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Abstract: Emerging van der Waals materials exhibit a wide range of optical and electronic 
properties, making them attractive for nanophotonic devices. Due to the nature of van der 
Waals interactions, this new class of materials can be readily integrated with other existing 
nanophotonic structures, leading to novel device architectures and operating principles. In this 
review, we will present the progress of active nanophotonics, realized by integrating van der 
Waals materials with on-chip optical waveguides or resonators. Additionally, we will review 
the emerging research area in van der Waals nanophotonics, where the nanophotonic 
structures are fully made of van der Waals materials. A variety of van der Waals 
nanophotonic structures, ranging from ultrathin Fresnel lens, metasurfaces to photonic crystal 
cavities and their potential impacts on miniaturized optical system and quantum technology 
will be discussed. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Integrated nanophotonics hold the key for ultimate miniaturization of optical devices, while 
simultaneously achieving energy-efficiency and high speed operation [1], with far-reaching 
impact on the next-generation optical information processing, communication and sensing 
systems. Several recent works demonstrated an unprecedented level of integration of photonic 
devices, primarily enabled by semiconductor nanofabrication [2,3]. Going beyond traditional 
applications involving optical transceivers for data-communication [4], the photonic 
integrated circuits are finding applications in optical information processing [5], quantum 
simulation [6], linear optical quantum computing [7], and optical phased array [7,8]. While 
novel device design and fabrication are necessary to advance this research field, a crucial 
component is new material systems to realize active devices, including light sources, 
modulator, detectors and nonlinear optical structures. In this regard, low-dimensional 
materials, such as quantum confined structures hold great promise, primarily due to the 
enhanced density of states, leading to energy efficient and compact devices. 

One such low-dimensional material is atomically thick layered van der Waals (vdW) 
materials. This new class of material are alluring for optoelectronics applications, as they 
have a wide range of optical band gap and electrical transport properties [9–11]. For example, 
graphene is a semi-metal with zero band gap, while transition metal dichalcogenides 
(TMDCs) and black phosphorous (BP) are semiconductors with band gap covering the 
technologically important visible and infrared wavelength regimes. Hexagonal boron nitride 
(hBN) is an atomically-thin insulator with excellent thermal stability and chemical inertness. 
Beyond usual optoelectronic properties, several newly discovered vdW materials show 
correlated characteristics in the two-dimensional (2D) limit, such as superconductivity, 
ferroelectricity and ferromagnetism [11–14]. These unconventional material properties could 
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potentially increase the functionalities of devices at the nanoscale. And most importantly, due 
to the nature of vdW interactions, the layered materials can be integrated onto different 
substrates, which makes them a promising candidate for integrated photonics applications 
[15,16]. 

In this paper, we review the current status of various active devices, including light 
emitters, modulators, photodetectors and nonlinear optical structures, enabled by vdW or 2D 
(i.e. vdW material in the single-layer limit) materials integrated with nanophotonic structures, 
such as waveguides or nano-resonators. We then highlight the new opportunities of integrated 
nanophotonics, created by patterning vdW materials themselves into nanostructures. The 
future directions and challenges of vdW photonics are also discussed. 

2. Light emitters integrated with nanophotonics 

On-chip light emitters are crucial components for any integrated photonic system. vdW 
materials with direct band gap in the monolayer limit are extremely attractive for creating 
such light sources. Unlike the wafer-bonding of III-V material on silicon, vdW materials can 
be easily integrated with the underlying large-scale photonic integrated circuit, fabricated via 
CMOS-compatible manufacturing. Photoluminescence (PL) from TMDCs have shown their 
band gaps are from the near-infrared to the visible spectral region (1-2.5 eV) [9,10]. BP has 
also garnered significant attention, as its band gap and electronic structure are layer-
dependent, with band gaps spanning from 0.3 eV in bulk to 2 eV in monolayer [10]. More 
strikingly, when the thickness of these vdW materials approach the atomic limit, weak 
dielectric screening from the environment has been predicted to cause strong Coulomb 
interactions of photoexcited electron-hole pairs and thus, form strongly bound excitons 
(~hundreds of meV) [17]. Such a phenomenon has yet to be observed in bulk semiconductors 
but is particularly beneficial for developing light emitting devices. Despite these promising 
characteristics, the emitted power of ultrathin materials is too low for practical applications. 
Using nanophotonic resonators, however, we can enhance the light emission due to temporal 
and spatial confinement of light. 

