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Abstract: Establishing a coherent interaction between a material resonance and an optical cavity
is a necessary first step to study semiconductor quantum optics. Here we report on the signature
of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2 and
a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity.
This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when
the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is
estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system
is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in
reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum
photonic platform.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Atomically thin van der Waals (vdW) materials coupled with nanophotonic structures have
recently emerged as a promising platform for hybrid integrated photonics [1] due to their easy
integration onto a substrate via vdW forces without concern for lattice matching. In particular, the
large excitonic binding energy of transition metal dichalcogenides (TMDs) presents an excellent
opportunity to study the quantum light-matter interaction in large-scale photonic systems. The
first step towards such a quantum system is to demonstrate a coherent interaction between a
small mode volume cavity and two-dimensional (2D) TMD excitons. The coherent interaction
strength between a cavity and an exciton increases with a large oscillator strength of the excitonic
transition and a small mode volume cavity. When the coherent interaction strength is greater than
the cavity and exciton losses, the system is said to be in the strong coupling regime. In this regime,
the cavity photons and excitons are hybridized into exciton-polariton modes. These polariton
modes are generally observed via an anti-crossing between the cavity and the exciton, when
one of the resonances is tuned across the other. While strong coupling is necessary to achieve
a quantum nonlinearity, for 2D excitons we also need a strong polariton-polariton interaction,
which requires the mode-area of the coupled system to be as small as possible [2].

Several research groups have already observed exciton-polaritons using 2D TMD excitons.
Plasmonic resonators are an example that have demonstrated impressive room-temperature results
[3–6], but are generally lossy (quality factor, Q ∼ 10) and it is not clear how to create an array of
these plasmonic resonators with mutual coupling, an important resource for quantum simulation
[7] and strongly correlated photonic devices [8]. Dielectric resonators can provide high quality
factors, and researchers have observed exciton-polaritons in TMD excitons using 2D planar
cavities, including distributed Bragg reflector (DBR) cavities [9–12] and nonlocal metasurfaces
[13]. 1D guided resonances in planar waveguides have also been used to study exciton-polaritons
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[14,15]. An advantage of these types of cavities is the strong angular dispersion thanks in part to
the lack of 3D confinement of the electromagnetic field. This dispersion allows the investigation
of strong coupling via energy-momentum spectroscopy. In other words, by collecting light at
different angles of observation from the cavity we can probe different resonance frequencies
without the requirement of physically tuning the cavity. However, the lack of 3D confinement
also implies large mode-volume and mode-area of the cavities. Hence, it would be difficult to
realize a strong polariton-polariton interaction that is inversely proportional to the confinement
area [2].

Zero-dimensional (0D) cavities can confine the electromagnetic field in all three spatial
dimensions to a sub-wavelength mode volume. As a result of such strong cavity mode localization,
the resonance is dispersionless and the exciton-cavity detuning must be modified by some other
physical means. Additionally, the small mode-area of 0D cavities allows only a small number of
excitons to interact with the cavity, making the light-matter interaction strength smaller. To date,
fiber-DBR cavities are the only 0D platform that have demonstrated exciton-polaritons with 2D
excitons [16,17]. Here, a fixed DBR mirror and a mechanically movable fiber creates the cavity
mode. The cavity length, and hence the cavity resonance frequency, is controlled by the spatial
separation of the fiber and bottom DBR. The tuning of the cavity allows for direct observation of
the avoided crossing associated with the formation of exciton-polariton modes. Unfortunately,
the in-situ tuning advantage of a fiber-DBR cavity comes at the expense of a larger mode volume
compared to an on-chip 0D cavity, as well as an unclear path for scaling to a cavity array.

On-chip integrated 0D cavities, such as a photonic crystal defect cavity, provide a means
to confine light in a wavelength-scale mode volume while allowing many such cavities to
couple to each other via evanescent fields [18]. In fact, TMDs coupled to photonic crystal
cavities have already been used to demonstrate optically pumped lasing [19,20], cavity enhanced
electroluminescence [21], and second harmonic generation [22,23]. TMD hetero-structures
have also been integrated with photonic crystal cavities to demonstrate emission enhancement
[24] and lasing [25]. However, no conclusive signature of coherent interaction between TMD
excitons and a small mode volume on-chip nanocavity has yet been reported. In fact, such a
coherent interaction has never been reported and the value of a coherent light-matter interaction
strength g has never been estimated for any 2D excitonic transition, including III-V quantum
wells coupled to an on-chip photonic crystal defect cavity. The difficulties lie in the degradation
of the quantum well excitonic transition due to etching, lack of in-situ tuning of on-chip cavities,
and measuring the 0D cavity in a transmission configuration, where even a small amount of
residue from material transfer can suppress optical transmission in a waveguide.

