmit its DBA control frames, that is, MPID = 0 transmits in slot 0, MPID = 1 transmits in slot 1, etc. These transmissions are triggered by FRAME_<frame number>_TRANSMIT events. The transmissions should complete with sufficient time to allow the next access point to process this frame before sending its own DBA control frame.

The algorithm proceeds in five phases, which approximately coincide with the five frames required for backbone formation. These phases are the following: 1) neighbor discovery, 2) cluster forming, 3) cluster linking, 4) backbone pruning, and 5) connecting to the backbone.

Neighbor discovery at an MP is accomplished before that MP transmits in frame 2. This is accomplished by explicitly acknowledging previously heard frame 1 transmissions when an MP sends its own frame 1 transmission. By examining acknowledgements received in frame 1, each MP can determine which higher-numbered MPs it is currently bidirectionally connected to. Bidirectional connectivity to lower-numbered MPs is determined when these MPs report their bidirectional neighbors as part of their frame 2 transmissions.

All DBA transmissions are sent as mesh management messages and should be sent with the highest precedence to minimize transmit queuing delays. The mesh message subtype varies depending on the DBA frame being transmitted and has the values shown in Table s1. Other fields in the 4-address 802.11 WDS header are set as follows: RSNA = Local DS announcement, TSNA = host’s MPID, DSNA = Local DS announcement, and SSNA = host’s MPID. The mesh message sequence field (MSEQ) is set to all 0’s. MSEQ is not used because DBA messages are sent as “local DS announcements”, which are not relayed.
Just prior to its frame 2 transmission, each MP makes a determination whether it should be a “clusterhead”. Clusterhead status has significance only within the execution of the DBA; it is a temporary “bookkeeping” state that is used in the process of determining whether an MP should become part of the dynamic backbone. The rule is that an MP becomes a clusterhead unless it is already bidirectionally linked to one. Each MP selects as its “own clusterhead” the lowest numbered clusterhead to which it is bidirectionally connected. If an MP is a clusterhead, then it is also its own clusterhead. An MP includes the MPID of its own clusterhead in its frame 2 transmission.

In the context of the DBA, a cluster is defined as a set of nodes consisting of a clusterhead and all its bidirectional neighbors. Note that this implies that, depending on the topology, a non-clusterhead node may be a member of several clusters simultaneously. Therefore, a non-clusterhead node is not restricted to being a member only of the cluster of its own clusterhead. Just as the designation of a node as a clusterhead is strictly a DBA bookkeeping technique, the DBA concept of “cluster membership” is also a temporary designation, which has no significance outside the operation of the DBA.

At the start of frame 3, the WLAN mesh has been organized into clusters. In the context of DBA, a cluster is defined as a set of nodes consisting of a clusterhead and all its bidirectional neighbors. Now begins the process of actually forming the backbone. This process is accomplished by linking the clusters together. Each MP that is not a clusterhead determines at this time whether it should become a “gateway” to link “adjacent” clusters. Here also, gateway status is only a temporary, bookkeeping state; at the end of frame 5 all clusterheads and gateway nodes can just be considered as backbone nodes. Adjacent clusters are of two types: overlapping or non-overlapping. Adjacent, overlapping clusters have one or more MPs that are bidirectionally connected to each clusterhead. Adjacent, non-overlapping clusters have no nodes that are bidirectionally linked to both clusterheads. However, in the latter case, there exists at least one pair of MPs that are bidirectionally linked to each other and which in turn are bidirectionally linked to different clusterheads.

The following section provides pseudocode for the DBA. This code defines two procedures linkup1 and linkup2 that determine whether an MP should become a gateway to link adjacent, overlapping or non-overlapping clusters, respectively. Briefly, these two procedures operate as follows.

In linkup1, every MP that is not a clusterhead is a candidate gateway. The candidate examines the DBA database for all combinations of pairs of clusterheads to which it is directly connected via bidirectional links. The corresponding clusters are overlapping. The lowest numbered MP in the intersection of the two clusters makes the determination to become a gateway for that pair. All access points in the intersection are “aware of each other” since they can be at most two hops away from each other, and every MP possesses the connectivity information for every one of its neighbor access points. Links between the new gateway and the clusterheads that it is linking are marked as backbone links. It should be noted that in both linkup1 and linkup2, a single MP can act as gateway for linking more than one pair of clusters.