2.1 Enhanced light-matter interactions 

Optical cavities can trap photons for substantial period of time and manipulate the 
electromagnetic environment (i.e. the local optical density of states). Thus, they can 
significantly modify the emission and absorption characteristics of materials. The efficacy of 
2D material integrated devices was in part demonstrated by Wu et al., who transferred a 
monolayer tungsten diselenide (WSe2) onto a linear three-hole (L3) defect gallium phosphide 
photonic crystal cavity (PhCC) [Fig. 1(a)] [18]. The resonance wavelength of PhCC overlaps 
with the PL spectrum of WSe2, and the cavity quality factor is ~180. The PL collected from 
the cavity region shows a prominent cavity-enhanced peak, with an intensity ~60 times 
stronger than the off photonic crystal region [Fig. 1(b)]. Additionally, the cavity-enhanced PL 
is linearly polarized and aligned with the polarization of the corresponding cavity mode [Fig. 
1(c)]. A similar experiment was reported with MoS2 [19], and cavity-enhanced PL was also 
observed by several research groups by integrating 2D onto different linear line defect PhCC, 
distributed Bragg reflector (DBR), microdisk optical resonators [19–21] and 1D photonic 
crystal cavities made of silicon nitride [22] and silicon dioxide [23]. We note that, however, 
the Purcell enhancement of TMDCs depends only on the cavity mode-volume and not quality 
factor, as the TMDC exciton-cavity operates at the good cavity regime (i.e. emitter linewidth 
larger than the cavity linewidth) [24,25]. Broad emitters coupled with large non-radiative 
decay of the TMDCs exciton further makes accurate measurement of the Purcell enhancement 
difficult. 

While most of the research on cavity enhanced light emission from vdW materials focus 
on weak coupling regime, few works involving DBR resonators demonstrated strong coupling 
of the cavity mode and 2D exciton. The resulting exciton-polariton systems are probed by 
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external quantum efficiency is only ~1%, and the light emitting area is limited to within the 
junction area (typically less than 1 µm). Withers et al. utilized the dry transfer technique to 
create a vdW tunneling diode, consisting of a monolayer TMDCs sandwiched between two 
tunneling contacts formed by graphene and hexagonal boron nitride [39]. Built on this design, 
the LED can exhibit higher quantum efficiency (~10%) and electroluminescence (EL) can 
occur from the whole TMDCs area. To enhance the efficiency, Liu et al. further proposed a 
novel device concept by integrating a gallium phosphide PhCC (Q~100) on top of a vdW 
LED [40], as shown in Fig. 2(a). The device demonstrated cavity-enhanced (>4 times, Fig. 
2(b)) and highly linear polarized (84%) EL at room temperature, with a direct modulation 
speed of ∼1 MHz [Fig. 2(c)]. This reported speed is faster than the most in-plane 
optoelectronics based on TMDCs, as the current injections of those in-plane devices are 
usually limited by TMDCs/metal Schottky barriers. More importantly, the observation of 
cavity-enhanced EL suggests the possibility to realize an electrically-pumped laser in this 
platform. 

 

Fig. 2. Cavity-integrated vdW light emitting diode. (a) Schematic of the device structure. (b) 
Electroluminescence signal measured from on-cavity and off-cavity areas. (c) Modulation of 
electroluminescence at 1 MHz speed. Figures are adapted with permission from [40], 
American Chemical Society. 

3. Modulator 

As one of the most crucial technologies in nanophotonics, optical modulation has been 
extensively studied aiming for high-performance optical interconnects, sensing, information 
processing, and beam steering [41]. vdW materials have been used to create broadband, 
compact, energy-efficient, and ultrafast optical modulators, and their extreme thinness can 
potentially enable ultra-low energy operation. 