In this paper, we report for the first time the signature of coherent coupling between the neutral
exciton in monolayer MoSe2 and a 0D photonic crystal defect cavity made of silicon nitride (SiN).
Specifically, we observed a dispersive shift in the cavity transmission spectrum as the exciton
is temperature-tuned near the cavity resonance. In the 2D TMD material family, monolayer
MoSe2 is the only one with the the neutral exciton as the ground state optical transition [26],
and SiN is a standard photonic material transparent at the emission wavelengths of the MoSe2
excitonic transition. By transferring 2D TMD excitons on a pre-fabricated nano-cavity precludes
any etching of the excitonic material. We utilized an on-substrate cavity to ensure mechanical
stability needed for the 2D material transfer process. Unlike encapsulated SiN nanocavities [27],
our on-substrate cavity does not need to be covered with silicon dioxide or a polymer which is
important to ensure the cavity resonance does not change with temperature. SiN has a small
thermo-optic coefficient which is essential for the temperature tuning experiments reported in
this paper, i.e., a bare cavity does not change the resonance frequency under temperature tuning.
In comparison, an encapsulating polymer on the cavity can have a significant effect on the cavity
resonance [28]. We probe the system under transmission with a cavity red-detuned with respect
to the excitonic transition because we found the cavity coupled photoluminescence is affected by
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the exciton-phonon interactions [29]. The cavity is measured at large exciton-cavity detunings
due to a significant increase in insertion loss of the cavity in transmission at small detunings [30].
Finally, we employed a clean and local dry transfer of 2D materials to ensure no residues are left
on the waveguide or gratings [31]. The extracted exciton-cavity coupling from the dispersive
shift is ~g ≈ 6.5 meV for an estimated cooperativity C = 4g2/(κ0γ′

0) ∼ 4.0, in which ~γ′
0 = 11.11

meV is the measured broadening of the TMD exciton at 80 K, and ~κ0 = 3.8 meV is the bare
photonic mode linewidth measured without the TMD material. The cooperativity is a measure of
the polariton mode splitting visibility, where at C>1 the splitting is greater than the respective
linewidths of the upper and lower polariton modes. This shows that our material system is on the
verge of strong coupling. The cooperativity can be further enhanced to C ∼ 380 at 4 K due to
reduction of the exciton decay rate and by increasing the cavity quality factor to 10, 000, which is
well within the reach of current fabrication technology.

2. Results

A 0D photonic crystal defect cavity integrated into a waveguide, also known as a nanobeam
cavity, was designed (Fig. 1(a)) and fabricated (Fig. 1(b)) in a SiN thin-film on a silicon dioxide
substrate with an estimated cavity mode volume V ∼ 2(λ/n)3, according to the standard cavity
QED definition [32]. Three-dimensional Finite difference time domain (3D FDTD) simulations
were used to optimize the cavity design [27,33,34] with additional Bragg mirrors included to
further improve the cavity quality factor (Appendix A). We note that unlike most SiN photonic
crystal cavities, we have an on-substrate, unsuspended cavity. The substrate underneath makes
the cavity quality factor lower than what can be achieved in a suspended cavity, but provides the
mechanical stability for easy transfer of 2D materials and cleaning of the chip. The bare cavity
transmission is interrogated via a confocal microscope using input and output grating couplers,
with a ≈ 5 µm × 5 µm collection area and a 5-10% collection efficiency at the cavity resonance
frequency. A monolayer MoSe2 flake was then transferred onto the nanobeam via a modified dry
transfer method to eliminate any bulk materials or tape residues on the grating or the waveguide
[31] (Figs. 1(c), d). This coupled MoSe2-nanobeam device was placed in a cryostat where the
temperature was swept between 80 K and 200 K.