Procedure linkup2 handles the case of adjacent, non-overlapping clusters. As in linkup1, only non-clusterhead nodes are candidates to form this linkage. The candidate examines the DBA database for all known pairs of clusterheads consisting of its own clusterhead and clusterhead k that is 2-hops away. To avoid redundant linkage, the node attempts to ascertain the need for the creation of a linkage by checking, for each such pair of clusterheads, whether a linkage may already have been created by linkup1. If such a prior linkage has not occurred, it then ranks the potential gateway-to-gateway links that join a node from cluster k to a node belonging to its own clusterheads cluster. The ranking is done by adding the MPIDs of the candidate gateway pair and awarding the highest ranking to the link with the lowest sum. In case of ties, the link with the lowest numbered node is ranked the highest. If the host node is an endpoint on the highest ranking link, then it becomes a gateway for linking clusterheads h1 and h2 and both the link between the new gateway and its own clusterhead and the highest ranked gateway-to-gateway link are marked as backbone links. In some cases only one of the two potential gateway nodes in a pair may decide to become a gateway while the other may find that it is not needed if another link of higher rank is available and known to it. Such asymmetric situations are detected and corrected during frame 3.

Just prior to the beginning of frame 3 transmissions, gateway nodes have determined which of their links are to be promoted to backbone type. In frame 3 all nodes learn of the backbone links within two hops of itself. The frame 3 transmission also has the purpose of resolving any inconsistencies when non-clusterhead nodes assign a different link type to the link between them as a result of linkup2. Here the rule is that the resultant link type is determined by the lowest numbered endpoint node. Thus, when such a link-type inconsistency is detected as a result of receiving a frame 3 transmission, the receiving node will adjust its own database to be consistent with the information received. This may involve changing the types of one (or possibly two) links as well as possibly changing whether the host node is a backbone node or not.

The purpose of frame 4 is to allow a backbone node to revert to non-backbone status if it determines that all of the following conditions are met: 1) the node is currently a backbone node, 2) it has already heard the frame 4 transmissions from all other neighboring backbone nodes that have already transmitted in frame 4, 3) it has at least one backbone neighbor, 4) every non-backbone neighbor of the node is linked to at least one other backbone node, and 5) becoming a non-backbone node will not cause bifurcation of the backbone. As a byproduct of checking for possible bifurcation of the backbone, the host node develops a tree for linking its backbone neighbors. If the node determines that it can leave the backbone, the backbone links that make up this tree are announced as part of the node’s frame 4 transmission along with the indication that the node is leaving the backbone.

At the end of frame 4 the backbone has been completely determined, and the only thing that remains is for each non-backbone node to select which backbone node it will designate as its “backbone connection node” (BCN). The link between a non-backbone node and its BCN is designated to be of type backbone-connection-link. Each non-backbone node selects as its BCN the backbone node with the fewest neighbors. In case of ties, the lowest numbered backbone node becomes the BCN. In frame 5, each node announces its final determination of whether or not it is a backbone node and the type of links that it has with neighboring nodes.

At the end of frame 5, the new structure is “installed”, and from that time until the next backbone is installed, this structure will be used to route broadcast and multicast traffic.

6.2.2 Detailed operation of DBA

DBA(i,n) // i is local MPID and n is max MPs allowed

{
Reset();

switch(event) {

case BEGIN_FRAME_1:

Reset();

case FRAME_1_TRANSMIT:

pkt.Probe_ack
[image: image1.wmf]Ü

 for (
[image: image2.wmf]"

k
[image: image3.wmf]Î

 N) nodesHeard[k];

Transmit pkt;

case FRAME_1_RECEIVE:

// rcv pkt from Node with mpid = j (j[image: image4.wmf]¹

i)

nodesHeard[j] = TRUE;

if (i<j) { // Process j’s response to i’s probe

if (pkt.Probe_ack[i] [image: image5.wmf]º

1) {

linkType[i,j] = linkType[j,i] = LINK;

bidirectionalNeighbors[j] = TRUE;

}

}

case FRAME_2_TRANSMIT:

if (ownHead[image: image6.wmf]º

NO_MPID) {

nodeType[i] = CLUSTERHEAD;

isBackboneNode[i] = TRUE; ownHead = i;

