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ABSTRACT: The inverse design of optical metasurfaces is a rapidly emerging field that has already shown great promise in
miniaturizing conventional optics as well as developing completely new optical functionalities. Such a design process relies on many
forward simulations of a device’s optical response in order to optimize its performance. We present a data-driven forward simulation
framework for the inverse design of metasurfaces that is more accurate than methods based on the local phase approximation, a
factor of 104 times faster and requires 15 times less memory than mesh-based solvers and is not constrained to spheroidal scatterer
geometries. We explore the scattered electromagnetic field distribution from wavelength scale cylindrical pillars, obtaining low-
dimensional representations of our data via the singular value decomposition. We create a differentiable model fiting the input
geometries and configurations of our metasurface scatterers to the low-dimensional representation of the output field. To validate
our model, we inverse design two optical elements: a wavelength multiplexed element that focuses light for λ = 633 nm and produces
an annular beam at λ = 400 nm and an extended depth of focus lens.

KEYWORDS: inverse design, dielectric metasurface, multifunctional metasurfaces, computational electromagnetics, deep neural networks,
data-driven design

Controlling the optical response of a scatterer via its
geometry is the fundamental goal of nanophotonics. In

recent years, devices consisting of periodically arranged
subwavelength structures, each of which can be engineered
to scatter light, have shown promising results in both
miniaturizing existing optics1,2 as well as in creating elements
with new electromagnetic (EM) properties.3−8 While such
devices, also known as metasurfaces, do provide an extremely
large number of parameters for designing optics, it is often
challenging to harness all of these degrees of freedom relying
solely on intuition. Adapted from the fluid dynamics
community,9 inverse design provides an alternative paradigm
to solve this problem. Here, the quality of a device’s
performance is characterized by a mathematical figure of
merit (FOM). The design method entails running a forward
simulation of Maxwell’s equations for a specific configuration
of the scatterers to calculate the FOM and back-propagating
through the physical equations to optimize the FOM and,
subsequently, the device’s performance by updating the

geometry. Thus, instead of a trial-and-error approach, the
large design space is efficiently searched using sophisticated
numerical optimization methods. Inverse design has gained
considerable interest from the nanophotonics community,10

and it has already been used to design photonic elements,10−12

plasmonic nanostructures,13 and metasurfaces.14−19 However,
inverse design requires running the forward simulation many
times, and thus, the ultimate speed of the design depends
directly on the computational efficiency of the forward
simulation.
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In most existing design methods, Maxwell’s equations are
solved on a meshed grid, and refractive indices are allowed to
change at every point on this grid.10−16,20 These methods are
accurate and can simulate a scatterer of arbitrary shape;
however, they do not scale well to large systems with small
features due to the time and memory required to carry out
each forward simulation. In contrast, Mie-scattering-based
analytical solutions17−19 scale better in time and memory, as
computational cost only depends on the number of scatterers
in each device, but they only work for highly restrictive
geometries. To date, only spherical17 and sparsely packed
ellipsoids18 can be simulated using Mie scattering for inverse
design. Another option is to rely on the local phase
approximation (LPA),21 which assumes the EM properties of
a single scatterer can be characterized as a single complex-
valued transmission coefficient that is a function of the
scatterer geometry and independent from the geometries of the
nearby scatterers. This approach requires solving Maxwell’s
equations under Bloch boundary conditions with methods
such as rigorous coupled wave analysis (RCWA).22 Such
methods are fast but inaccurate when scatterers on a
metasurface are not identical, which is especially apparent
when geometries vary rapidly in space or when scatterers are
made from materials with low refractive indices.
The objective of this work is to create a forward simulation

method for inverse design that is faster than grid-based
methods, is not restricted to spheroidal particles, and is more
accurate than methods relying on LPA. We will leverage
several data-driven modeling and machine learning techni-
ques,23 which are being adopted in the field of optics and
photonics,24,25 with examples in fiber lasers26−32 and
metamaterial antennas.33

The EM response ⃗ to an incident current J ⃗ is given by
Maxwell’s equation:

i Jx x x x x x( ) ( ) ( ) ( ) ( ) ( ) 02ω μ ωμ∇ × ∇ × ⃗ − ϵ ⃗ + ⃗ =
(1)

where ω is the angular frequency of the current source, ϵ(x) is
the dielectric permittivity distribution, μ(x) is the magnetic
permeability distribution (assumed to be unity here as we will
use dielectric materials), and the vector x is the position vector.