3.1 Electro-optic modulators 

Electro-optic modulation is the most investigated technology in current vdW material-based 
optical modulators targeting high-speed applications. These devices primarily utilize the gate-
tunable electro-absorption or electro-refractive effect in graphene. Liu et al. was the first to 
demonstrate a broadband (1.35 μm to 1.6 μm), high-speed (1 GHz), and compact (25 μm2) 
waveguide-integrated electro-absorption modulator based on monolayer graphene [Fig. 3(a)] 
[42]. By electrically tuning the Fermi level of the graphene sheet in a carrier-accumulation 
capacitor structure [Fig. 3(b)], the transmission of the device was modulated by 0.1 dB/μm 
due to Pauli blocking effect [Fig. 3(c)]. Built on this foundation, the double-layer graphene 
structure was proposed, which can provide better modulation depth (0.16 dB/μm) [43], with 
an insertion loss ~0.9 dB [44]. Additionally, the double-layer graphene optical modulators can 
avoid the slow carrier transport in silicon [42,45], allowing for operation speeds approaching 
35 GHz [44]. 

Whereas the increased modulation helps reduce the footprint and energy consumption, 
further improvement of these figures of merit requires stronger light-matter interaction. One 
effective solution is to conduct optical modulation by integrating vdW materials with optical 
cavities, such as PhCC [46,47], microring resonators [48,49], or nanobeam cavities [50]. Gao 
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et al. reported a graphene–hBN heterostructure-based electro-optic modulator coupled with a 
silicon PhCC [Fig. 3(d)], and its active area is only ~0.5 μm2 [51]. Similarly, Phare et al. 
utilized a silicon nitride microring resonator [Fig. 3(e)] and demonstrated a 30 GHz graphene 
electro-optic modulator based on the critical coupling effect. The achieved modulation 
efficiency was 1.5 dB/V with an energy consumption of just 800 fJ/bit [52]. 

Despite many advantages, resonant-structure-based modulators suffer from high 
sensitivity to temperature variations, fabrication tolerances [41] and narrow optical 
bandwidth. To address these, one alternative approach is to use slot waveguides or plasmonic 
waveguides. In the latter case, either waveguides based on graphene surface plasmon 
polariton (SPP) or SPP waveguides from other materials are exploited [53–55]. Ansell et al. 
fabricated a proof-of-concept hybrid graphene plasmonic waveguide modulator based on the 
graphene/hBN/metal structure with an active area of just 10 μm2 operating at telecom 
wavelengths [56]. With the aid of low-loss metal plasmonic slot waveguides, Ding et al. 
reported a graphene electro-absorption modulator showing a modulation depth of 0.13 dB/μm 
[57]. By inserting graphene into a hybrid metal-oxide-silicon (MOS) plasmonic waveguide, a 
compact (~10 μm) electro-absorption modulator with a modulation depth >0.2 dB/μm and 
energy consumption of only 110 aJ/bit is recently reported [58], confirming the theoretical 
limits of switching energy is below 1 fJ/bit [59]. 

\  

Fig. 3. Optical modulators based on vdW-integrated nanophotonic structures. (a) Schematic of 
the first graphene-integrated waveguide-based modulator, its (b) cross sections with an overlay 
of the mode profile, and the (c) static electro-optical response at different drive voltages. (d) 
Schematic of a graphene–hBN heterostructure-integrated silicon PhCC modulator. (e) 
Schematic of a graphene- silicon nitride microring modulator. (f) Optical image of the MZI-
based graphene-silicon phase modulators. (g) Schematic of a thermally tunable silicon micro-
disk with a transparent graphene nano-heater. (h) Schematic of a slow-light-enhanced graphene 
heater. (i) Schematic of a graphene-silicon hybrid all-optical modulator. Figures are adapted 
with permission from: (a-c) [42], Nature Publishing Group; (d) [51], American Chemical 
Society; (e) [52], Nature Publishing Group; (f) [60], Nature Publishing Group; (g) [66], Optical 
Society of America; (h) [67]; (i) American Chemical Society. 

Another way to realize optical modulators is to exploit the electro-refractive effect. In 
2017, Sorianello et al. reported a graphene-silicon phase modulator by exploiting the Mach–
Zehnder interferometer (MZI) configuration [Fig. 3(f)] [60]. The compact (300 μm) device 
exhibits an enhanced modulation efficiency of 0.28 V·cm (outperforming the state-of-the-art 
silicon depletion-mode modulators [61]), a high extinction ratio of 35 dB, and suppressed 
optical loss when operated in the Pauli blocking regime. The device had an electro-optical 
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bandwidth of 5 GHz and operated at 10 Gb/s with 2 V peak-to-peak driving voltage in a push-
pull configuration. 