}

else { // ownHead has already been set

nodeType[i] = NON_BACKBONE_NODE;

isBackboneNode[i] = FALSE;

}

pkt.own_clusterhead
[image: image7.wmf]Ü

 ownHead;

pkt.Bidirectional_links
[image: image8.wmf]Ü

 for (
[image: image9.wmf]"

k
[image: image10.wmf]Î

N)

bidirectionalNeighbors[k];

Transmit pkt;

case FRAME_2_RECEIVE pkt from Node j (j
[image: image11.wmf]¹

i):

if (j<i) {

if (pkt.Bidirectional_links[i] [image: image12.wmf]º

1) {

bidirectionalNeighbors[j] = TRUE;

}

else break;
// exit case

}

elseif (bidirectionalNeighbors[j][image: image13.wmf]¹

TRUE)

break;

for (
[image: image14.wmf]"

k
[image: image15.wmf]Î

 N) {

if (pkt.Bidirectional_links [k] [image: image16.wmf]º

1)

linkType[k,j] = linkType[j,k] = LINK;

 {

if (pkt.own_clusterhead [image: image17.wmf]º

 j) { // sender is a CH

if (linkType[i,j]
[image: image18.wmf]³

LINK)

isBackboneNode[j] = TRUE;

if (ownHead[image: image19.wmf]º

NO_MPID)

ownHead = j;

}

if (pkt.own_clusterhead [image: image20.wmf]¹

i) {

if (linkType[i, pkt.own_clusterhead]
[image: image21.wmf]³

LINK) {

headsOneHopAway[pkt.own_clusterhead] =

TRUE;

numHeadsOneHopAway++;

}

else {

headsTwoHopsAway[pkt.own_clusterhead] =

TRUE;

numHeadsTwoHopsAway++;

}

}

case BEGIN_FRAME_3:

Linkup1(); Linkup2();

case FRAME_3_TRANSMIT:

pkt.Node_type
[image: image22.wmf]Ü

 nodeType[i];

pkt.Link_type
[image: image23.wmf]Ü

 for (
[image: image24.wmf]"

k
[image: image25.wmf]Î

 N) linkType[i,k];

Transmit pkt;

case FRAME_3_RECEIVE pkt from Node j (j[image: image26.wmf]¹

i):

if (bidirectionalNeighbors[j] [image: image27.wmf]º

 FALSE) break;

nodeType[j]
[image: image28.wmf]Ü

 pkt.Node_type;

for (
[image: image29.wmf]"

k
[image: image30.wmf]Î

 N, k[image: image31.wmf]¹

j) {

if (pkt.Link_type [k][image: image32.wmf]º

BB_LINK) {

isBackboneNode[j] = isBackboneNode[k] =

TRUE;

if (k[image: image33.wmf]º

i and

nodeType[i][image: image34.wmf]º

NON_BACKBONE_NODE)

nodeType[i] = BACKBONE_NODE;

linkType[k,j] = linkType[j,k] = BB_LINK;

}

if (pkt.Link_Type[k] [image: image35.wmf]¹

BB_LINK and k[image: image36.wmf]º

i

and nodeType[j][image: image37.wmf]¹

CLUSTERHEAD

and linkType[i,j][image: image38.wmf]º

BB_LINK) {

linkType[i,j] = linkType[j,i] = LINK;

needToBeBbn = FALSE;

for (
[image: image39.wmf]"

m
[image: image40.wmf]Î

 N, m[image: image41.wmf]¹

i, m [image: image42.wmf]¹

ownHead) {

if (linkType[i,m] [image: image43.wmf]º

 BB_LINK) {

needToBeBbn = TRUE;

break;

}

}

if (needToBeBbn [image: image44.wmf]º

 FLASE) {

nodeType[i] = NON_BACKBONE_NODE;

isBackboneNode[i] = FALSE;

linkType[i,ownHead] = LINK;

linkType[ownHead,i] = LINK;

}

}

}

case FRAME_4_TRANSMIT:

numLinks = 0;

isLeavingBackbone = CanLeaveBB();

pkt.P
[image: image45.wmf]Ü

 isLeavingBackbone;

if (isLeavingBackbone) {

isBackboneNode[i] = FALSE;

nodeType[i] = NON_BACKBONE_NODE;

for (
[image: image46.wmf]"

k
[image: image47.wmf]Î

 N) {

if (linkType[i,k]
[image: image48.wmf]³

LINK)

linkType[i,k] = linkType[k,i] = LINK;