This implies that the field response x( )⃗ only depends on the
distribution of ϵ(x). A forward simulation of Maxwell’s
equation thus entails the prediction of the spatial EM modes
as a function of the scatterer geometry and position. Here, we
first use high-fidelity EM simulations to generate data, which

are then used to find a simple mapping between ϵ(x) and x( )⃗ ,
exploiting the singular value decomposition (SVD) and neural
networks.34 We note that a number of previous works used
neural networks to predict the spectral responses from
metallic35−37 and dielectric16,38−43 scatterers of various geo-
metries. In these problems, the unit cells are identical and,
hence, there is no need to invoke LPA. However, for imaging
applications, where the unit cells are spatially varying, invoking
LPA results in inaccuracy. Our work aims to mitigate this
challenge by using a data-driven framework to predict the
spatial responses from dielectric circular cylinders while
including the effects of their nearest neighbors. Another recent
work has applied data driven techniques to accelerate iterative
finite difference frequency domain (FDFD) solvers.44 While
accurate, this method is, however, still memory intensive. Our
work provides an alternative, interpolative method for
simulating field responses from electromagnetic scatterers by
fitting a differentiable model that maps the geometry of the
scatterer and its closest neighbors to its EM field response.
This model speeds up our forward simulation by estimating
local patches of the EM field from the radius of a cylindrical
scatterer and its surrounding neighbors. We found that this
method can simulate a mesh with 1.2 million discrete points
104 times faster than conventional grid-based solvers and is
memory inexpensive enough that it can be run on a laptop. We
use this framework to inverse design two devices, both of
which are unintuitive under the forward methodology: a
multiwavelength metasurface that produces an annulus beam

Figure 1. Overview of method. (a.1) Sample forward designed metasurface. (a.2) Near-field response of metasurface for λ = 633 nm. (b.1−4)
Parsing the data. (b.1) Iterate through each pillar except the ones in the edges and gather the surrounding pillar radii. (b.2) Pillar radii and recorded
and stacked into matrix R. (b.3) Field response in a square region with dimension of the pitch p corresponding to the central pillar. (b.4) Electric
fields are vectorized and stacked into a matrix E. (c) We create a neural network that predicts a vector ω corresponding to the column of matrix.
(d) W is constructed as the product ΣV*, where Σ and V are taken from the SVD of E.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c01468
ACS Photonics XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acsphotonics.0c01468?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01468?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01468?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01468?fig=fig1&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01468?ref=pdf


for one wavelength and focuses light at a different wavelength
as well as an extended depth of focus lens.

■ METHODS
The goal of this work is to develop a fast and accurate proxy
for the forward simulation that is differential and may be used
for inverse design. Figure 1 shows the schematic of our strategy
to build a differentiable map F: 9 100→  that predicts the
electric field over a square area with dimension p from the
dielectric permittivity distribution ϵ(x), modeled as nine
cylinders. Here p is the periodicity of the metasurface, and
each square area (unit cell) has been discretized into a 10 × 10
grid. The corresponding field being predicted is flattened into a
100 × 1 vector. We will explore two models: a low-dimensional
linear regression model based on the singular value
decomposition (SVD) and a deep neural network model to
fit F.
Training Data. To train these models, we first generate a

data set consisting of forward simulations of several physical
devices, in our case lenses. These lenses were designed via
forward design. The intuition is that the lens is arguably the
simplest physical device and will likely provide a useful basis to
interpolate future devices. We forward designed 10 lenses of
diameter ∼50 μm with focal lengths varying from 10−100
μm.45 The lens design parameters are summarized in Table 1.