2.1. Device characterization

Monolayer MoSe2 exhibits poor optical contrast on the SiN substrate (Fig. 1(b)). Hence, we
confirm the presence of the monolayer on the nanocavity by measuring the photoluminescence
(PL) (Appendix A). We observed a strong excitonic peak in the PL spectrum (at 80K), as shown
in Fig. 2(a). When the PL is collected from a grating coupler (versus from the full field of view
of the confocal microscope), a cavity peak is clearly evidenced in the spectrum (Fig. 2(b)). The
background PL is also observed simultaneously due to imperfect spatial filtering in the confocal
microscope. Due to a limited field of view in our microscopy setup (≈ 50 µm × 50 µm), the
cavity with transferred monolayer must be in close proximity to the output grating, making the
spatial filtering of radiation scattered from the sample difficult.

The nanobeam resonator is characterized via resonant transmission. A broadband super-
continuum laser is directed into one of the gratings and the transmitted radiation is collected from
the other grating. Prior to monolayer material integration, the cavity resonance was measured
at 300 K to be ~ωC = 1595 meV with a linewidth ~κ0 = 3.8 meV, corresponding to a bare
quality factor Q0 = 420 (Fig. 2(c)). After transfer of the monolayer MoSe2 the bare cavity
resonance is measured at 80 K to be ~ωC = 1590 meV with a broadened linewidth ~κ = 10.7
meV, corresponding to a loaded quality factor Q = 149 (Fig. 2(d)). The reduction in quality
factor is attributed to the optical absorption of the monolayer MoSe2. The shift in the resonance
energy primarily comes from the dispersive shift as probed further with temperature tuning. We
emphasize that as the linewidth of the monolayer MoSe2 is the dominant source of decay in the
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Fig. 1. a) Electric field intensity simulated at the center of the SiN nanobeam cavity
by 3D-FDTD at the cavity mode resonance frequency, showing wavelength scale field
confinement. The maximum field intensity is seen in the center of the nanobeam. b)
Optical image of the monolayer MoSe2 (not visible) integrated onto the nanobeam (orange
box) with the inputand output grating couplers (marked by white arrows) for transmission
measurements. c) False color SEM image of the monolayer MoSe2 integrated onto the
nanobeam. (MoSe2 - gold, SiN - purple, SiO2 - teal). d) False color SEM image of the
monolayer MoSe2 integrated onto the nanobeam with deposited gold to prevent charging.
The obstruction of the nanobeam holes is made explicit. White arrows indicate the cavity
center.

coupled system, the observed quality factor of the cavity, albeit low, is sufficient to probe the
physical effect of coherent coupling.

2.2. Temperature dependence

The neutral exciton PL and cavity transmission were then concurrently measured as the temperature
was swept from 80K to 200K. At low temperature, the cavity mode is detuned on the blue side
of the excitonic resonance. As the temperature is increased the exciton resonance redshifts, so
the detuning between the exciton and cavity resonances decrease. The excitonic PL spectra at
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Fig. 2. a) Photoluminescence of monolayer MoSe2 at 80 K. b) Cavity-coupled photolumi-
nescence of monolayer MoSe2 at 80 K. Primary peak is background photoluminescence.
Secondary peak is collected from the grating coupler confirming cavity coupling. c) Bare
transmission spectrum of the nanobeam cavity at 300 K. The blue curve is a Lorentzian fit to
the cavity resonance. d) Transmission spectrum of the nanobeam cavity with an integrated
flake of monolayer MoSe2 at 80 K. The blue curve is a Lorentzian fit to the cavity resonance.

different temperatures are fit with a Voigt function [35] to extract the peak energy (ωX) and
linewidth (γ) where we assume the source of inhomogeneous broadening (� = 4.42 ± 2.27 meV)
is independent of temperature [36].

The temperature dependence of the neutral exciton peak energy is fit to the standard equation
for the semiconductor bandgap [37] (Fig. 3(a)):

EX(T) = EX(0) − S⟨~ω⟩[coth [⟨~ω⟩/(2kBT)] − 1]

≈ E′
X(0) − 2SkBT

(1)

where EX(0) is the zero Kelvin neutral exciton energy, S is a dimensionless coupling constant,
and ⟨~ω⟩ is the average phonon energy. This relation corresponds to the neutral exciton energy
assuming the exciton binding energy is not strongly temperature dependent. In this experiment,
the temperature range explored remains in the linear regime at high temperatures. A fit to the
extracted energy of the neutral exciton provides a linearized zero Kelvin neutral exciton energy
of E′

X(0) ≡ EX(0) + S⟨~ω⟩ = 1637 meV and a dimensionless coupling constant S = 1.21. These
values are comparable to previous reports in the literature [38].