}

// Build BB links connecting all BB neighbors

for (
[image: image49.wmf]"

k
[image: image50.wmf]Î

 N) {

if (cnxTree[k]>1) {

m = cnxTree[k] - 2;

linkType[m,k] = linkType[k,m] =

BB_LINK;

}

}

// Put new BB link IDs into packet

for (
[image: image51.wmf]"

k
[image: image52.wmf]Î

 N) {

m = cnxTree[k] – 2;

if (m
[image: image53.wmf]³

0) {

nodePair[numLinks,0] = k;

nodePair[numLinks,1] = m;

pkt.MPIDxj
[image: image54.wmf]Ü

 nodePair[numLinks,0];

pkt.MPIDyj
[image: image55.wmf]Ü

 nodePair[numLinks,1];

numLinks++;

}

}

}

pkt.n
[image: image56.wmf]Ü

 numLinks;

Transmit pkt;

case FRAME_4_RECEIVE pkt from Node j (j[image: image57.wmf]¹

i):

if (bidirectionalNeighbors[j] [image: image58.wmf]º

 FALSE) break;

nodesHeardFrame4[j] = TRUE;

if (pkt.P) { // Is node j leaving backbone?

if (linkType [i,j] > LINK)

linkType[i,j] = linkType[j,i] = LINK;

isBackboneNode[j] = FALSE;

if (!isBackboneNode[i]) break; // exit case

for (
[image: image59.wmf]"

k
[image: image60.wmf]Î

 L) { // L is set 1, ... pkt.n

linkType[pkt.MPIDxk,pkt.MPIDyk] =

BB_LINK;

linkType[pkt.MPIDyk,pkt.MPIDxk] =

BB_LINK;

}

}

case FRAME_5_TRANSMIT:

ChooseBCN();

bestBCN = backboneConnectionNode[i];

linkType[bestBCN,i] = linkType[i,bestBCN] =

BCN_LINK;

pkt.Link_type
[image: image61.wmf]Ü

 for (
[image: image62.wmf]"

k
[image: image63.wmf]Î

 N) linkType[i,k];

pkt.Node_type
[image: image64.wmf]Ü

 nodeType[i];

Transmit pkt;

case FRAME_5_RECEIVE pkt from Node j (j[image: image65.wmf]¹

i):

for (
[image: image66.wmf]"

k
[image: image67.wmf]Î

 N, k
[image: image68.wmf]¹

j) {

switch (pkt.Link_type [k]) {

case BB_LINK:

linkType[j,k] = linkType[k,j] = BB_LINK;

isBackboneNode[j]=

isBackboneNode[k]=TRUE;

backboneConnectionNode[k]=k;

backboneConnectionNode[j]=j;

case BCN_LINK:

linkType[j,k] = linkType[k,j] = BCN_LINK;

if (pkt.Node_type
[image: image69.wmf]º

NON_BACKBONE_NODE) {

backboneConnectionNode[k]=k;

backboneConnectionNode[j]=k;

} else {

backboneConnectionNode[k]=j;

backboneConnectionNode[j]=j;

}

case LINK:

linkType[j,k] = linkType[k,j] = LINK;

case NO_LINK:

linkType[j,k] = linkType[k,j] = NO_LINK;

} // End of FRAME_5_RECEIVE switch

}

} // End of event switch

} // End of DBA
Reset()

{
ownHead = NO_MPID;

isLeavingBackbone = FALSE;

numLinks = 0;

numHeadsOneHopAway = 0;

numHeadsTwoHopsAway = 0;

for (
[image: image70.wmf]"

j
[image: image71.wmf]Î

 N) {

nodeType[j] = NON_BACKBONE_NODE;

 // NON_BACKBONE_NODE=1,

// CLUSTERHEAD=2,

// GATEWAY=3 (BACKBONE_NODE
[image: image72.wmf]³

 2)

bidirectionalNeighbors[j] = FALSE;

headsOneHopAway[j] = FALSE;

headsTwoHopsAway[j] = FALSE;

nodesHeard[j] = FALSE;

nodesHeardFrame4[j] = FALSE;

isBackboneNode[j] = FALSE;

backboneConnectionNode[j] = NO_MPID;

for (
[image: image73.wmf]"

k
[image: image74.wmf]Î

 N) linkType[j,k] = NO_LINK;

