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ABSTRACT

This paper presents a comparison of multi-stage linear and
single-stage nonlinear processing techniques for accomplishing
chemical discrimination. Data variance, computational overhead,
and memory storage requirements are compared between (linear)
multistage principal components analysis, non-linear VERI
(visually empirical region of influence) and non-linear artificial
neural network techniques. For the linear techniques, data variance
is reduced by 88%, compared to that of raw data during data
preprocessing. Computational overhead is reduced up to 8§2.5% and
77% for non-lingar clustering and asttificial neural network
techniques respectively. These improvements offer clear promise
for significant reduction in power and space consumption for
portable chemical sensing systems design.

INTRODUCTION

In the last decade, linear signal processing techniques for
chemical sensor arrays have largely been reserved for preliminary
analysis of array performance, for array optimization, or for simple
sensing applications involving few analytes or few sensors (e.g. [1]-
[31). Non-linear techniques, such as artificial neural networks(e.g.
[4]-[7]), non-linear clustering {e.g. [8]), genetic algorithms (e.g.
[9]), fuzzy logic (e.g. [10j[11]), and similar techniques. Principal
component and cluster analysis, in particular, 15 a linear processing
technique that has frequently been used to quickly evaluate,
visually and quantitatively, the ability of an array to separate
characteristics of individual chemicals. However, as the number of
analytes associated with a particular application increases, principal
components analysis quickly loses its effectiveness as cluster
overlap increases, making discrimination difficult and reducing
accuracy. In many cases, non-linear signal processing techniques
have proven effective in solving discrimination problems that
simply cannot be solved using linear processing techniques.
However, most effort in both non-linear and linear signal processing
targeted at chemical discrimination has been done without data
preprocessing and in a single stage of processing. In this paper, we
intend to support the argument that data preprocessing and multi-
stage analysis can reduce superfluous information and optimize
computation capability sufficiently to allow linear processing
techniques to effectively solve discrimination problems.

The inherent limitations of linear signal processing are also
what make them attractive to portable sensing systems. Linear
signal processing, especially principal components analysis, is
often conducive to hardware implementation and requires relatively
few floating point operations compared to nonlinear signal
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processing techniques. Fewer floating point operations translate
directly to decreased computational overhead and increased speed
of operation. Data compression, mimmal memory requirements,
and low computational overhead are essential for the design of
portable sensing systems that meet user-defined weight, battery-
life, and size constraints.

As a proof of concept, this paper presents linear signal
processing techniques for implementation in portable, low-power
SAW-based chemical sensing systems. This paper provides a
demonstration of how three-stage signal processing involving a
combination of principal components analysis (PCA) and linear
signal preprocessing can provide performance for chemical
discrimination comparable to more complex, rion-linear analysis
techniques, but at significantly reduced numbers of floating point
operations.

THEORY

A linearly separable problem, whether two-dimensional or
thirty-dimensional, can be solved using linear signal processing
techniques. The issue in determining linear separability, however,
lies in the ability to visualize the problem, which is often not
possible in dimensions greater than three or arrays that contain
more than three elements. A number of software programs are
available to assist in examining multi-dimensional data, but are
limited in their ability to provide all possible perspectives of the
data and, in addition, can only provide one (or few) of many
perspectives at a given moment in time. For this reason, it is often
more straightforward to allow a non-linear signal processing
method to determine the separability of the data using an algorithm
that has been proven mathematically to converge for a solvable
problem. Efforts to discriminate among analytes using amays of
chemical sensors, more often than not, rely on such non-linear
signal processing techniques as multi-dimensional, non-linear
clustering, artificial neural networks, fuzzy logic, genetic
algorithms and others. In this work, we seek to establish linear
separability of the problem using multiple (two) stages of signal
processing performed in sequence rather than the single stage that
characterizes most other efforts. Once linear separability is
established, the problem of analyte discrimination, in field
operation, is completed more -efficiently using linear signal
processing techniques. Ultimately, in power and space limited
applications for portable chemical sensing, we wish to minimize the
number of mathematical operations and stored parameters needed
to solve the discrimination problem.