All lenses are intended to function with a current source
wavelength λ = 0.633 μm. The material refractive index was set
to n = 2, corresponding to silicon nitride, our material of
choice for visible wavelength operation.46 These dimensions
correspond to exactly 113 pillars on each axis of the
metasurface. All the scatterers were computed with RCWA
package S4.22 A sample lens of focal length f = 50 μm is shown
in Figure 1a.1. We simulated the EM response of each lens
using an x-polarized plane wave (λ = 0.633 μm) with the field
monitor λ/2 away from the scatterers using Lumerical finite
difference time domain (FDTD) software. An example field is
shown in Figure 1a.2. Only the x component was recorded

due to minimal contributions to the total field power from
other vector components, which is a result of the circular
symmetry of the scatterers. However, the process could easily
be generalized to predict the entire vector-field. The resolution
of the simulation was chosen to be 0.04431 μm/vox in order to
balance computational time, memory requirements, and
accuracy. This results in (10 × 10) field points in each square
unit cell with a dimension p = 443 nm corresponding to each
pillar.
Once all of the field data were gathered, we constructed two

matrices: R N9∈ × for the radii and E N100∈ × for the
electric fields, with N being the number of scatterers. The
matrix R was created by iterating over pillar location xi, and
storing the radii of the pillar and its eight nearest neighbors as a
column vector, shown in Figure 1b.1 and b.2. The pillars on
the edges of the metasurface do not have neighbors and were
neglected. Similarly, the matrix E was created by iterating over
each pillar location, extracting the field in the unit cell with
centroid xi, and storing it as a flattened 100 × 1 column vector,
shown in Figure 1b.3 and b.4. We note that, in this paper, we
consider a scalar field, whose polarization axis is the same as
the incident polarization. This results in two matrices having N
= (113−2)2 × 10 = 123210 columns.

Linear Regression Model. We first explore the low-
dimensional structure of the matrix E, which will facilitate
learning a map between the columns of R and E. Patterns in
the rows and columns of E M N∈ × are extracted via the
singular value decomposition (SVD):34

VE U= Σ * (2)

where U M M∈ × and V N N∈ × are unitary matrices, and
M NΣ ∈ × is a diagonal matrix, with non-negative entries on

the diagonal and zeros off the diagonal. The columns of U can
be thought of as a set of orthonormal basis vectors with which
to represent the columns of E. These columns of U are
arranged hierarchically in terms of how much variance they
capture in E, as quantified by the corresponding diagonal
element of Σ. Figure 2a shows the square of the absolute value
of the first nine column vectors uj, reshaped from 100 1× to

10 10× . Definite patterns are observed in these vectors,
implying a low-dimensional representation of our data. The
rows of V* correspondingly provide a hierarchical basis for the
rows of E. Each column of the matrix ΣV* determines the
exact combination of the columns of U required to reproduce
the corresponding column of E.
Guided by the SVD, it is possible to write an approximate

matrix Ẽ as

Table 1. Parameters Used to Forward Design the Training
Data Seta

parameter f D p h n λ

value 10−100
μm

50.0703
μm

0.4431
μm

0.633
μm

2 0.633
μm

af: focal length; h: height of the pillars; n: material index; λ: current
source wavelength. The lens diameter D is chosen to be the closest
integer multiple of the periodicity p.

Figure 2. Singular value decomposition of simulated data. (a) First nine left-handed singular vectors U of E matrix. (b) Singular value decay of the
diagonal matrix Σ. Red circle represents the cutoff order we used to reconstruct the electric fields. The order 16 cutoff was chosen because it
captures 99% total energy of the electric field. Any further contribution from modes with order q > 16 contributes to less than 1% to the total
energy in the field. (c) Plot of the absolute values squared of a random vector (ΣV*)i = wi that reconstructs some random p × p field. wi represents
the weights of the left-hand singular vectors U.
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E U Wq̃ = (3)

where W = ΣqVq*, and the subscript q < M is the truncation
order of the matrix approximation. The first q columns of U
are arranged to form Uq, the first q × q sub-block of Σ is
extracted to form Σq, and the first q rows of V* are taken to
form Vq*. It can be shown that Ẽ is the best rank q
approximation to the matrix E, in the Frobenius norm.47 We
choose a truncation value of q = 16, shown as the red circle in
Figure 2b, as the rank 16 approximation Ẽ captures 99% of the
variance in the matrix E.
We will now construct a regression map to estimate columns

of E from columns of R. Specifically, we estimate the matrixW,
which will be used to reconstruct Ẽ. Instead of using the
columns of R directly as features, we will create an augmented
feature vector comprised of monomials constructed from the
radii. This feature matrix Θ is constructed by vertically
concatenating integer Hadamard powers of R:

R

R

R

1

m

2

∂

Θ = °

°

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (4)

where R°m is the element-wise powers of R:

R

r r

r r

...