// NO_LINK=0,LINK=1,BB_LINK=2,BCN_LINK=3

}

} // End of Reset

Linkup1()

{

if (nodeType[i]
[image: image75.wmf]º

CLUSTERHEAD) return;

if (numHeadsOneHopAway >1) {

for (
[image: image76.wmf]"

k
[image: image77.wmf]Î

 H1) { //H1 is set of heads 1-hop away

for (
[image: image78.wmf]"

m
[image: image79.wmf]Î

 H1, m
[image: image80.wmf]¹

k) {

for (
[image: image81.wmf]"

p
[image: image82.wmf]Î

 N) {

if (linkType[p,k]
[image: image83.wmf]³

LINK and

linkType[p,m]
[image: image84.wmf]³

LINK)

if (p ≤ i) break;

}

if (p
[image: image85.wmf]º

 i) {

isBackboneNode[i] = TRUE;

nodeType[i] = GATEWAY;

linkType[i,k] = linkType[k,i] = BB_LINK;

linkType[i,m] = linkType[m,i] = BB_LINK;

}

}

}

}

} // End of Linkup1
Linkup2()

{

if (nodeType[i]
[image: image86.wmf]º

CLUSTERHEAD) return;

for (
[image: image87.wmf]"

k
[image: image88.wmf]Î

 H2) { // H2 is set of heads 2-hops away

for (
[image: image89.wmf]"

m
[image: image90.wmf]Î

 N) {

if (m
[image: image91.wmf]º

ownHead or m
[image: image92.wmf]º

k) continue;

if (linkType[m,k]
[image: image93.wmf]³

LINK) {

for (
[image: image94.wmf]"

p
[image: image95.wmf]Î

 H1) {

if (linkType[m,p]
[image: image96.wmf]³

LINK) break;

}

if (p < numHeadsOneHopAway) break;

}

}

if (m < n) continue;

hig1 = hig2 = n;

for (
[image: image97.wmf]"

g1
[image: image98.wmf]Î

 N) {

if (nodeType[g1]
[image: image99.wmf]º

CLUSTERHEAD) continue;

for (
[image: image100.wmf]"

g2
[image: image101.wmf]Î

 N) {

if (nodeType[g2]
[image: image102.wmf]º

CLUSTERHEAD) continue;

if (g1
[image: image103.wmf]º

g2) continue;

if (linkType[ownHead,g1]
[image: image104.wmf]³

LINK and

linkType[g1,g2]
[image: image105.wmf]³

LINK and

linkType[g2,k]
[image: image106.wmf]³

LINK) {

if (g1+g2 < hig1+hig2 or

(g1+g2
[image: image107.wmf]º

 hig1+hig2 and

min(g1,g2) < min(hig1,hig2))) {

hig1 = g1;

hig2 = g2;

}

}

}

}

if (i
[image: image108.wmf]º

 hig1) {

nodeType[i] = GATEWAY;

isBackboneNode[i] = TRUE;

linkType[ownHead,i] = linkType[i,ownHead] =

BB_LINK;

linkType[i,hig2] = linkType[hig2,i] =

BB_LINK;

}

if (i
[image: image109.wmf]º

 hig2) {

nodeType[i] = GATEWAY;

isBackboneNode[i] = TRUE;

linkType[hig1,i] = linkType[i,hig1] =

BB_LINK;

linkType[i,k] = linkType[k,i] = BB_LINK;

}

}

} // End of Linkup2
CanLeaveBB()

{

if (!isBackboneNode[i]) return (FALSE);

for (
[image: image110.wmf]"

k
[image: image111.wmf]Î

 N, k<i) { // don’t leave if missed BB xmit

if (isBackboneNode[k] and

nodesHeardFrame4[k]
[image: image112.wmf]º

FALSE)

return (FALSE);

