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Harnessing the Sun”

on the large scale...

Nuclear
20.21%

Renewable
10.34%

Fossil Fuels
69.17%

Total Energy Demand of the World: 12 TeraWatts
Average Solar Energy Received on Earth: 84 TeraWatts
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Changes output
when hot or
shaded, or
loaded!
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Solar Radiation at the UW
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Needs enough voltage,
*When sensing @ 1uW
*When processing @ 50uW
*When transmitting @ 1Imw!

Deal with:
Insolation
Change / Load
variation /

O Energy In =

O Energy Out!
——@ Batey N
Power [ Portable o

Conditioning T Electronics
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[
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Chasing Maximum Power

OPV Characteristics v/s Insolation
Leftto Right: 0.1, 1, 10 and 100 W/sq.m.

Normalized Power (%)
<- Dissipated | Generated ->

Voltage (V)

Maximum Power Point v/s Insolation
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Power output at MPP (mW)

Insolation (W/sq.m.)
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Maximum
Power Point!
(MPP)
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Maximum Power v/s Insolation
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Insolation (W/sq.m.)




Chasing Maximum Power
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Voltage across PV array (V)
Ref: H. Patel and V. Agarwal, Energy Conversion, Voltage (V)

IEEE Transaction on, vol. 23, 2008, pp. 302-310

array reconfiguration perturb & observe...

incremental conductance

ripple correlation control
load I/V maximization
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" ripple correlation,
and arrav reconﬁaurahon |
Qi g@g 6%%:%:3:3

fixed solution
to partial shading
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dynamid solution:
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Recap

e Solar Energy — Abundant in large scale, key
‘application-enabler’ at small scale

e PV Cell management - maximum power point,
power balancing between cells

e Array Reconfiguration is complex to implement,
precluded from portable applications
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Can we have

a simple and efficient system?

e Can we have array reconfiguration in a simple system?
e Can we use simple, automatic control loops?

e Can we do thisin less than 100uW and under 1gram?
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array reconfiguration... L
..in the ‘time
domain’ ?

Series ‘n’” dimension . .
Series Switch

4 P Top
= ] . + Strongest .
re-routing spatially... Y RY RY e k#Z + --}.;By”."“
¢ ¢ ¢ not bypassed PV Switch
- 1 1
+ moN + 1 Current ‘Paths’ [ 1
» - I ! Series Switch ,
1
P
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Current ‘Paths’ %& h’\i + _k PV Cell, + 2 Bypgss
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.{: * l l l l Series Switch
—- =3
+ Weakest .
» ¥ k k k PV Cell, 'S .\ Bypass
hs B mostly bypassed 7;\7 F Switch
T Shadow
Time D/mensmn Bottom
nXm Array n String

re-routing temporally...

b =

Distributed Microsystems




The System es
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Hmmm testing...

e Does TDAR Work?
e Are the switching losses prohibitive?

e Can the control loop be a small system?

e Discrete TDAR system
— off the shelf ICs that mirror chip control loop

e TDAR Chip
e 10mA and 40mA solar cells — 3-strings

e SMU’ s and Oscilloscopes!
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red- drops below 2-cell level...

green- optimal

blue- duty cycle limited

External TDAR control

20% 40% 60% 80% 100%
Shaded Area of one cell (%)
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Differentiator ]
Ripple
Correlation
Differentiator [
Connect
MRsense
2
¥ i oy e
_|_vapass Coommu afon] commutation
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Inferences:

TDAR is only as good as:
e The control loop

e The power switches

b =
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Power consumption of Chip

90% _
80% g _/\_
> 70% % .
5 60% @ &
2 0, 4 %
E % 9 & Inferences:
S 30% O
S o, @ & 3 TDAR cells at 55pA total
o 20% o c)é
10% &
0% Boost converter near 80% for
0.4 0.6 0.8 1 12 1.4 3-cell-string voltage range
Vin (V) .
180 Single-cell voltages see lower
160 efficiency

140

120 => TDAR can be more efficient!
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Comparing control loops

Inferences:

100% i
Chip On-chip control loop

unstable at low duty-
cycles

Control
80%

60%

Manual

40% Control Other Notes:

Chip sensitive to light (!)
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20%
PV dynamic models can

0% improve accuracy
0% 20% 40% 60% 80% 100% ,
Shaded Area of one cell (%) SMU s can be faulty

Oscilloscopes can auto-
calibrate
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Conclusions...

e T.D.A.R.improves power availability under shading for any-sized
array

e T.D.A.R.is a strong contender for low-power PV-string
management

* Higher efficiencies with a PV string than a single cell for ultra-
portable applications

e Scalable and Modular, but only as good as its control loop and
power switches!

... the story continues!...

Dist b r ) ) i
Distributed Microsystems