3.2 Thermo-optic modulators 

Thermo-optic modulation relies on the change of material refractive index induced by 
temperature. This kind of modulator has long time constant, limiting device operation speed 
to anywhere between the kilohertz to megahertz range. Graphene is considered as an 
attractive material for energy-efficient, and compact, and cost-effective thermal management 
due to its high intrinsic thermal conductivity, electric conduction, transparency, and ease of 
fabrication. Specifically, graphene has been used as an efficient heat conductor, electrical 
heater, and optical heater for thermo-optic modulation primarily in silicon photonics. As a 
transparent flexible conductor, graphene has been used for efficient thermal tuning of a 
silicon MZI and micro-disk resonator [62]. Other integrated nanophotonic structures, 
including graphene plasmonic waveguides [63], microrings [64,65], microdisks [Fig. 3(g)] 
[66], slow-light photonic crystal waveguides [Fig. 3(h)] [67], and nanobeam cavities [68,69] 
have been introduced to reduce the power consumption by increasing either the group index 
or the quality factor. Use of resonators also increases the thermal and optical confinement and 
reduce the thermal time constant. As a result, graphene-based thermo-optic modulators have 
exhibited a high modulation depth up to 30 dB [63], a 10%-90% rise time of 750 ns [64,67], a 
large energy efficiency from 1.67 nm/mW [66] to 10 nm/mW [68], a low switching power of 
0.11 mW [68], and a figure of merit (defined as the inverse of the product of rise time and 
power consumption) as large as 0.67 nW−1s−1 [67], comparable or even better than the 
traditional silicon photonic thermo-optic modulators [70]. Due to this high performance, 
graphene-based thermo-optic modulators have recently been proposed to improve optical 
phased arrays (OPAs) essential for light detection and ranging (LIDAR) systems [71]. 

3.3 All-optical modulators 

The growing research in optical interconnects may ultimately need all-optical modulation to 
circumvent the excess energy consumption and latency during the electro-optic signal 
conversion [72]. The majority of all-optical modulators using vdW materials are based on 
saturable absorption for absorptive modulation and optical Kerr effect for refractive 
modulation. Recent theoretical analysis proved that for graphene-on-silicon all-optical 
modulators, absorptive modulation mode is more suitable with a required optical pump 
intensity of 10MW/cm2 and a short length of ~200 μm, much better than those based on 
refractive modulation and far better than those based on bare silicon waveguides [73]. With 
the aid of saturable absorption and photoluminescence of WS2, Yang et al. modulated and 
amplified an optical signal at 640 nm with a 532 nm pump on a silicon nitride waveguide 
[74]. Another way to perform all-optical modulation is via photogating effect. Yu et al. 
demonstrated such all-optical modulation on graphene-silicon hybrid waveguides [Fig. 3(i)] 
[75]. By pumping the device with an ultra-low visible light power of 0.1 mW (corresponding 
to 2 W/cm2 in intensity, seven orders of magnitude lower than that for saturable absorption), 
carriers are generated in silicon. Assisted by the built-in electric field in the graphene-silicon 
junction, the Fermi level of p-type graphene is lowered, resulting in suppressed graphene 
absorption over a broadband (>80 nm) infrared probe light. Thanks to the ultra-long diffusion 
length of the carriers originated from the large mobility of graphene, this all-optical 
modulation can also be nonlocally conducted with a distance between the device and the spot 
of pump light longer than 4 mm, implying its applications in position sensing and remote 
controlling [76]. 