}

// Check that it has a backbone neighbor

firstBbn = NO_MPID;

numBBnbrs = 0;

for (
[image: image113.wmf]"

k
[image: image114.wmf]Î

 N, k
[image: image115.wmf]¹

i) {

if (isBackboneNode[k] and linkType[i,k]
[image: image116.wmf]³

LINK) {

if (firstBbn
[image: image117.wmf]º

NO_MPID) {

firstBbn = k;
// lowest # backbone node

}

numBBnbrs++;

}

}

if (firstBbn
[image: image118.wmf]º

NO_MPID) return (FALSE);

// Check to see if needed as BCN

for (
[image: image119.wmf]"

k
[image: image120.wmf]Î

 N, k
[image: image121.wmf]¹

i) {

if (!isBackboneNode[k] and linkType[i,k]
[image: image122.wmf]³

LINK) {

loopCount = 0;

for (
[image: image123.wmf]"

m
[image: image124.wmf]Î

 N, m
[image: image125.wmf]¹

i, m
[image: image126.wmf]¹

k) {

if (isBackboneNode[m] and

linkType[m,k]
[image: image127.wmf]³

LINK and

linkType[i,m]
[image: image128.wmf]³

LINK) break;

loopCount++;

}

if (loopCount
[image: image129.wmf]º

n) return (FALSE);

}

}

// Would leaving split the backbone?

for (
[image: image130.wmf]"

k
[image: image131.wmf]Î

 N) cnxTree[k] = 0;

cnxTree[firstBbn] = 1;

treeSize = 0;

BuildCnxTree(firstBbn);

If (treeSize < (numBBnbrs – 1)) return (FALSE);

return (TRUE);

} // End of CanLeaveBB
BuildCnxTree(m)

{

for (
[image: image132.wmf]"

k
[image: image133.wmf]Î

 N) {

if (linkType[i,k]
[image: image134.wmf]³

LINK and linkType[m,k]
[image: image135.wmf]³

LINK

and isBackboneNode[k] and cnxTree[k]
[image: image136.wmf]º

0) {

cnxTree[k] = m+2;

treeSize++;

BuildCnxTree (k);

}

}
} // End of BuildCnxTree
ChooseBCN()

{ // Choose BB with fewest neighbors – low id for ties

if (isBackboneNode[i]) {

backboneConnectionNode[i] = i;

return;

}

minNeighbors = n;

bestBCN = NO_MPID;

numNeighbors = 0;

for (
[image: image137.wmf]"

k
[image: image138.wmf]Î

 N) {

if (isBackboneNode[k] and

linkType[i,k]
[image: image139.wmf]³

LINK and

linkType[k,i]
[image: image140.wmf]³

LINK) {

for (
[image: image141.wmf]"

m
[image: image142.wmf]Î

 N) {

if (linkType[k,m]
[image: image143.wmf]³

LINK and

linkType[m,k]
[image: image144.wmf]³

LINK)

numNeighbors++;

}

if (numNeighbors< minNeighbors) {

bestBCN = k;

minNeighbors = numNeighbors;

}

}

}

if (bestBCN
[image: image145.wmf]º

 NO_MPID) return;

backboneConnectionNode[i] = bestBCN;

} // End of ChooseBCN
6.3.1 Unicast traffic routing

6.3.1.1 Links state dissemination protocol (LSDP)

Details of this protocol to be supplied in a future draft.
6.3.1.2 Algorithm 0: min-hop routing

6.3.1.2.1 Link state measurement

To be supplied in a future draft.

6.3.1.2.2 Link states advertisement format

Figure s13 shows the link state report format for a simple min-hop routing scheme. Here, the link state report uses only a single bit to indicate whether a unidirectional link is “up” or “down”. A “1” in bit Bn indicates that a link from MPID=0 to OMPID exists, whereas a “0” indicates the lack of a link. The originating MP places a “0” in its own bit position.
	Bit: 0
	…
	Bit: 31

	Status of link

(MPID0 to OMPID)
	
	Status of link

(MPID31 to OMPID)

Figure s13 – Link state report format for min-hop routing algorithm
6.3.1.2.3 Route computation
To be supplied in a future draft.

6.3.1.3 Additional unicast routing algorithms

To be supplied in a future draft.