Similarly, the temperature dependence of the neutral exciton linewidth is fit to the Rudin
equation [39] (Fig. 3(b)):

γ(T) = γ0 + c1T +
c2

e
 /kBT − 1
≈ γ′

0 + RkBT
(2)
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Fig. 3. a) Temperature dependence of the neutral exciton resonance. The black dots are the
neutral exciton energy observed in the photoluminescence spectrum fit to a Voigt function.
The blue line is a fit to Eq. (1). b) Temperature dependence of the neutral exciton linewidth.
The black dots are the neutral exciton linewidth observed in the photoluminescence spectrum
fit to a Voigt function. The blue line is a fit to Eq. (2).

where γ0 is the intrinsic homogeneous linewidth, c1 includes exciton interactions with acoustic
phonons, c2 includes exciton interactions with longitudinal-optical phonons, and 
 is the average
phonon energy. In the linearized equation γ′

0 = γ0 −
c2
2 and R = c2


 where we have assumed
c1<<c2. A fit to the extracted neutral exciton linewidth provides for an intrinsic linewidth
of ~γ′

0 = 5.77 meV and a dimensionless coupling constant R = 0.69. These values are also
comparable to previous reports in the literature [36].

It is worth noting the bare nanobeam cavity resonance wavelength does not significantly
shift with temperature, which is primarily due to the low thermo-optic coefficient of SiN
(Fig. 4(a)). The temperature-independent cavity resonance shift of ∼ 5 meV (comparing Fig. 2(a)
and Fig. 2(b)) is consistent with the cavity perturbation theory [40,41], where the monolayer
material is modelled as a d = 0.7 nm thick homogeneous dielectric with an nB =

√
ϵB index

of refraction where ϵB = 26 is the background dielectric constant for monolayer MoSe2 [42].
In the TMD-coupled nanobeam resonator a shift in the cavity resonance is clearly observed
as the exciton-cavity detuning decreases (Fig. 4(b)). We attribute this shift to the dispersive
coupling of the 2D excitons in the monolayer MoSe2 to the 0D nanobeam cavity mode, which is
hereby established via a simple coupled oscillator model. We note that the cavity transmission
is significantly suppressed as the exciton is brought into resonance with the cavity (Fig. 5(a)).
Additionally, the exciton linewidth increases at higher temperatures precluding the observation
of avoided crossing, a hallmark of strong coupling, in the reported system. This is a critical
limitation of the temperature tuning. Other tuning mechanisms, such as gas tuning [43], have
been considered but the effect of deposited xenon and nitrogen gas on 2D materials leads to
inconclusive results.

2.3. Coupled oscillator model

A homogeneous distribution of TMD excitons and a single 0D cavity mode can be phenomeno-
logically modeled with a Hamiltonian describing two coupled oscillators [44,45], wherein the
exciton and cavity degrees of freedom coherently interact via an exciton-cavity coupling rate, g.
The bare oscillator resonance frequencies are measured with respect to a rotating frame at the
resonant driving frequency, ωL. The full Hamiltonian is

HXC = ~� XLa†a + ~� CLc†c + ~g(a†c + c†a) , (3)
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Fig. 4. a) Representative transmission spectra of the nanobeam cavity without an integrated
flake of monolayer MoSe2 at 100 K to 200 K in 20 K increments. b) Representative
transmission spectra of the nanobeam cavity with an integrated flake of monolayer MoSe2 at
80 K to 200 K in 20 K increments. b) Dispersive shift of the cavity resonance in transmission.

Fig. 5. On a second device: a) Transmission spectra at different exciton-cavity detunings.
Note a factor of five reduction in transmission intensity even at large detunings which
precludes on-resonance transmission measurements, hence the dispersive regime. b)
Dispersive shift of the cavity resonance in transmission for a radiation-matter coupling of
~g = 8.17 ± 0.36 meV commensurate with that found in the main device with a different
areal coverage.

where � XL = ωX − ωL and � CL = ωC − ωL are the detunings of exciton and cavity mode from
the laser frequency, respectively; a (c) is the annihilation operator for the exciton (cavity) mode.
In the weak excitation regime, exciton saturation and any exciton-exciton interaction can be
neglected. Hence, both exciton and cavity operators can be treated as bosonic modes. Including
losses, the model can be completed by defining the Liouvillian operator [46] for the density
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matrix, L(ρ) = 1
i~ [H, ρ] + ~κLc(ρ) + ~γLa(ρ), which accounts for the finite cavity and exciton

linewidths. The Lindblad operators are L� (ρ) = ξρξ† − 1
2 ξ†ξρ − 1

2 ρξ†ξ, in which ξ = a, c.
By diagonalizing the Liouvillian within the single excitation subspace, the following eigenen-

ergies can be obtained [32,47–49]