4. Photodetectors 

The discovery of graphene generated an intense research effort on understanding its 
photoresponse, as graphene has exceptional high carrier mobility, strong light absorption 
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4.2 Waveguide-Integrated photodetectors 

Instead of an optical resonator, high responsivity detectors can also be realized by evanescent 
coupling to an optical waveguide. Integration with waveguides provides high responsivity 
(tens to hundreds mA/W), high speed (~20 GHz) and relative broad spectral operation, 
covering all fiber-optic telecommunication bands [Figs. 4(c) and 4(d)] [91–93]. Based on the 
progress, the continued effort further optimized the device geometry and improve the RC time 
constant to enhance the operation bandwidth: different groups have reported ultrafast 
operation speed, ranging from 40 to 180 GHz [94–98]. More strikingly, those ultrafast 
integrated photodetectors can be realized by using graphene, grown by chemical vapor 
deposition (CVD), opening the door for the wafer scale device fabrications and integrations. 

In addition to graphene, a waveguide-integrated multilayer BP photodetector was reported 
recently. The initial study indicates this integrated device could exhibit high responsivity 
(~hundreds mA/W) and 3 GHz operation speed in an ambient atmosphere condition [Fig. 
4(e)] [99]. Importantly, due to the presence of a band gap in BP, the dark current of BP 
detectors can be more than three orders of magnitude lower than other graphene-based 
photodetectors. Such feature also suppresses the background noise level, enabling more 
sensitive measurements. 

4.3 Other light trapping effects for large area photodetections 

For many practical optoelectronics applications, it is desirable to create photonic structures 
that can enhance the absorption of large-area photoactive layers. To this end, Jariwala et al. 
exploit the features of high refractive indices and absorption coefficients of TMDCs and 
demonstrated that near unity absorption could be realized by placing an ultrathin (<15 nm) 
TMDCs on the reflective metal due to the thin film interference effect (i.e. strongly damped 
optical modes of TMDCs/metal heterostructures) [100,101]. Other research groups also 
showed that large area light trapping can be achieved by directly attaching the 2D or vdW 
materials onto the substrate with prepatterned Fano-resonant structures or a plasmonic 
antenna array [102–104]. Critically, by exploiting these structures, it is possible to create an 
atomically-thin and large-area photovoltaic device with its internal quantum efficiency higher 
than 70% or photodetector with a photo-gain higher than 105 [103,105]. 

5. Nonlinear optics 

2D materials, particularly TMDCs, recently emerged as a promising material for nonlinear 
optics. In particular, due to the lack of centro-symmetry and large excitonic binding energy in 

the single layer limit, the monolayer TMDCs possess large (2)χ  values [106]. But with an 

even number of layers, this nonlinearity disappears as the material becomes centrosymmetric. 
Here, we point out several prominent results in 2D materials integrated nonlinear 
nanophotonics. A more detailed discussion on this topic can be found out in a recent review 
[107]. 

Majumdar et al. theoretically analyzed the layered material clad nano-cavity system and to 
find the effective nonlinearity [108]. Several groups experimentally demonstrated second 
harmonic generation (SHG) enhanced by nanophotonic structures, including DBR, PhCC, and 
waveguides. Day. et al. demonstrated SHG using a 2D MoS2 integrated inside a DBR cavity 
under pulsed excitation at 800 nm [109], where the DBR is formed by using alternating layers 
of silicon nitride and silicon dioxide to minimize the light absorption [Fig. 5(a)]. The reported 
enhancement is around 10. The lower enhancement factor can be attributed to low Q-factor of 
~20, and the large mode-volume of the DBR cavity. Using a 2D WSe2 clad silicon PhCC, 
Fryett et al. demonstrated enhanced SHG. In this work they used a pulsed laser operating 
within the telecommunication band (~1550 nm) [110]. Figure 5(b) shows the SEM of a 2D 
WSe2 clad silicon PhCC. When the cavity (resonant at ~1490 nm) is resonantly excited using 
a pulsed laser, a strong second harmonic signal is observed around 745 nm [Fig. 5(c)]. In the 
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gaussian background signal from the doubling of the laser by 2D material outside the cavity, 
they observed a Lorentzian peak at exactly the half-wavelength of the cavity resonance, 
signifying the cavity-enhanced SHG. The reported enhancement is ~100, primarily because of 
the lack of a cavity mode at the second harmonic frequency and moderate Q-factor of the 
cavity (Q ~500). Moreover, silicon absorbs a significant amount of the second harmonic 
signal. A promising solution will be to make a doubly resonant cavity out of wide bandgap 
materials, such as silicon nitride or silicon dioxide. Phase-matched SHG was also recently 
reported in a silicon photonic waveguide using a 2D MoSe2 [Fig. 5(d)] [111]. By engineering 
the waveguide cross-section, the effective mode-indices of the fundamental and second 
harmonic modes are matched, which ensures the phase-matching of the light at the 
fundamental and second harmonic frequencies. Furthermore, the development of double-
mode photonic structures is desirable for enhancing the conversion efficiency. Yi et al. 
demonstrated a double-mode cavity-enhanced SHG from MoS2 using a mechanically tunable 
Fabry-Perot cavity [112]. The FP cavity comprises of a DBR as the bottom mirror, and the 
top mirror is a capacitively actuated silver mirror [Fig. 5(e)]. Via mechanical actuation, the 
fundamental and the second harmonic modes were tuned to the desired frequencies. In this 
experiment, they used a 2D MoS2 as the nonlinear material, and despite their low cavity Q-
factor, the reported enhancement is ~3000. This experiment used a pulsed excitation near 930 
nm. Further improvement is possible by improving the cavity Q-factor, and reducing the 
mode-volume, which is often very large in Fabry-Perot cavities. 