...

m

m
N

m

M
m

M N
m

1,1 1,

,1 ,

∂ ∏ ∂° =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (5)

Thus, we set up a linear system:

W ΞΘ= (6)

and solve for Ξ:

WΞ Θ≈ † (7)

where the superscript † denotes the Moore−Penrose
pseudoinverse.47 The matrix Ẽ can then be approximated by
a generalized linear regression problem:

E Epred ΞΘ̃ ≈ = (8)

We varied the number of features used to train this linear
model by changing the number of powers m used to construct
Θ. To train this linear model, we used 80% of the data. After
creating W and Θ, we extracted a random set of 98568
columns from each matrix in order to fit the matrix Ξ. We used
the other 24642 columns for validation. Figure 3a depicts the
qualitative performance of our linear model for m = 10.
Column I represents a randomly chosen vector Ei at some
position xi, column II is the corresponding predicted vector
epred ∈ Epred, and column III is the absolute difference squared
|ϵ|2 = |Ei − epred|

2. Note that we are comparing complex
numbers, while plotting their intensities. Thus, although the
intensities may not look extremely similar, their errors can be
relatively small. All values were normalized to have a maximum
absolute value of 1 and the same color bar across all figures.
Figure 3b shows the probability density functions (PDFs) of
the error distributions |Epred − E|2 as we increase m from 1 to
10. As the number of features increases, the PDF becomes
tighter. Figure 3c is a plot of the relative error defined as

E E

E
F

F

pred test
2

test
2

−

(9)

as a function of m. Both plots show the error between our
model and the FDTD simulation decreasing as the number of
features in each matrix increases, so the model converges to the
actual physics of the system. The final relative error for the
linear model converged to ≈0.395. As a side note, we have
attempted using monomial expansions up to order 2 of column
vectors of R as input features for our model, by using powers of
column vectors of R and cross terms in between radii, but
found no significant improvements in relative error when
fitting the model.

Neural Network Model. To improve on the generalized
linear model, we construct a deep neural network (DNN),
shown in Figure 4. We hypothesize that the DNN would learn
a nonlinear transformation of the input features that better
capture the physics of the system. The model was trained by
using 80% of the data set, while keeping 20% for validation.
The architecture was implemented in TensorFlow48 and
optimized using the Adam optimizer.49 The DNN architecture
consists of 11 fully connected layers, each followed by a ReLU
activation function. The first layer of the network is the input
layer with 9 neurons corresponding to each radius. The second
layer has 100 neurons, which was doubled with each
subsequent layer until 1600 and then cut in half until the
second to last layer again had 100 neurons. The final layer had
32 neurons, with the first 16 elements corresponding to the
real components of the vector w and the last 16 components
corresponding to the imaginary components of wi. The outputs
were arranged in this manner due to TensorFlow’s limitations
when designing complex-valued neural networks. The
objective function used was a mean squared error between
the output vector, and the corresponding vector from W,
shown in detail in Figure 1c,d. The network was trained until
the mean squared error of the verification data set stopped
being minimized in order to avoid overfitting. Once the
network was trained, we computed the electric field response
of the training data by feeding the test data set into the neural
network to compute Wpred and eq 3 to compute Epred. The
quality of our prediction can again be summarized by the
relative error between Epred and Etest in the Frobenius norm,
given in eq 9, which was computed to be ≈0.26. The same
metric calculated by using a predicted field from the local

Figure 3. (a) Column I represents the field simulated by FDTD,
column II is the electric field predicted using the linear model, and
column III is the difference between the two. Each row represents the
field corresponding to the same set of 9 radii. (b) Probability density
functions of relative errors between the predicted matrix Epred and the
true matrix E. The blue plot corresponds to a feature matrix with only
m = 1, and the red plot represents the feature matrix constructed with
powers up to 10. (c) Plot of the relative errors in the Frobenius norm
between Epred and E. The x axis represents the power term in the
radius features.
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phase approximation gives a relative error of ≈1.35. We use the
DNN model to inverse design our devices. As a side note, the
supplement includes a convergence study between number of
nearest neighbors included in the neural network model, and
the accuracy of the predicted near-field. The relative error of
our test data sets turned out to be lowest when using only
nearest neighbors.