ω± = ωC +
� XC

2
− i

κ + γ

2
±

r

g2 +
1
4

[� XC + i(κ − γ)]2 , (4)

in which � XC = ωX − ωC is the exciton-cavity detuning. The experimental data is fit with Eq. (4)
for an exciton-cavity coupling energy ~g = 6.47 ± 0.39 meV (Fig. 4(b)). Near zero exciton-cavity
detuning transmission spectra were not included due to the reduced transmission efficiency
inherent to the in-line cavity design [30]. It should be noted the exciton PL peak energy is used
as a proxy for the absorption resonance, since MoSe2 is known to have a small Stokes shift [17]
which in this case is approximately 1 meV. The extracted light-matter interaction is similar to
related nanophotonic structures, although we expect it to be larger with an optimal coverage of
the cavity mode [29].

The light-matter coupling energy was numerically simulated, ~g = 4.2 meV, from a theoretical
formulation of the exciton dipole interacting with the cavity mode electric field [50]. We find
that g depends on the 2D material extension over the cavity, due to the coupling of a 2D material
excitation with a 0D electromagnetic field mode (Appendix B). Qualitative agreement with the
value extracted from the dispersive shift is attained when assuming a 2D flake coverage of the
nanocavity compatible with the one inferred from the sample SEM (Fig. 1(d)). A maximal
simulated exciton-cavity coupling energy ~g = 5.1 meV is obtained for this cavity design when
the 2D flake extension matches the spatial envelope of the cavity mode electric field. We note
that our experimentally measured value of ~g is slightly larger than the theoretical prediction.
We attribute this to less confinement of the electromagnetic field in the cavity due to fabrication
imperfections (such as sidewall roughness), and thus a stronger field on the cavity surface than
the theoretical design.

3. Discussion

We have estimated the exciton-cavity coupling strength of a TMD excitonic transition integrated
on a 0D SiN nanobeam cavity (~g = 6.5 meV) and estimated the cooperativity to be C ∼ 4,
making our material system on the verge of strong coupling. From the known intrinsic linewidth
of the neutral exciton of MoSe2 encapsulated in boron nitride (∼ 1.7 meV) [51] at 4 K, and an
improved cavity quality factor of Q = 10000 [27], a cooperativity approaching C = 4g2/κγ ∼ 380
can be anticipated.

The difficulty remains in the necessary tuning range of the cavity and/or exciton resonance to
best observe avoided crossing in this system due to the large linewidth of the excitonic transition.
Temperature tuning was used in this paper as it is the only mechanism to provide sufficient range
of the exciton-cavity detuning to make observation of a coherent interaction in a dispersionless
cavity. The disadvantage to temperature tuning is the increased linewidth of the exciton transition
at elevated temperatures preventing the observation of strong coupling. As such, a tunable
nanocavity at low temperature is necessary to observe strong coupling with a broad optical
transition. The quantum confined Stark effect is a possible in situ mechanism for tuning of the
excitonic transition, however the in-plane nature of the intralayer exciton dipole moment with an
out-of-plane electric field does not have sufficient tuning range to be practically useful [52]. A
hetero-bilayer structure supporting interlayer excitons has a distinct advantage as the excitations
then support a dipole moment aligned to an out-of-plane electric field [53]. An alternative form
of digital tuning would be to transfer a large-area of monolayer TMDs grown via chemical vapor
deposition [54,55] onto an array of nanobeam cavities with different resonant wavelengths. This
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would allow for the simultaneous observation of multiple exciton-cavity detunings on many
devices.

Surprisingly, the dimensionality mismatch between the 2D MoSe2 exciton and the 0D cavity
mode necessitates careful consideration of the spatial dependence of the exciton-cavity coupling.
There is a competition between the excitonic envelope function (with the resulting area of the 2D
exciton to be minimized) and the cavity field integral (the integrated area should be maximized).
This leads to an optimal coverage of the 2D material on the cavity (Appendix B). The primary
limiting factor in this coupled system is the TMD neutral exciton linewidth, which can be reduced
by boron nitride encapsulation [51]. However, there is a trade-off with a reduced field overlap
of the cavity mode with the monolayer material due to the increased physical distance from the
cavity field maximum. This problem can be mitigated by using an air mode cavity [56].