In this work, we demonstrate that an analyte discrimination
problem that has been solved using a single-stage, non-linear signal
processing technique can also be solved using two stages of linear
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signal processing. The problem is that of a 7-clement SAW device
array used to discriminate 16 analytes that consist of aliphatic,
aromatic, and chlorinated hydrocarbons, alcohols, ketones, and
organophosphorous compounds across a range of concentrations
from 0.40 - 48.0 P/Pg,, where P and P, are the partial pressure
and saturated partial pressure of the analyte of interest respectively
This wide range of analytes and concentrations requires a large
computing space. Our first step is to reduce the dynamic range of
the data by reducing the influence of concentration. After
examination of the data, 59 of 112 possible response characteristics
(isotherms) across all sensors and analytes in the array are linear.
Because the array characteristics are dominated by linear response
curves (53%), we logically choose a linear normalization method to
reduce the influence of concentration. During normalization, every
point on every response curve in the training set is normalized to the
value of coating 1, the SAW device coated with bare quartz; this
reference sensor demonstrates linear response characteristics more
frequently (69%) than other coatings for all 16 analytes and 1s used
to normalize all response points for the remaining six coatings as
follows:

Afnurrna“’zed(a, h) = (Afa, b)/(Aflb) (1)

where Af refers to the frequency shift experienced by the
SAW device 1n the presence of an analyte, a refers to the coating
(numbered | through 7) and b refers to the analyte type (1 - 16).

After normalization, a standard linear signal processing
technique, principal components analysis, is used to transform the
seven dimensional data into two dimensions which contain most of
the variance in the original data. The data are then analyzed using
standard linear regression techniques (fitting the points to a line)
and ambiguous classes are determined (analytes that are not
distinguishable in the first stage of processing). A second stage of
linear signal processing (principal components analysis) uses the
most distinguishable features of the ambiguous classes of the first
stage. Linear regression of the first two principal components in this
second stage then discriminates or separates the remaining analytes
in the test set. Once the principal components are determined using
the test set, they can be implemented in field discrimination tasks
by storing small, two-dimensional matrices containing the principal
components. PCA, in contrast to non-linear signal processing
techniques, also involves a significantly reduced number of
mathematical operations required to multiple each seven
dimensional data point by its 7X2 principal component matrix and
then, to evaluate its distance to the 16 lines that characterize the
analytes in the training set.

Any point, once transformed, that lies further than two
standard deviations from any of the 16 lines in the training set, is
labelled an outlier. In this way, unusual ambient conditions, new
analytes, or broken sensors can be flagged because cach data point
1s not necessarily forced into a particular classification group. The
conversion of this problem to linear signal processing guarantees a
significant reduction in the computational demands of the system
which can provide lower power, more compact operation or more
computational capability to address erroneous or unexpected
conditions in the envirorment or sensor array.

In summary. the 7-element, SAW device array is processed to
discriminate 16 analytes using:

- Multi-stage principal components analysis: Stage 1 is pre-
processing (normalization of data); Stage 2 is principal com-
ponents analysis on all 16 analytes simultaneously; Stage 3
is principal components analysis only on members of classes
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that could not be separated in Stage 2. Stage 3 is preceded by
feature extraction which extracts the most important features
of each group to discriminating members of that group.

. VERI: creates a non-linear, multi-dimensional cluster that
encompass all training points for a particular analyte. Dis-
tance from each testing point to all 16 clusters is then evalu-
ated to determine which (if any) cluster the training point
belongs.

. Artificial Neural Network: uses a fully interconnected, feed
forward, back propagation trained perceptron-style architec-
ture (7 input nodes, 14 hidden nodes. 16 output nodes) to
train on the data set.

In the nexlt section, we discuss the results of linear analysis of
a test set for all 16 analytes and compare computational overhead
(clock cycles and memory) for this technique and the two other
common, non-linear techniques (VERI, Artificial neural networks)
used to process the outputs of the SAW array.

EXPERIMENTAL DETAILS

The array of sensors used in this demonstration is a 7-element
array of SAW sensors fabricated and tested at Sandia National
Laboratories, each coated with a different material and tested across
a wide range of concentrations (0.40 - 48.0 P/P_,) for 16 analytes
of interest (see Figure 1). The 7-element array is a reduced form of
a 30-element array optimized using a nonlinear signal processing
program called VERI (visually empirical region of influence)
which relies on human visual perceptions of clusters to separate
analytes from one another; although VERI works as well with
linear clusters as non-linear, most of the clusters in this analysis are
determined to be non-linear. The seven coatings used in this array
are a bare quartz coating, a dendrimer coating, two polymer
coatings (SE-30, PECH), and three metal coatings (CuQ, Au, Pt).
Details of the SAW device fabrication and the array optimization
and non-linear clustering routine (VERI) can be found in 12 and 8
respectively.