■ RESULTS
To test the utility of our model, we inverse designed two meta-
optical devices. Motivated by stimulated emission depletion
(STED) microscopy,50 the first device we inverse designed was
a wavelength multiplexed lens that focuses light with λ = 633
nm, and creates an annulus beam at the focal plan for λ = 400
nm. The second is an extended depth of focus (EDOF) lens
that focuses light over 100−350 μm along the optical axis. The
optimization process was implemented in TensorFlow.48 We
used the DNN model and eq 3 to predict the near-fields of the
designed devices. The far-fields were then calculated by using
the angular propagation method.51 The gradients with respect
to radii were calculated by using TensorFlow’s autodiffer-
entiation, and updated by the adam optimizer.
To design the multiwavelength lens, we had to predict near-

fields for two wavelength. Hence, we repeated the procedure
outlined in Methods to create one more data driven model to
predict the field response for a λ = 400 nm current source. This
model was trained on the same data set as metasurface lenses
designed to focus light for the 633 nm wavelength; however,
the electric field responses were gathered from FDTD
simulations at 400 nm. Once trained, the relative error defined
by eq 9 computed on the test data set for λ = 400 nm was
≈0.37. The difference between the two wavelengths can be
explained by the relatively nonsmooth transmission of λ = 400
nm E-fields over this range of radii when compared to the λ =
633 nm case. To optimize the lens, we defined two figures of
merit for each wavelength as

I c m c mFOM cos
2
20

, sin
2
20

, 50 m
m

400
0

19

∑ π π= − μ
=

i
k
jjjj

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

y
{
zzzz
(10)

IFOM 20 (0, 0, 50 m)633 = − × μ (11)

where the function I(x, y, z) is the intensity of the electric field
a t ( x , y , z ) c o o r d i n a t e g i v e n b y
I x y z x y z x y z( , , ) ( , , ) ( , , )= * . The constant c = 1.5 μm,
corresponding to the radius of the annular beam at the focal

spot. The tuple ( )( ) ( )c i c icos , sin2
20

2
20

π π is the parametriza-

tion of a circle in the x−y plane that we discretized over 20
points on the circle. The factor of 20 on FOM633 is chosen as a
normalization factor to ensure the integral of the intensity over
the annulus is the same as the intensity at the focal spot. The
quantity optimized was then

max(FOM , FOM )400 633 (12)

with respect to the radii distribution. We set our initial radius
distribution to be the same as the forward designed lens for λ =
633 nm and f = 50 μm. The designed device is shown in Figure
5a. To verify the design, we computed the near-field response

of the radii distribution in Lumerical FDTD and propagated
the near-field to the focal plane using angular spectrum
method. Figure 5b,c shows the meta-optic’s response to 400
and 633 nm wavelengths at the focal plane, respectively. The
efficiency η of the metasurface was calculated to be 26.82% for
λ = 400 nm. The formal definition is given in the supplement.
We quantify the annulus functionality of the metasurface as the
ratio between the power confined in the annulus to the power
confined in the center of the annulus. This ratio η° was
calculated to be 58.47 for λ = 633 nm, formally defined in the
supplement.
The EDOF lens was designed by using a lens with f = 100

μm as a starting condition. Our intent was to design an EDOF
lens to focus from 50 to 100 μm. We defined the figure of
merit for the EDOF as

I m zFOM log( (0, 0, 50 d ))
m

EDOF
0

10

∑= − + ×
= (13)

Figure 4. (a) Input into the DNN is 9 radii. The DNN architecture consists of nine fully connected layers. The first layer starts off with 100
neurons, and each subsequent layer doubles the number of neurons until 1600, then number of neurons per layer is halved until the final layer has
100 neurons. All layers are followed by a ReLU activation function. The output has 32 elements. (b) The performance of the DNN model. Column
I is the field simulated by FDTD, column II is the field reconstructed by eq 3 from the predicted vector wi, and column III is the difference between
fields.