6.3.2 Broadcast/multicast traffic routing
6.3.2.1 All 1’s (ff:ff:ff:ff:ff:ff) broadcast traffic routing
When an “all 1’s” broadcast message is received (address ff:ff:ff:ff:ff:ff), either from the upper protocol layer or from the physical layer, it is relayed, if required, according to the following rules. Every MAP forwards the broadcast to its BSS members. In addition, if the message is entering the mesh, it is marked for transmission by the MP. If the message was received as a mesh data frame at a DBA backbone MP, and if was not previously transmitted by this node, it is marked for transmission.
6.3.3.2 IP multicast traffic routing

To be supplied in a future draft.

6.3.3.3 Mesh multicast group routing

Table s2 identifies several mesh multicast groups that are defined as follows.

6.3.3.3.1 local DS announcement

This multicast MPID is used to indicate that the 802.11 frame is to be transmitted without regard to any specific destination node. This frame is never relayed.

6.3.3.3.2 mesh broadcast

This multicast MPID is used to indicate that the frame is to be delivered to all MPs in the WLAN mesh.
The rules for relaying mesh broadcast messages are the same as for subnet broadcasts with the exception that the message is not forwarded to the STAs.

6.3.3.3.3 Subnet broadcast
This multicast MPID is used to indicate that the frame is to be delivered to all MPs in the WLAN mesh. In addition, each mesh access point (MAP) extracts the mesh frame body into a 3-address 802.11 data frame and sends this to all its associated STAs.
6.4 Message handling

To be supplied in future draft.
6.5 Mesh address management

This proposal introduces the concept of a single-octet, mesh point identifier (MPID). This section describes procedures that deal with MPIDs.
6.5.1 Assignment of mesh point identifiers
MPIDs can be assigned manually or dynamically. It is also permissible in a mesh to assign some MPIDs manually and some dynamically.

6.5.1.1 Manual assignment of mesh point identifier

In this case, the user sets the MPID as a configuration parameter.

6.5.1.2 Dynamic assignment of mesh point identifier

To be supplied in future draft.

6.5.2 Learning correspondences between MAC addresses and mesh point identifiers

There are presently four ways of learning the correspondences between MAC addresses and MPIDs: 1) at time of own MPID assignment, 2) when a STA associates with an MP, 3) by inspection of the headers of mesh messages, 4) by explicitly querying for this correspondence by sending mesh arp queries.
6.5.2.1 Address learning at time of assignment of MPID

A mesh point learns its own MPID as soon as it is manually assigned (at configuration) or dynamically learned.
6.5.2.2 Address learning at time of STA association

For purposes of routing data frames to STAs, the MAC address of a STA is associated with the MPID of the MAP with which it is currently associated.
6.5.2.3 Address learning by inspection of headers

Any mesh point that receives a mesh frame can learn some of the MAC address / MPID correspondences from that frame since they are explicitly given.
6.5.2.4 Address learning by direct query

A “reactive” mesh ARP query frame is defined for directly obtaining a target MPID for a given target MAC address.
References:

Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:stuart.kerry@philips.com" \t "_parent" �stuart.kerry@philips.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Abstract

The 802.11 specification describes the concept of an Extended Service Set (ESS), which consists of multiple Basic Service Sets (BSSs) connected by a (largely) unspecified Distribution System (DS). This paper proposes an 802.11 amendment to specify a wireless DS mesh that uses normal 802.11 PHY layers. The resultant wireless mesh can serve as all of the DS or it may be only part of a larger DS. The proposed approach allows the WLAN mesh to be implemented using only a single 802.11 channel, although multiple channels can also be supported. Mobility effects are handled completely within the mesh, and, to externally attached networks, the WLAN mesh resembles a static, broadcast ethernet LAN segment.

Submission
page 17
Dennis Baker

_1109750386.unknown

_1110018836.unknown

_1119886246.unknown

_1119886157.unknown

_1110716937.unknown

_1110015767.unknown

_1110015941.unknown

_1110008309.unknown

_1110008355.unknown

_1110009580.unknown

_1109767006.unknown

_1107178740.unknown

_1109664073.unknown

_1109747916.unknown

_1109673939.unknown

_1107344129.unknown

_1107346552.unknown

_1107591588.unknown

_1107346539.unknown

_1107326766.unknown

_1107262170.unknown

_1107168792.unknown

_1107178693.unknown

_1107178412.unknown

_1106739101.unknown

_1106651899.unknown