The evanescent coupling nature of 2D materials with nanophotonic structures also brings 
new design principles. Despite increasing fabrication capabilities, it is challenging to 
precisely fabricate SHG devices with small footprint that are quasi phase-matched. For the 
conventional device made of the nonlinear material itself, the optical modes are fixed once it 
is fabricated, and the patterning of the nonlinear material completely changes the confined 
modes. Fryett et al. theoretically investigated the post-fabrication pattering of TMDCs on ring 
cavities to reach phase matching [Figs. 5(f) and 5(g)], as the extremely thin 2D material 
cladding on the cavity would not dramatically affect the modes. The analysis suggests that by 
patterning 2D materials on a nanocavity with a low inherent nonlinear overlap, we can 
approach the values of the nonlinear overlap obtained by perfect phase-matching [113]. 

 

Fig. 5. Cavity-integrated nonlinear optics. (a) DBR cavity enhanced MoS2 SHG. (b) SEM 
image of the fabricated Si PhCC with monolayer WSe2 on top. (c) The SHG spectrum 
measured from the device shown in (b). (d) Enhanced SHG of MoSe2 using a Si waveguide. 
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(e) SHG of MoS2 enhanced by a double mode DBR cavity. (f-g) Phase-matching nonlinear 
optics via patterning the 2D material. Figures are adapted with permission from: (a) [109], 
Optical Society of America; (b-c) [110], Institute of Physics Publishing; (d) [111], Nature 
Publishing Group; (e) [112], American Chemical Society; (f-g) [113], Optical Society of 
America. 

6. Van der Waals nanophotonics 

In the previous sections, we discussed a wide range of devices via integrating 2D materials or 
vdW heterostructures with optical resonators or waveguides, which are composed of 
traditional bulk materials. Distinct from those works, one promising research direction is to 
directly create the whole nanophotonic structure out of vdW materials. For example, thin 
Fresnel lenses and gratings have been realized by patterning multilayer high refractive index 
MoS2 [Fig. 6(a-c)], demonstrating high scattering efficiency [114]. Insulating hBN can 
support low-loss phonon polaritons, making it ideal for developing mid-infrared hyperbolic 
metasurfaces [Fig. 6(d)] [115]. Furthermore, hBN intrinsically hosts a high density of defect 
centers, useful for room temperature single photon source. By fabricating a PhCC from hBN, 
a unique emitter-cavity hybrid system can be realized with potential applications in quantum 
information technology [Fig. 6(e)] [116]. Very recently, dielectric metalenses made of vdW 
materials are demonstrated. Leveraging the incomplete phase design and high indices of vdW 
materials, the thickness of metalenses can approach λ/10, while still exhibiting near 
diffraction-limited focusing and optical imaging [Fig. 6(f-h)]. More intriguingly, due to their 
vdW nature, the fabricated nanostructured metalenses can be peeled off and then transferred 
onto different substrates, including flexible substrates, for stretching and tunable focusing 
applications [117]. We note that, the current development of vdW nanophotonics is still in the 
early stage, but these recent works have shown the promising future of vdW nanophotonics. 