Figure 5. (a) Optimized multifunctional device. Scale bar is 5 μm. (b)
FDTD result for λ = 0.4 μm. (c) FDTD result for λ = 0.633 μm. Scale
bars are 2 μm. Units are normalized so the maximum intensity is equal
to 1.
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where dz = 10 μm. Thus, we aim to maximize the intensity at
the center of 10 equispaced x−y planes. The resulting device is
shown in Figure 6a. The intent behind the logarithmic sum

was to equalize the importance of each term along the z-axis.
Without the logarithm term, the optimization would prioritize
a single focal spot, since such a device would minimize the
figure of merit. After optimization, this figure of merit
converged to a lens focusing from 100 to 350 μm, as shown
in Figure 6b, corresponding to a numerical aperture varying
from 0.07 to 0.25. We attribute the longer depth of focus than
what was intended to the physical nature of wave propagation.
Figure 6c−e shows slices of the electric field at 200, 250, and
300 μm along the optical axis. The red dots correspond the
simulated data, and the blue line corresponds to the Airy disk
corresponding to the diffraction limited focal spot. We note
that clearly there are additional side-lobes in the EDOF design,
and thus, the total energy in the main lobe suffers. However, a
different figure of merit can be designed to reduce the side-
lobes, depending on the desired application.

■ DISCUSSION
This paper outlines a data driven methodology for the forward
simulation of Maxwell’s equations to design optical meta-
surfaces. Our model does not make the local phase
approximation, and thus, the interscatterer coupling is well
accounted for. While the model is not as accurate as a
complete full-wave simulation, it is significantly faster. A single
forward simulation of a square area of dimensions 50 μm × 50
μm at 44.31 nm resolution takes approximately 12 s with our
method versus approximately 3.1 h using Lumerical FDTD
software in the same computer. FDTD also requires a 58.95
GB initialization mesh and 29.6 GB of RAM for the same
simulation, while our method only requires 3.75 GB for the
same problem and can be run on a mid-range laptop. It takes
approximately 16 h to gather the data required for training our
neural network model (10 FDTD simulations). Depending on
the design problem and based on our results from optimization
using our DNN models as a forward simulator, it takes
approximately 100 iterations for an inverse design problem to
converge. Under these assumptions, we can estimate that we
need about 100 forward simulations to do a naiv̈e gradient-
based design, which would take 310 h to complete by using a

full FDTD simulation. Furthermore, adjoint optimization
requires two simulation passes per optimization step, which
will make the whole optimization process take at least 620 h.
Even when considering the time it takes to gather the data and
train our model, the overall design process is sped up
significantly. The angular propagation step that transforms
the near-fields to the far-fields adds an additional 6 GB of
memory and 26 s of optimization time to the optimizaton per
far-field plane used. For the EDOF lens, this results in an
additional 60 GB of memory required during the optimization
process. We note using a different propagation method such as
the Rayleigh−Sommerfield method that does not require
storing the full far-field, but only the field at the point where
the FOM is calculated, would significantly reduce the memory
requirements for the propagation.
It is worth noting that our method is inherently interpolative

and, thus, is only as accurate as the data that we feed into it.
Therefore, the current model is limited to predicting fields
from lens-like devices, under a specific refractive index,
constrained to a subspace of possible geometries. If one
wanted to design a metasurface using this method for a
different refractive index or with different scatterer geometries,
the model would need to be retrained. One way we could
improve this model is by using additional data to train it. In
our future work, we hope to improve the accuracy of this
model by simulating random arrangements of scatterers and
using this as our training data set in addition to the data set
from lenses. We also emphasize that the reported efficiency of
the designed lenses is low, which remains a challenge for low
index materials.52 However, full-wave simulations have
reported an efficiency increase of the metasurface lenses,
especially when all the coupling between scatterers are exactly
accounted for.20,53 Our model could be improved by better
accounting for the coupling between scatterers using more
data, especially EM field responses from scatterers with rapidly
varying geometries, since the scatterer geometries of lenses
vary slowly in space. One specific direction will be to capture
the physics to predict the full vectorial field, in contrast to the
scalar field modeled here. Modeling the second nearest
neighboring scatterers could also be an interesting path
forward. Utilizing techniques such as transfer learning,54 we
could utilize the features learned from our previous models
that include only information from the nearest scatterers and
try to generalize the model for second and even third nearest
neighbors. Furthermore, adding additional constraints, such as
assumptions about energy conservation to the model training
process, could further increase the accuracy of the model.
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constrained nanophotonic inverse design. Sci. Rep. 2017, 7, 1786.
(12) Piggott, A. Y.; Lu, J.; Lagoudakis, K. G.; Petykiewicz, J.;
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