The first stage of the linear signal processing process is
preprocessing, which is designed to reduce the influence of
parameters that are not relevant to analyte discrimination. In this
case, the largest variance in the raw data. is concentration, which is
reflected in the principal component analysis of the raw data in
Figure la. Normalization according to the most linear coating (the
bare quartz reference) results in an 88% reduction in data variance
(corresponding to variations in the first principal component) as
shown in Figure 1b.

The second stage of processing is a straightforward principal
components analysis of the data set after normalization (Figure 1b,
lc, 1d). After PCA, all but 5 of the 16 analytes separate into clearly
defined clusters, where members of each cluster can be identified
within 100% accuracy using a simple linear regression analysis.
The remaining 5 analytes separate into two classes, one containing
three analytes, cyclohexane(a), hexarne(b) and isoctane(c) and the
other containing two analytes, propanol(k) and DMMP(p), which
are differentiated in the third and last stage of signal processing
{Figure Le, 1f) by first preprocessing the normalized signals used as
the input to stage 2. Preprocessing involves highlighting the
differences between members of a group. It is the differences
between coatings 6 and 3, 7 and 6, and 4 and 1 that dominate the
distinguishing features of the response curves in each of the two




classes. After preprocessing to extract only these features, another
principal components analysis yields the results in Figures le and
1f where the five remaining analytes are clearly distinguishable.

Comparisons in computational overhead for these three types
of processing these 16 analytes in this SAW array are made in Table
1. The Motorola MC68HC 12 is used to translate the number of add,
multiply, and compare operations in each technique to clock cycles
which translate directly to processing time and power consumption.
The linear processing techniques consume 82.5% and 77% less
processing time than the VERI and ANN methods respectively,
with no loss in accuracy. The linear techniques also consume 91%
and 71% less memory than the VERI and ANN methods
respectively. All three pattem recognition techniques achieve 100%
discrimination accuracy in this experiment.

Table 1: Computational Overhead Comparison

Method Clock Cycles Memory
PCA (linear) 12,142 344 bytes
VERI 69,390 4 kbytes
ANN 51,740 1.2 kbytes
CONCLUSIONS

We have demonstrated the use of linear signal processing
techniques to perform chemical discrimination at the same accuracy
as comparable non-linear techniques using a multi-stage hierarchy
of processing. Multi-stage processing facilitates the removal of
superfluous information to the chemical discrimination problem
{e.g. concentration) and also allows the computational effort to be
focused on areas of high activity in the chemical signature space.
Speed improvements up to 32.5% and memory reductions up to
91% have been computed for the principal components analysis-
based techniques presented on SAW-device based arrays in this
paper. Comparable improvements can be achieved using other
arrays for other analytes. The focus of increased speed, unlike many
other sensing applications, is not in improving system response
time, but rather in reducing power consumed by the overall
chemical sensing system. These algorithms, as presented, can be
implemented in a simple microcontroller, such as the Motorola
MC68HC12, evaluated here to generate a self-contained system
that is truly portable for field applications.
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Code to Chemicals:
a:cyclo-hexane e: benzene i trichloroethylene (TCE) m: acetone
b: hexane f: toluene j: methanol n: methyl isobutyl ketone (MIBK)
C: ispoctane g: chlorobenzene k: propanol o: diisopropylmethylphosphonate (DIMP)
d: kerosene h: carbon-tetrachloride  I: pinacolyl alcohol p: dimethylmethylphosphonate (DMMP)
Figure 1. Single and Multiple-stage Principal Componeny Analysis of 16 Chemicals in 7-element SAW Array
In (a) single stage principal components analysis, the analytes tend 1o group according 1o the magritudes of their
response curves, directly relating to concentration as well as discrimination. After (b), (c), (d) normalization, data
clusters primarily according to fundamental differences in the response characteristics associated with the last six of
the seven coatings. During the third stage of processing (e) and (f), members of closely related classes are separated
and recognized. After clustering based on distance to the nearest line, all points cluster to their correctly identified
analytes.
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