7. Outlook and challenges 

 

Fig. 6. Nanophotonics based on vdW materials. (a) The structure of microlens made of a MoS2 
flake. (b) Intensity distribution at the focal plane of the MoS2 microlens. (c) Schematic of a 
nanostructured MoS2 grating. (d) Mid-infrared hyperbolic metasurface made of nanostructured 
hBN. (e) A suspended PhCC made of hBN. (f) Optical image of nanostructured hBN 
metalenses. (g-h) Intensity profiles of focal spots measured from hBN metalenses shown in (f). 
Optical imaging using hBN metalenses shown in (f). Figures are adapted with permission 
from: (a-c) [114], Nature Publishing Group; (d) [115], American Association for the 
Advancement of Science; (e) [116], Nature Publishing Group; (f-h) [117], American Chemical 
Society. 
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Nanophotonic structures integrated with vdW materials enable many novel devices, useful for 
photonic integrated circuits. It is expected that the vdW materials will provide more 
opportunities to this research field, as vdW family is still expanding and their unusual 
properties are revealed all the time. For instance, many TMDCs possess unique valley 
pseudospin properties [118]. By exploiting these features, it is possible to develop valley-
optoelectronics to further expand the bandwidth of optical information processing, because 
the valley information can be either encoded or decoded with the spin angular momentum of 
photons. Unfortunately, despite progress in TMDC-based optical spin-polarized LEDs or 
detectors [10,119–122], their degree of circular polarizations is still limited. Towards this end, 
a promising strategy is to integrate those valley-optoelectronics with chiral nanophotonic 
devices, and some initial works have shown the possibility to control the propagation 
directions of different handedness of light [123]. More recent studies have confirmed the 
possibility of showing ferromagnetism, ferroelectricity, superconductivity, and phase 
transitions, even if the thickness of vdW materials are approaching to the very limit of 2D 
[11]. These properties can be further built into either lateral, vertical or even mixed-
dimensional vdW heterostructures [124,125], enabling new architectures and operation 
principles of memory or tunable 2D materials integrated photonic devices. 

Despite the promising future of 2D-integrated nanophotonic devices, it is notable that 
many of the above-mentioned demonstrations are still at the single device level, and the 2D 
materials are generally obtained via mechanical exfoliation method. To extend into a system 
level integration, one important step is to manufacture arrays of 2D-based devices at the 
wafer scale. At this point, the progress of growing wafer-scale graphene using chemical vapor 
deposition method and TMDCs via metal–organic chemical vapor deposition techniques have 
shown significant promise [11,126–128]. But the synthesized materials are usually 
polycrystalline and the inevitably formed grain boundaries would not only cause carrier 
scattering but also locally affect the optical and electronic properties of materials, which 
could reduce the quantum efficiency of 2D-based optoelectronics. Additionally, the 
synthesized materials generally suffer from non-uniform doping levels and anisotropic strains 
across the sample. As a result, it remains challenging to fabricate an array of 2D-based 
devices with reproducible performances and producing the films with wafer-scale 
homogeneity is critical to extend the 2D or vdW integrated photonics into the system level. 

At a single device level, a critical technical challenge is that the Q-factor of PhCC could 
degrade by more than one order of magnitude and the resonance wavelength shift 
significantly, as the cavity experiences multiple 2D transfer processes. Moreover, the extents 
of both the resonance shift and Q-degradation are random and vary between transfer to 
transfer. In this regard, to develop more robust transfer techniques is necessary. By reducing 
the additional loss from the transfer process, an electrically-driven low-threshold laser at the 
nanoscale and attojoule-level modulators or detectors based on 2D materials could be 
realized. For vdW nanophotonics, most of the reported works are focused on developing 
passive components. But it is noteworthy that several vdW materials have anisotropic, 
nonlinear or structural phase-change properties, and such features could be tuned via applying 
an external electric field. Thus, by engineering device architectures, it is possible to realize 
gate-controlled active vdW nanophotonics. Furthermore, a variety of material properties can 
be assembled into a single device by stacking different vdW materials together to form 
complicated heterostructures, which offer tremendous opportunities for developing more 
complicated and functional nanophotonics. 
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