A careful review of the published literature reveals limited success in establishing a coherent
interaction with monolayer TMDs on nanocavities with negligible dispersion (which includes
photonic crystal cavities and ring resonators). We attribute our initial success to a clean transfer
method of the monolayer material onto the cavity surface [31]. For example, in this paper we see
a bare cavity shift of � ~ωC ≈ 5 meV from before and after monolayer transfer. This should be
compared to a previous result on a similar device, in which a bare cavity shift of � ~ωC ≈ 140
meV was observed [27]. An investigation into a ring resonator device also helped elucidate
physics beyond the coupled oscillator model by allowing for simultaneous observation of multiple
� XC detunings at a given temperature [29]. Reabsorption by the monolayer is expected to be a
hindrance as the monolayer is in the same plane as the cavity mode [57]. However, there exist
additional phonon-mediated processes, which are detuning and temperature dependent, that must
be taken into account. At reduced temperatures there is a marked asymmetry in the observed
photoluminescence intensity depending on whether the exciton-cavity detuning is positive or
negative. In other words, it is easier to observe cavity-coupled PL with the exciton blue-detuned
with respect to the cavity. Furthermore, observations reported in Gebhardt et al. [17], and implicit
in the phenomenological model in Rosser et al. [29], indicate the effects of non-Markovian
dynamics mediated by polariton-phonon coupling. This effect can be most easily evidenced by
the non-Lorentzian lineshape in the transmission spectra at elevated temperatures (Fig. 4(b)).
This further manifests itself in the increased uncertainty in precisely determining the cavity
linewidth from a Lorentzian fitting function. The difficulties associated with cavity-coupled
PL measurements were circumvented by the use of grating couplers to allow for transmission
measurements within a standard confocal microscope. Additionally, the far-detuned cavity was
chosen in this experiment to ameliorate the effects of absorption and non-Markovian dynamics in
transmission measurements to isolate the relevant Hamiltonian parameters.

Note Added: Recently, we became aware of a similar work on a 2D material integrated
nanocavity [58].

Appendix A: Materials and methods

Design and fabrication

We followed previously reported design methods for the nanobeam cavity [32,55] to ensure a high
quality factor and high transmission efficiency. In the design the mirror strength of the grating (a
measure of the grating’s reflectivity) is linearly apodized to reduce the out-of-plane scattering
from coupling to radiation modes. Note, the out-of-plane asymmetry of our on-substrate cavity,
instead of a suspended or an encapsulated cavity, is a non-trivial modification of the design. We
first simulated the photonic band diagram via MIT Photonic Bands (MPB) software package [59],
and then used the Ansys-Lumerical FDTD electromagnetic solver to optimize the quality factor.
The nanobeam is made of a t = 220 nm thick and a w = 779 nm wide silicon nitride film on
silicon oxide substrate. The center region of the nanobeam, where the light is confined, consists
of 10 tapering elliptical holes, and the reflectors are made of 20 Bragg mirror holes. The minor
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axis radius of the elliptical holes is fixed to 40 nm. The tapering region begins with a 178 nm
major axis diameter and a 215 nm center-to-center distance. The tapering region is quadratically
tapered to a 121 nm major axis radius and a 233 nm center-to-center distance. The Bragg region
remains with fixed values of a 121 nm major axis radius and a 233 nm center-to-center distance.
With these design parameters, we obtain a theoretical resonance at 1639 meV, a loaded quality
factor of Qloaded = 11924, and an intrinsic quality factor of Qintrinsic = 25480.

The cavity is fabricated using a 220 nm thick SiN membrane grown via LPCVD on 4 µm of
thermal oxide on silicon. The samples were obtained from commercial vendor Rogue Valley
Microelectronics. A piece of the wafer is spin coated with roughly 400 nm of Zeon ZEP520A
resist. The resist is further coated with a thin layer of Pt/Au which serves as a charge dissipation
layer, as both SiN and silicon dioxide are insulators. The resist was then patterned using a
JEOL JBX6300FX electron-beam lithography system with an accelerating voltage of 100 kV.
The pattern was transferred to the SiN using a reactive ion etch (RIE) in CHF3/O2 chemistry.
The fabricated sample shows a blue shift of the cavity resonance as compared to the simulated
value, as well as significant reduction in the measured Q-factor, which is attributed to fabrication
imperfections.

Measurement

The photoluminescence spectrum is measured by exciting the monolayer with a 632 nm Helium-
Neon laser. The resulting emission is collected with a free-space confocal microscopy setup
following a low-pass filter to remove the excitation laser, and directed into a Princeton Instruments
IsoPlane SCT-320 Imaging Spectrograph with a wavelength accuracy of ±0.2 nm. Cavity-coupled
photoluminescence spectrum is measured by exciting the monolayer with the same 632 nm
Helium-Neon laser and collecting from a grating coupler with the direct photoluminescence
emission occluded by a pinhole in the image plane of the confocal microscope. The transmission
spectrum is measured by exciting one of the grating couplers with a supercontinuum laser
(Fianium WhiteLase Micro) and collecting from the other grating coupler. Using liquid nitrogen
in a continuous flow cryostat (Janis ST-500) the energy of the neutral exciton in the monolayer
MoSe2 is shifted with consequent changes in the linewidths.

Appendix B: Estimating ~g from numerical simulations

In addition to estimating the light-matter interaction by fitting the dispersive cavity shift through
the previous expression, a direct calculation for the system under investigation may be obtained
by treating the exciton in the 2D TMD layer as a delocalized semiconductor quantum well
exciton in a dielectric medium [50], and coupling it to a confined electromagnetic mode. We
derive an expression for the radiation-matter interaction in terms of the oscillator strength, f ,
usually appearing in the Lorentz model for the dielectric response of the 2D material [42],
ε(E) = εb + f /[E2

0 − E2 − iγE]. The radiation-matter interaction is

~g =

p
d f
2

¹

�
dx dy ϵ̂ · Enorm(x, y, z0)Fexc(x, y) , (5)

in which d is the 2D layer thickness, Enorm is the 2D real electric field at the active material
surface (i.e., at z0), normalized as

¯
ε(r )|Enorm(r )|2dr = 1, ϵ̂ is a unitary vector selecting the

electric field components that are coupled to the dipole transition, Fexc is the delocalized exciton
envelope function in 2D, and � represents the surface over which the integral is performed.

Here we specify the previous expression to a rectangular flake of dimensions Lx and Ly,
respectively, for which the properly normalized 2D exciton envelope function can be taken as
Fexc(x, y) = 1/

p
LxLy, and assuming f = 0.4 eV2 for a MoSe2 thickness d = 0.7 nm as taken from

the literature [42]. The electric field profile is then calculated with 3D-FDTD (a commercially
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available software from Ansys-Lumerical was employed), as shown in Fig. 1(a), and only the
in-plane components are assumed to contribute to the integral in Eq. (5). The latter is then
reduced to

¯ Lx

0 dx
¯ Ly

0 dy
�
|Enorm,x | + |Enorm,y |

�
.

We numerically find that the maximal value of ~g ≃ 5.1 meV is obtained for a rectangular
flake with Lx = 5 µm. Considering that the actual sample is shown to exhibit a partial coverage
of the cavity region as well as a much more extended surface extension (Fig. 1), a reduced value
may be expected. In fact, by calculating Eq. (5) for Lx = 12 µm and Ly = 0.779 µm, we obtain
the theoretical value ~g ≃ 4.2 meV, which is qualitatively consistent with the experimentally
determined one. The discrepancy arises from the independent estimate of the oscillator strength
[42].

Appendix C: Avoided crossing

We include a plot demonstrating the subtle dispersive shift of the cavity as the exciton-cavity
detuning is decreased (Fig. 6). The blue diagonal line tracks the peak of the neutral exciton
photoluminescence in monolayer MoSe2. The orange vertical line tracks what would be the
temperature-independent cavity resonant frequency due to the low thermo-optic coefficient of
silicon nitride. The curved purple line tracks the peak of the cavity transmission spectrum

Fig. 6. Overlayed plots of the cavity transmission (left peak) and MoSe2 photoluminescence
(right peak). The center frequency of the neutral exciton exhibited in the photoluminescence
is plotted in Fig. 3(a). The center frequency of the cavity resonance is plotted in Fig. 4(c)
with respect to the exciton detuning from the bare cavity resonant frequency.
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showing the avoided crossing of the cavity resonant frequency and the excitonic transition. The
photoluminescence is the total emission of the monolayer flake. Should it be possible to observe
the photoluminescent emission solely at the center of the cavity mode we would expect to see
level repulsion of the exciton resonant frequency as well.
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